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Abstract— An increasing number of optical High-Resolution (HR) remote sensing satellite systems, offering multispectral 

images. However, acquiring multi temporal HR data may not always be economically viable, particularly for large areas. Data 

having medium resolution (i.e., a GSD of 30 m) do not offer as much detail, but cover a larger area and may often be preferable 

from an economical point of view.  In this research work present a new method for the multi temporal and contextual 

classification of georeferenced optical remote sensing images acquired at different epochs with having different geometrical 

resolutions. The method is based on Conditional Random Fields (CRFs) for contextual classification. But in CRF, pool of 

features used in this work is rather limited, particularly for the medium-resolution images. To solve this problem proposed 

work is expanded to pool of features for the medium-resolution images to improve the classification results. The Gaussian 

model used in the CRF is should be replaced by more sophisticated Random Forests (RFs) classifiers.  RF is an ensemble of 

many decision trees, which have been trained on randomly selected pool of features for the medium-resolution images subsets 

of the training data, in order to decorrelate the individual trees. Extend such a framework to multitemporal classification and 

change detection, taking into account interactions between images acquired at different epochs and considering the fact that 

these images may have different geometrical resolutions. Results are given for two different test sites in Germany, where 

Ikonos, RapidEye, and Landsat images are available.  State-of-the-art multitemporal classification method and that it is feasible 

to detect changes in lower resolution images. 
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I.  INTRODUCTION  

Remote sensing is the acquisition of information about an 

object or phenomenon without making physical contact 

with the object and thus in contrast to on site observation. 

Remote sensing is a sub-field of geography. In modern 

usage, the term generally refers to the use of aerial sensor 

technologies to detect and classify objects on Earth (both on 

the surface, and in the atmosphere and oceans) by means of 

propagated signals (e.g. electromagnetic radiation). It may 

be split into active remote sensing (when a signal is first 

emitted from aircraft or satellites) [Schowengerdt , 2007] 

[Schott, 2007][ Guo et al, 2014] or passive (e.g. sunlight) 

when information is merely recorded [Liu et al, 2009].  

 

Passive sensors gather radiation that is emitted or reflected 

by the object or surrounding areas. Reflected sunlight is the 

most common source of radiation measured by passive 

sensors. Examples of passive remote sensors include film 

photography, infrared, charge-coupled devices, and 

radiometers. Active collection, on the other hand, emits 

energy in order to scan objects and areas whereupon a 

sensor then detects and measures the radiation that is 

reflected or backscattered from the target. RADAR and 

LiDAR are examples of active remote sensing where the 

time delay between emission and return is measured, 

establishing the location, speed and direction of an object. 

 

Remote sensing makes it possible to collect data of 

dangerous or inaccessible areas. Remote sensing 

applications include monitoring deforestation in areas such 

as the Amazon Basin, glacial features in Arctic and 

Antarctic regions, and depth sounding of coastal and ocean 

depths. Military collection during the Cold War made use of 

stand-off collection of data about dangerous border areas. 

Remote sensing also replaces costly and slow data 

collection on the ground, ensuring in the process that areas 

or objects are not disturbed. 

 

Orbital platforms collect and transmit data from different 

parts of the electromagnetic spectrum, which in conjunction 

with larger scale aerial or ground-based sensing and 

analysis, provides researchers with enough information to 

monitor trends such as El Niño and other natural long and 

short term phenomena. Other uses include different areas of 

the earth sciences such as natural resource management, 

agricultural fields such as land usage and conservation, and 

national security and overhead, ground-based and stand-off 

collection on border areas.  
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II. APPLICATION OF REMOTE SENSING DATA 

Conventional radar is mostly associated with aerial traffic 

control, early warning, and certain large scale 

meteorological data. Doppler radar is used by local law 

enforcements’ monitoring of speed limits and in enhanced 

meteorological collection such as wind speed and direction 

within weather systems in addition to precipitation location 

and intensity. Other types of active collection include 

plasmas in the ionosphere. Interferometric synthetic 

aperture radar is used to produce precise digital elevation 

models of large scale terrain (See RADARSAT, TerraSAR-

X, and Magellan). 

 

Laser and radar altimeters on satellites have provided a 

wide range of data. By measuring the bulges of water 

caused by gravity, they map features on the seafloor to a 

resolution of a mile or so. By measuring the height and 

wavelength of ocean waves, the altimeters measure wind 

speeds and direction, and surface ocean currents and 

directions. 

