

 © 2016, IJCSE All Rights Reserved 43

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-1 E-ISSN: 2347-2693

Performance Analysis of PFI using FP-Growth Algorithm for various Data-sets

Shital A. Patil1*, Amol Potgantwar2
1*,2 Department of Computer,

Savitribai Phule Pune University, SITRC, Nashik, India

www.ijcseonline.org

Received: Dec/05/2015 Revised: Dec/14/2015 Accepted: Jan/15/2016 Published: 30/Jan/2016

Abstract— The data handled in appearing applications like placement or situation based services, sensor monitoring systems,
and data integration, are often not exact in nature. In this article, we study the important problem of extracting frequent item
sets[1] from a huge unsure database, illuminated under the Possible World Semantics (PWS)[2].This issue is technically
challenging, since an unsure database consist an exponential number of possible worlds. By observing that the mining process
can be show as a discrete probability distribution, we develop an FP Growth algorithm [4] which compress a large database
into a dense, Frequent-Pattern tree (FP-tree) [4] structure also Develop an efficient, FP-tree-based frequent pattern mining
method (FP-growth) and Apriori algorithm for frequent item set mining. We also study the important problem of maintaining
the mining result for a database that is developing (e.g. by inserting a tuple). Specifically, we present incremental mining
algorithms [13], which enable Probabilistic repeated Item set (PFI) results to be refreshed. This decrease the requirement of re-
executing the whole mining algorithm on the new database, which is often more expensive and unnecessary. We observe how
an existing algorithm that retrieves exact item sets, as well as our approximate algorithm, can support incremental mining. All
our algorithms support both tuple and attribute uncertainty, which are two common uncertain database models. We also
perform huge evaluation on real and synthetic data sets to validate our approaches.

Keywords— : