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Abstract— The data handled in appearing applications like placement or situation based services, sensor monitoring systems, 
and data integration, are often not exact in nature. In this article, we study the important problem of extracting frequent item 
sets[1] from a huge unsure database, illuminated under the Possible World Semantics (PWS)[2].This issue is technically 
challenging, since an unsure database consist an exponential number of possible worlds. By observing that the mining process 
can be show as a discrete probability distribution, we develop an FP Growth algorithm [4] which compress a large database 
into a dense, Frequent-Pattern tree (FP-tree) [4] structure also Develop an efficient, FP-tree-based frequent pattern mining 
method (FP-growth) and Apriori algorithm for frequent item set mining. We also study the important problem of maintaining 
the mining result for a database that is developing (e.g. by inserting a tuple). Specifically, we present incremental mining 
algorithms [13], which enable Probabilistic repeated Item set (PFI) results to be refreshed. This decrease the requirement of re-
executing the whole mining algorithm on the new database, which is often more expensive and unnecessary. We observe how 
an existing algorithm that retrieves exact item sets, as well as our approximate algorithm, can support incremental mining. All 
our algorithms support both tuple and attribute uncertainty, which are two common uncertain database models. We also 
perform huge evaluation on real and synthetic data sets to validate our approaches. 

Keywords— : Frequent Item Sets, Uncertain Data Set, FP Growth Algorithm,Association Rule Mining,Apriori Algorithm 

 

I.  INTRODUCTION  

The databases used in much more applications such as 
location based services, sensor monitoring systems are often 
uncertain. Frequent patterns are patterns that present in a 
data set frequently. For example, a set of items such as milk 
and bread appear frequently together in a transaction data set 
is frequent data set. A sequence such as buying first a milk, 
then bread and then butter, if it occurs frequently in a 
shopping history then it is frequent sequential pattern. 
Frequent pattern mining [7] searches for relationships which 
occur repeatedly in a given data set. Frequent item set 
mining leads to the invention of associations and association 
among items in large transactional or relational data sets. 
With massive amounts of data continuously being gathered 
and stored, more industries are becoming interested in 
mining such patterns from their databases. The invention of 
interesting association relationships among huge business 
transaction records can help in much more business 
decision-making processes, such as cross-marketing, 
catalogue design, and customer shopping behavior analysis. 
An example of frequent item set mining is market basket 
analysis. In a market basket database rows represents 
transactions, columns represents product purchases and 
binary number indicate whether an item is contained within 
a given transactions. This process analysis customer buying 
habits by finding associations between the various items that 
customer locates in their “shopping baskets”. Frequent 

pattern mining is a key technique for the analysis of such 
data. Fig 1 shows an online market application which carries 
probabilistic information. 
 
          In a probabilistic database each tuple has certain 
probability of belonging to the database. A Probabilistic 
database is a probability distribution on all database 
instances called as possible worlds So, to interpret uncertain 
database Possible World Semantics(PWS) are often used. 
An uncertain transaction database generates possible worlds, 
where each world is defined by a fixed set of transactions 
.This Possible World Semantics (PWS) are used to interpret 
uncertain databases. A set of deterministic samples or 
illustrations called Possible Worlds consisting of set of 
tuple. Any query estimation algorithm for an unsure 
database has to be correct under PWS. This means that 
results produced by the algorithm should be same as if the 
query is estimated on every possible world. Although PWS 
is intuitive and useful, querying or mining under this 
concept is costly. This is because an unsure database has an 
exponential number of possible worlds. For example, the 
database in Fig. 1 has 23=8 possible worlds. Performing 
data mining under PWS can, thus, be technically 
challenging. In fact, the mining of unsure data has recently 
attracted research attention. For example, in efficient 
clustering algorithms were developed for unsure objects; in 
[naive Bayes and decision tree classifiers designed for 
unsure data were studied. In scalable algorithms develop for 



   International Journal of Computer Sciences and Engineering            Vol.-4(1), PP(43-50) Jan  2016, E-ISSN: 2347-2693 

                             © 2016, IJCSE All Rights Reserved                                                                                                          44 

finding frequent item sets (i.e., sets of attribute values that 
appear together frequently in tuple) for unsure databases. 
There are two common unsure database models, which 
support both tuple uncertainty and attribute uncertainty. In 
many applications information captured in transactions is 
unsure since the existence of an item is associated with an 
existential probability. Given an uncertain transaction 
database, it is not sure how to identify whether an item or 
item set is frequent because generally we cannot say for sure 
whether an item set appears in a transaction. In a certain 
transaction database, there will be simply scan and count the 
transaction that include an item set. Dealing with such 
databases is a difficult but interesting problem. 
 

Customer Purchase Items 

Jack (video:1/2),(food:1) 

Mary (clothing:1),(video:1/3);(book:2/3) 

 
Figure- 1: Illustrating an Uncertain Database 

 
          The frequent item sets discovered from unsure data 
are naturally probabilistic, in order to reflect the confidence 
located on the mining results. Fig. 2 shows a Probabilistic 
Frequent Item set (PFI) [14] extracted from Fig. 1. A PFI is 
a set of attribute values that appear regularly with a 
sufficiently high probability. In this paper we use Apriori 
Algorithm for finding frequent item set. As in many cases 
the Apriori candidate generation and test method 
significantly decrease the size of candidate sets leading to 
good result again. 
 
 
     0.6 
     0.4                
 
 
 
                         0                             1                           2 
   Support count  
 

Figure- 2: s-pmf of PMI {Video} from Figure 1 

 

1) It may need to generate huge number of candidate sets. 
For case, if there are 104 frequent 1-itemsets, the Apriori 
algorithm will need to generate more than 107 candidate 2-
itemsets. Moreover, to invent a frequent pattern of size 100, 
such as {a1…, a100}, it has to generate at least 2100-
1=1030 candidates in total. 
 
2) It may require repeatedly scanning the database and 
checking a large set of candidates by pattern matching. It is 
expensive to go over each transaction in the database to 
determine the support of the candidate item sets. In this 
article we use the FP-Growth algorithm for finding frequent 
item set. 

Table-1: Our Contributions (Marked [√]) 

 

Uncertainty 
Model 

Static Algorithm Incremental 
Algorithms 

Attribute Exact[6] 
Approx.[√] 

Exact[√] 
Approx[√] 

Tuple Exact[30] 
Approx.(singleton)[35] 
Approx.[multiple 
items)[√] 

Exact[√] 
 
Approx[√] 

 

        We can design a method that can mine the complete 
sets of frequent item sets without candidate generation using 
Frequent-Pattern growth algorithm. The FP-growth 
algorithm is now one of the fastest approaches to find 
frequent item set mining. This algorithm adopts a divide-
and-conquer strategy as follows. First, it wraps or 
summarizes the database representing frequent items into a 
frequent-pattern tree, or FP-tree, which preserves the item 
set association information. It then divides the compressed 
database into a set of limited databases (a special type of 
projected database), each associated with one frequent item 
and stores every such database separately. 
             
An Apriori algorithm and FP-Growth Algorithm[4] both 
support Attribute and Tuple uncertainty models. 
Experiments on real data set and find reveal that our 
algorithm significantly improves the performance of PFI 
analysis, with a high degree of accuracy. In this paper we 
present a novel array-based technique that greatly decreases 
the need to traverse FP-trees, thus obtaining significantly 
improved performance for FP-tree based algorithms. Our 
technique works well for sparse datasets. 
 

II. LITERATURE SURVEY 

The frequent item sets discovered from uncertain data are 
naturally probabilistic, in order to reflect the confidence 
placed on mining results. For uncertain databases, Agawam 
et al. and Chui et al. developed efficient frequent pattern 
mining algorithms based on the expected support counts of 
the patterns. However, Bernecker et al. , Sun et al., and Yiu 
et al. found that the use of expected support may render 
important patterns missing. Hence, they proposed to 
compute the probability that a pattern is frequent, and 
introduced the notion of PFI. In, dynamic-programming 
based solutions were developed to retrieve PFIs from 
attribute-uncertain databases. However, their algorithms 
compute exact probabilities, and verify that an item set is a 
PFI in O (n2) time. Our model-based algorithms avoid the 
use of dynamic programming, and are able to verify a PFI 
much faster (in O(n) time).Mining frequent item sets is an 
important problem in data mining, and is also the first step 
of deriving association rules[5] . Hence, many efficient item 
set mining algorithms (e.g., Apriori and Incremental Mining 

1/2 1/3 
1/6 Probability 

0 

       0.2 
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Algorithm) have been proposed. Table 1 summarizes the 
major work done in PFI mining. Here, “Static Algorithms” 
refer to algorithms that do not handle database changes. 
Hence, any change in the database necessitates a complete 
execution of these algorithms. While these algorithms work 
well for databases with precise values, it is not clear how 
they can be used to mine probabilistic data. While Zhang et 
al. only considered the extraction of singletons (i.e., sets of 
single items), our solution discovers patterns with more than 
one item. Recently, Sun et al. developed an exact threshold 
based PFI mining algorithm. However, it does not support 
attribute-uncertain data considered in this paper. In a 
preliminary version of this paper, we examined a model-
based approach for mining PFIs.  
 
          Here, we study how this algorithm can be extended to 
support the mining of evolving data .In, model based 
approach use which can efficiently extract threshold and 
rank based PFIs. Other works on the retrieval of frequent 
patterns from imprecise data include: approximate frequent 
patterns [9] on noisy data, association rules on fuzzy sets; 
and the notion of a “vague association rule.” However, none 
of these solutions are developed on the uncertainty models 
studied here. A few incremental mining algorithms that 
work for exact data have been developed. For example, in 
the Fast Update algorithm (FUP) was proposed to efficiently 
maintain frequent item sets, for a database to which new 
tuples are inserted. Our incremental mining framework is 
inspired by FUP. In the FUP2 algorithm was developed to 
handle both addition and deletion of tuples. ZIGZAG also 
examines the efficient maintenance of maximal frequent 
item sets for databases that are constantly changing. In  a 
data structure, called CATS Tree, was introduced to 
maintain frequent item sets in evolving databases. Another 
structure, called CanTree, arranges tree nodes in an order 
that is not affected by changes in item frequency. The data 
structure is used to support mining on a changing database. 
In the density based clustering algorithm DBSCAN enhance 
to express similarity between two fuzzy objects, which can 
extract threshold and rank based PFIs. The adaptations of 
spatial access methods and searching algorithm for 
probabilistic versions of range queries, nearest neighbors 
(NNs), spatial skyline and reverse NNs.  
 
          To our best knowledge, maintaining frequent item sets 
in evolving uncertain databases has not been examined 
before. We propose novel incremental mining algorithms for 
both exact and approximate PFI discovery [8]. Our 
algorithms can also support attribute and tuple uncertainty 
models. Under the Possible World Semantics, D generates a 
set of possible worlds W. Table 2 lists all possible worlds 
for Figure. 1. Each world, which consists of a subset of 
attributes from each transaction, occurs with probability. 
 
 

Table-2: Possible Words of Figure 1. 

   
III. IMPLEMENTATION DETAILS 

In uncertain dataset the extraction of frequent itemset is 
tedious work because uncertain database contain an 
exponential number of possible worlds. To solve this 
problem we propose PFI (Probabilistic Frequent Itemset) 
techniques. In our base paper, PFI testing and old PFI set is 
being used to make the mining but we implement using PFI 
Approximation method. By using this, large scale of 
uncertain dataset user like location based service, sensor 
monitoring system, biometric applications and data 
integration and so on got beneficial mining result. 
To summarize our contributions are: 
1. Develop a more efficient method  
2. First loading the transaction database as a simple list of 
integer arrays, sorting it, and building the FP-tree 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure- 3: System Architecture 

 

As figure 3 shows, dataset is given as input to candidate 
generate phase for the purpose of candidate generation. here 
we include generate singleton method for generation of 
candidate. This subroutine simply returns the union of all 
single items in database also another way is use Apriori-gen 
method to generate candidate. Next phase is candidate 
pruning; the main goal of this phase is to remove infrequent 

W Tuple in W Prob. 