                

Ultrasound (acoustic) and radar tide gauges measure sea 

level, tides and wave direction in coastal and offshore tide 

gauges. 

 

Light detection and ranging (LIDAR) is well known in 

examples of weapon ranging, laser illuminated homing of 

projectiles. LIDAR is used to detect and measure the 

concentration of various chemicals in the atmosphere, while 

airborne LIDAR can be used to measure heights of objects 

and features on the ground more accurately than with radar 

technology. Vegetation remote sensing is a principal 

application of LIDAR. 

 

Radiometers and photometers are the most common 

instrument in use, collecting reflected and emitted radiation 

in a wide range of frequencies. The most common are 

visible and infrared sensors, followed by microwave, 

gamma ray and rarely, ultraviolet. They may also be used to 

detect the emission spectra of various chemicals, providing 

data on chemical concentrations in the atmosphere. 

 

Stereographic pairs of aerial photographs have often been 

used to make topographic maps by imagery and terrain 

analysts in trafficability and highway departments for 

potential routes, in addition to modelling terrestrial habitat 

features [Mills et al,1999][ Twiss et al,2001][ Stewart et al, 

2014] 

 

Simultaneous multi-spectral platforms such as Landsat have 

been in use since the 70’s. These thematic mappers take 

images in multiple wavelengths of electro-magnetic 

radiation (multi-spectral) and are usually found on Earth 

observation satellites, including (for example) the Landsat 

program or the IKONOS satellite. Maps of land cover and 

land use from thematic mapping can be used to prospect for 

minerals, detect or monitor land usage, deforestation, and 

examine the health of indigenous plants and crops, 

including entire farming regions or forests. Landsat images 

are used by regulatory agencies such as KYDOW to 

indicate water quality parameters including Secchi depth, 

chlorophyll a density and total phosphorus content. Weather 

satellites are used in meteorology and climatology. 

 

Hyperspectral imaging produces an image where each pixel 

has full spectral information with imaging narrow spectral 

bands over a contiguous spectral range. Hyperspectral 

imagers are used in various applications including 

mineralogy, biology, defence, and environmental 

measurements. 

 

Within the scope of the combat against desertification, 

remote sensing allows to follow-up and monitor risk areas 

in the long term, to determine desertification factors, to 

support decision-makers in defining relevant measures of 

environmental management, and to assess their impacts 

[Begni et al,2009]. 

 

III. MOTIVATION OF MULTITEMPORAL AND 

MULTISCALE CLASSIFICATION 

An Increasing number of optical High-Resolution (HR) 

remote sensing satellite systems, offering multispectral 

images at a Ground Sampling Distance (GSD) of 5 m or 

below, have become available, e.g., Ikonos, Quickbird, 

WorldView-1, and WorldView-2, to name just a few. 

 

As a consequence of the higher availability of data and the 

higher quality of these images, it should be possible to 

improve the classification accuracy and to analyze land-

cover changes at a higher frequency than this is currently 

done based on a multitemporal analysis. 

 

IV. PROBLEM SPECIFICATION 

 

However, acquiring multitemporal HR data may not always 

be economically viable, particularly for large areas.  

 

Data having medium resolution (i.e., a GSD of 30 m) do not 

offer as much detail, but cover a larger area and may often 

be preferable from an economical point of view.  

 

It would be desirable to have a method capable of 

combining HR images with data of lower resolution and 

acquired at different epochs of arbitrary order for 

classification and for detecting land-cover changes. 

 

Recent work on image classification has emphasized the 

importance of considering local context [Kumar and Hebert, 
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2006], [Schindler, 2012], but only in a monotemporal 

setting. 

 

But in CRF, pool of features used in this work is rather 

limited, particularly for the medium-resolution images, so it 

reduces the classification accuracy of multi temporal image 

samples. 

 

V. OBJECTIVE OF THE RESEARCH 

 

The proposed system is able to deal with data of different 

resolution; the class structure at different epochs may vary 

with the resolution.  

 

The goal of the multitemporal classification is an improved 

classification performance at all individual epochs, but also 

the detection of land-cover changes, possibly using lower 

resolution data. 

 

Pool of features used in this work is rather extended by 

using random forest which increases the accuracy of 

classification in multitemporal dataset samples. 