w1 {food};{clothing} 1/9 

w2 {food};{clothing,video} 1/18 

w3 {food};{clothing,book} 2/9 

w4 {food};{clothing,book,video} 1/9 

w5 {food,video};{clothing} 1/9 

w6 {food,video};{clothing,video} 1/18 

w7 
 w8 

{food,video};{clothing,book} 
  {food,video};{clothing,book,video} 

2/9 
    1/9 

Dataset Candidate 
Generate 

Candidate 
Pruning 

Apriori PFI 

Preprocess 

Recall 

Mining 
Result 

PFI 
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item sets from a set of candidate. Resulted output is passing 
to Apriori PFI for the purpose of verifying whether these 
generated candidates are really PFI. Then these candidates 
are passing to preprocess recall and then generated result is 
gives to PFI. Here Apriori algorithm arrange item base on 
probability. 
          In Apriori algorithm candidate generate [13] and test 
method, candidate pruning will be used. While using Apriori 
algorithm this question arise “Can we design a method that 
mines the complete set of frequent itemset without candidate 
generation?” So, FP-Growth algorithm is designs, which 
adopts a divide and conquer strategy as follows. First it 
compress the database representing frequent items into a 
frequent pattern tree or also called as FP-Tree, which retains 
the itemset association information. To ensure that the tree 
structure is compact and informative, only frequent length-1 
items will have nodes in the tree. The tree nodes are 
arranged in such a way that more frequently occurring nodes 
will have better chances of sharing nodes than less 
frequently occurring ones. It then divides the compressed 
database into a set of conditional databases; each associated 
with one frequent item or “Pattern fragment” and mines 
each database separately.  
The first scan of database is same as Apriori, which derives 
the set of frequent items (1 item set) and their support counts 
(frequencies). An FP-tree is constructed as follows. First 
create the root of the tree as “Null” .Scan database second 
time. The items in each transaction are processed in L order 
(i.e., sorted according to descending support count), and a 
branch is created for each transaction.  
 

A.  The Apriori Algorithm: 

Apriori is an algorithm for frequent item set mining and 
association rule [5] learning over transactional databases. It 
proceeds by identifying the frequent individual items in the 
database and extending them to larger and larger item sets as 
long as those item sets appear sufficiently often in the 
database. The frequent item sets determined by Apriori can 
be used to determine association rules, which highlight 
general trends in the database.  
             
Algorithm 1: Frequent itemset generation of the Apriori 

algorithm. 

1: k=1. 
2: Fk={i|i∈I∧σ({i})≥N×minsup}. 
{Find all frequent1-itemsets} 
3: repeat 
4: k=k+1. 
5: Ck= Apriori-gen (Fk−1). { 
Generate candidate itemset} 
6: foreach transaction t∈T do 
7: Ct=subset (Ck,t). 
{Identify all candidates that belong to t} 
8: for each candidate itemset c∈Ct do 

9: σ(c) =σ(c) +1. {Increment support count} 
10: end for 
11: end for 
12: Fk= {c|c∈Ck∧σ(c) ≥N×minsup}. 
{Extract the frequent k –itemsets} 
13: until Fk=∅ 
14: Result =Fk 
          The algorithm initially makes a single pass over the 
data set to determine the support of each item. Upon 
completion of this step, the set of all frequent 1-itemsets,F1, 
will be known (steps 1 and 2).Next, the algorithm will 
iteratively generate new candidate k-itemset using the 
frequent (k−1)-itemset found in the previous iteration (step 
5). Candidate generation is implemented using a function 
called Apriori gen.To count the support of the candidates, 
the algorithm needs to make an additional pass over the data 
set (steps 6–10). The subset function is used to determine all 
the candidate itemset in Ck that are contained in each 
transaction t. After counting their supports, the algorithm 
eliminates all candidate itemset whose support counts are 
less than minsup (step 12). The algorithm terminates when 
there are no new frequent itemset generated, i.e., Fk=∅  
(Step 13) 

          The frequent itemset generation part of the Apriori 
algorithm has two important characteristics. First, it is a 

Level-wise algorithm; i.e., it traverses the itemset lattice one 
level at a time, from frequent 1-itemsets to the maximum 
size of frequent itemset. Second, it employs a generate-and-
test strategy for finding frequent itemset. At each iteration, 
new candidate itemset are generated from the frequent 
itemset found in the previous iteration. The support for each 
candidate is then counted and tested against the minsup 
threshold. The total number of iterations needed by the 
algorithm is k max +1, where k max is the maximum size of 
the frequent itemset. 
 

B.  FP-Growth: 

The FP-Growth Algorithm is an alternative way to find 
frequent itemset without using candidate generations, thus 
improving performance. For so much it uses a divide-and-
conquer strategy. The core of this method is the usage of a 
special data structure named frequent-pattern tree (FP-tree), 
which retains the itemset association information. In simple 
words, this algorithm works as follows: first it compresses 
the input database creating an FP-tree instance to represent 
frequent items. After this first step it divides the compressed 
database into a set of conditional databases, each one 
associated with one frequent pattern. Finally, each such 
database is mined separately. Using this strategy, the FP-
Growth reduces the search costs looking for short patterns 
recursively and then concatenating them in the long frequent 
patterns, offering good selectivity. In large databases, it’s 
not possible to hold the FP-tree in the main memory. A 
strategy to cope with this problem is to firstly partition the 
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database into a set of smaller databases (called projected 
databases), and then construct an FP-tree from each of these 
smaller databases. The next subsections describe the FP-tree 
structure and FP-Growth Algorithm[17] 

1) FP-Tree structure 

The frequent-pattern tree (FP-tree) [16] is a compact 
structure that stores quantitative information about frequent 
patterns in a database. 

 FP-tree as the tree structure defined below: 

1. One root labelled as “null” with a set of item-prefix sub 
trees as children, and a frequent-item-header table  
2. .Each nodes in the item-prefix sub tree consist of three 
fields: 
      1. Item-name: registers which item is represented by the 
node; 
       2. Count: the number of transactions represented by the 
portion of the path reaching the node; 
     3. Node-link: links to the next node in the FP-tree 
carrying the same item-name, or null if there is none. 
3. Each entry in the frequent-item-header table consists of 
two fields: 
       1. Item-name: as the same to the node; 
        2. Head of node-link: a pointer to the first node in the 
FP-tree carrying the item-name. 

Additionally the frequent-item-header table can have the 
count support for an item. The Figure below show an 
example of a FP-tree. 

 

 
 

Figure- 4: An Example of an FP-Tree From 

 
Algorithm 2: FP-tree construction 

Input: A transaction database DB and a minimum support 
threshold? 
Output: FP-tree, the frequent-pattern tree of DB. 
Method: The FP-tree is constructed as follows.  

1. Scan the transaction database DB once. Collect F, the set 
of frequent items, and the support of each frequent item. 
Sort F in support-descending order as F List, the list of 
frequent items.          

2) Create the root of an FP-tree, T, and label it as “null”. For 
each transaction Trans in DB do the following:   

a. Select the frequent items in Trans and sort them according 
to the order of F List. Let the sorted frequent-item list in 
Trans be [p | P], where p is the first element and P is the 
remaining list. Call insert tree ([p | P], T).                          

b. The function insert tree ([p | P], T) is performed as 
follows. If T has a child N such that N .item-name = p. item-
name, then increment N ’s count by 1; else create a new 
node N , with its count initialized to 1, its parent link linked 
to T , and its node-link linked to the nodes with the same 
item-name via the node-link structure. If P is nonempty, call 
insert tree (P, N) recursively. 

By using this algorithm, the FP-tree is constructed in two 
scans of the database. The first scan collects and sort the set 
of frequent items, and the second constructs the FP-Tree. 

2) 3.3 FP-Growth Algorithm 

After constructing the FP-Tree it’s possible to mine it to find 
the complete set of frequent patterns. To accomplish this 
job, a group of lemmas and properties, and there after 
describes the FP-Growth Algorithm as presented below in 
Algorithm 3. 

Algorithm 3: FP-Growth 

Input: A database DB, represented by FP-tree constructed 
according to Algorithm 1, and a minimum support 
threshold?. 
Output: The complete set of frequent patterns. 
Method: call FP-growth (FP-tree, null). 
Procedure FP-growth (Tree, a)  
{ 

1. If Tree contains a single prefix path then // Mining 
single prefix-path FP-tree { 

2. let P be the single prefix-path part of Tree; 
        3.   Let Q be the multipath part with the top branching           
node            replaced by a null root; 
        4. for each combination (denoted as ß) of the nodes in    
the path P do 
        5. Generate pattern ß ∪ a with support = minimum 
support of nodes in ß; 
        6. Let freq pattern set (P) be the set of patterns so 
generated; 
} 
        7. Else let Q is Tree; 
        8. for each item ai in Q do 
{ 
 // Mining multipath FP-tree 
         9. Generate pattern ß = ai ∪ a with support = ai 
.support; 
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        10. Construct ß’s conditional pattern-base and then ß’s 
conditional FP-tree Tree ß; 
        11. If Tree ß ≠ Ø then 
        12. Call FP-growth (Tree ß, ß); 
         13. Let freq pattern set (Q) be the set of patterns so    
generated ;} 
         14. Return (freq pattern set(P) ∪ freq pattern set(Q) ∪ 
(freq pattern set(P) × freq pattern set(Q))) 
} 
When the FP-tree contains a single prefix-path, the complete 
set of frequent patterns can be generated in three parts: the 
single prefix-path P, the multipath Q, and their combinations 
(lines 01 to 03 and 14). The resulting patterns for a single 
prefix path are the enumerations of its subpaths that have the 
minimum support (lines 04 to 06). Thereafter, the multipath 
Q is defined (line 03 or 07) and the resulting patterns from it 
are processed (lines 08 to 13). Finally, in line 14 the 
combined results are returned as the frequent patterns found. 
 