 

VI. RANDOM FOREST 

 

As usual, the feature vector values of an image site with k 

channels are viewed as samples of a nonparametric function 

. The number of feature pixels is denoted by n, 

and individual pixel locations are referred to by 2-D 

vectors, denoted with lowercase bold letters x. The aim of 

classification is to assign each image pixel feature vectors 

one of l possible class labels ci,  with epoch t to obtain a 

new single-channel image, the thematic map 

. Finding the thematic map with the 

highest probability amounts to searching the labeling which 

maximizes the probability , 

respectively, minimizes its negative log-likelihood or 

“energy”.  

 

 
 

A. Random forest with temporal 

 

The aim of classification is to assign each image pixel 

feature vectors one of l possible class labels ci,  with epoch t 

to obtain a new single-channel image, the thematic map 

. Finding the thematic map with the 

highest probability amounts to searching the labeling which 

maximizes the probability , 

respectively, minimizes its negative log-likelihood or 

“energy”.  

 

 

 

      
 

Both Random forest and Randon forest 

temporal  energy consists of two parts: a “data term” which 

describes how likely a certain label is at each feature vector  

given the observed site data and decreases as the labeling 

fits the observed site data better; and a “smoothness term” 

which describes the likelihood of a certain label 

configuration and decreases as the labeling gets smoother 

 

 

B. Advantages of Random forest with temporal 

 

• The pool of features used in this work is rather 

extended particularly for the medium-resolution 

images to increase the classification accuracy of 

multiple images.  

• Could help to further improve the classification 

results. 

• The multitemporal setting with random forest 

improved the classification accuracy for all images 

• Majority of the changes could be detected in the 

medium-resolution images 

 

C. Multitemporal and Multiscale classification in CRF 

and RF 

 

The method is based on Conditional Random Fields (CRFs) 

and Random Forest (RF) for contextual classification. The 

CRF and RF model is expanded by temporal interaction 

terms that link neighboring epochs via transition 

probabilities between different classes. In order to be able to 

deal with data of different resolution, the class structure at 

different epochs may vary with the resolution. The goal of 

the multitemporal classification is an improved 

classification performance at all individual epochs, but also 

the detection of land-cover changes, possibly using lower 

resolution data. 

               

A comparsion of the performance of different models for 

the interaction potentials. Results are given for two different 

test sites in germany, where Ikonos, RapidEye, and Landsat 

images are available. Our results show that the 

multitemporal classification does indeed increase the 

overall accuracy of all epochs compared to a monotemporal 

classification and to a state –of-the-are multitemporal 

classification, method, and that it is feasible to detect 

changes in lower resolution images. 
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Fig. 1 Overall framework for Multitemporal and Multiscale Classification 

of Remote sensing Satellite Imagery 

 

VII. RESULTS & DISCUSSION 

Here, present the results of a quantitative evaluation of 

random forest and conditional random field methodology. 

Start with a comparison of the different models of the 

spatial interaction potentials in monotemporal classification. 

These results, in particular those achieved, also serve as a 

baseline for assessing the impact of our multitemporal 

model on the classification accuracy. The multitemporal 

model is evaluated for the case of using images of the same 

resolution and for images having different resolutions, 

assess the potential of using multiscale data for detecting 

changes. Finally, a comparison to a state-of the- art 

multitemporal classification technique is presented. 

A. Test and training Dataset   

In this work used two test areas for the evaluation of 

random forest and conditional random field methodology. 

The first test area is situated near Herne, Germany, and 

covers an area of 8.6 × 5.9 km2 (see Figure. 6.1). Used 

multispectral Ikonos data with 4-m GSD acquired in 2005 

and 2007, a multispectral RapidEye image acquired in 2009 

with an original GSD of 5 m, and Landsat data of 30-m 

GSD acquired in 2010. All images were recorded in 

summer.  

Produced orthophotos with 4-m GSD from the Ikonos and 

RapidEye images and with 30-m GSD from the Landsat 

images. The classes to be distinguished with Ikonos and 

RapidEye imagery are residentialareas (res), industrial areas 

(ind), forests (for), and cropland (crp). Since there is no 

clear distinction of the classes res and ind in the Landsat 

imagery, they are fused to a new class builtup areas (bui) in 

that resolution. Reference data were obtained by manually 

labeling the images at pixel level in the Ikonos scene from 

2005. The reference for res contained roads inside 

settlements, gardens attached to buildings, but also roads 

having a width larger than 8 m outside settlements. The 

percentage of the area covered by the four classes was 30% 

(res), 5%(ind), 22% (for), and 43% (crp), respectively.  