 Advantages of FP-Growth 
1] Only 2 pass over data-set 
2] No candidate generation 
3] Much faster than Apriori 
 

Disadvantages of FP-Growth 
1] FP-Tree may not fit in memory! 
2] FP-Tree is expensive to build 
3] Support can only be calculated once the entire data-set is 
added to the FP-Tree. 

 
IV. EXPERIMENAL RESULT 

 
A. Comparison of FP-Growth and Apriori Algorithm: 
The main purpose of this test is to verify whether the tree 
based FP Growth algorithm is time efficient or not as 
compared with the Apriori based algorithm. In the 
experiment the same dataset accident is used for the 
algorithms for mining of the frequent itemsets. Here, the 
experimentation is done with the minsup value as 0.4 so the 
same constant is used in these experiments. The execution 
time for all the algorithms is noted by varying the minsup 
value from 0.1 to 0.9.The process is repeated number of 
times and the average value for the time required is 
computed. The performance of the algorithms is as shown in 
the graph. 
 

 
         

Filename Apriori FPGrowth 

Accident 1239235.1333333 11386.47 

200 23.375 19.5555555556 

Retail 371 530 

Mushroom 605.3 124 

chess 4532826.667 12100.16667 

Filename Apriori FPGrowth 
Accident 161.2454062 26.7385482788086 

200 12.892643929 15.712817382812 

Retail 0 13.5192947387695 

Mushroom 13.6092506408691 16.9984924316406 

chess 1222.67089109969 15.7512817382812 

 
A) Time Chart                              B) Space Chart 

  Fig- 5: Comparision of Apriori Algorithm and FP- Growth Algorithm 
 

 So,from Fig.a) above we can say that as the time required 
for FP-Growth is very less than Apriori algorithm.Also from 
fig b)shows that as the space required for Apriori and FP-
Growth. 
 

B  Min_Sup vs Space 
The main purpose of this test is to verify whether the tree 
based FP Growth algorithm is space efficient as compared 
with the Apriori based algorithm. In the experiment the 
same dataset accident is used for the algorithms for mining 
of the frequent item sets. Here, the experimentation is done 
with the minsup value as 0.4 so the same constant is used in 
these experiments. The execution time for all the algorithms 
is noted by varying the minsup value from 0.1 to 0.9.The 
process is repeated number of times and the average value 
for the space required is computed. The performance of the 
algorithms is as shown in the graph fig. 6 and fig.7. 

 
Fig 6: Time Chart for Apriori and FP-Growth Algorithm for Accident 

Dataset with Different Support 
.

 
Fig 7: Space Chart for Apriori and FP Growth Algorithm for Accident 

Dataset with Different Support 

Result Comparison 

Time 

Space 
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V. CONCLUSION 

We have proposed a novel data structure, frequent pattern 
tree (FP-tree), for storing compressed, crucial information 
about frequent patterns, and developed a pattern growth 
method, FP-growth, for efficient mining of frequent patterns 
in large databases. There are several advantages of FP-
growth over other approaches:  
 
(1) It constructs a highly compact FP-tree, which is usually 
substantially smaller than the original database, and thus 
saves the costly database scans in the subsequent mining 
processes. 
 
(2) It applies a pattern growth method which avoids costly 
candidate generation and test by successively concatenating 
frequent 1-itemset found in the (conditional) FP-trees: In 
this context, mining is not Apriori-like (restricted) 
generation-and-test but frequent pattern (fragment) growth 
only. The major operations of mining are count 
accumulation and prefix 
Path count adjustment, which are usually much less costly 
than candidate generation and pattern matching operations 
performed in most Apriori like algorithms.  
 
(3) It applies a partitioning-based divide- and-conquer 
method which dramatically reduces the size of the 
subsequent conditional pattern bases and conditional FP-
trees. 
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