 

Fig.2 Training samples  area in Herne  

The set of classes was identical to the one distinguished in 

Herne, but the reference was based on the German 

Authoritative Topographic Cartographic Information 

System (ATKIS). The percentage of the area covered by the 

four classes was 10% (res), 1.5% (ind), 8.5% (for), and 80% 

(crp), respectively.  Both test sites are flat, and the 

agricultural areas show a characteristic pattern for Central 

Europe with rather small fields of heterogeneous 

appearance. The main difference between the test sites is 

that, in Herne, there is a more homogeneous distribution of 

the individual classes than in Husum, where the most 

dominant class (crp) accounts for 80% of the area. Tested 

multitemporal classification method using only images of 

the same resolution. 

 

Fig. 3 Test area in Husum (RapidEye, 7/2009) 

Multitemporal and 

multiscale optical remote 

sensing data 

Multispectral 

Ikonos data and 

RapidEye scenes 

Multitemporal 

classification  
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B. Performance comparison between CRF and RF 

 

The results of a quantitative evaluation of random forest and 

conditional random field methodology. Start with a 

comparison of the different models of the spatial interaction 

potentials in monotemporal classification. These results, in 

particular those achieved, also serve as a baseline for 

assessing the impact of our multitemporal model on the 

classification accuracy. 

 

Table.1 Performance metrics results comparison for 

methods 

Metrics Methods  

CRF RF 

Precision (%) 45.21 60.4521 

Sensitivity(%) 80.12 90.23 

F 

measure(%) 

72.72 82.53 

Accuracy(%) 81.24 91.45 

 

C. Color variation results of the input samples 

For each data set, the classification was carried out two 

times, varying color varitiaon results are shown in the Fig. 4 

under spatial interaction potentials. 

 

 
 

Fig. 4 Color variation results of the input samples 

 

VIII. CONTRIBUTION OF THE RESEARCH 

In this way, it should be possible to benefit from the higher 

information content of HR imagery, while performing 

change detection in data of lower resolution.  

 

In order to achieve the general goals described earlier, in 

this research work  extend such a framework to 

multitemporal classification and change detection, taking 

into account interactions between images acquired at 

different epochs and considering the fact that these images 

may have different geometrical resolutions. 

In the proposed work is expanded feature pool 

could help to further improve the classification results.  

The Gaussian model used for the association 

potentials of the CRF is rather simplistic and should be 

replaced by more sophisticated ones classifiers such as 

Random Forests (RFs).   

RF is an ensemble of many decision trees, 

which have been trained on randomly selected pool of 

features subsets of the training data and/or with some 

randomization in the choice of decision functions for the 

individual nodes, in order to decorrelate the individual trees. 

 

IX. CONCLUSION AND FUTURE WORK 

 

The motivation for the present work has been twofold: first, 

attempt a systematic overview of classification methods 

which model Multitemporal and Multiscale Classification 

of the labels in Optical Satellite Imagery, and which are 

potentially relevant for remote sensing imagery. Second, 

perform an experimental comparison of these methods for 

the problem of classifying images of high spatial and 

resolution, and as far as possible—extract guidelines when 

and how to use them. 

 

In this research work have presented a random forest 

supervised method for multitemporal and multiscale 

classification of remote sensing images that also considers 

local spatial context. It is an extension of the concept of RF  

by multitemporal terms, with the latter being modeled by 

transition matrices related to the probabilities of certain 

changes between the classes. In a multiscale setting, the 

method can deal with different class structures for images 

having different spatial resolutions. The data terms of the 

RF were determined by training, whereas the parameters of 

the (spatial and temporal) interaction terms were found 

empirically. 

 

The global random forest methods, which image processing 

researchers have developed over the past decade, to expand 

pool features could help to further improve the 

classification results. The Gaussian model used for the 

association potentials of the CRF is rather simplistic and 

should be replaced by more sophisticated ones, e.g., by 

state-of-the-art discriminative classifiers such as random 

forests in this research work. 

 

The interaction terms selected for proposed work are also 

relatively simple, depending only on the Euclidean distance 

of the feature vectors at neighboring sites. In the context of 

airborne laser scanning, more complex interaction terms 

have been shown to improve the classification accuracy for 

classes that do not occur very frequently [41]; this 
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observation is still to be verified in the context of satellite 

imagery. The present work also neglected the possibility of 

data-dependent temporal interaction potentials, although 

proposed framework is suited to such an extension in 

principle. Finally, the incorporation of a geospatial database 

into the model, which would be related to the problem of 

change detection in the context of map updating more 

directly, but could also provide a strong prior for all 

subsequent epochs, still remains to be investigated. 
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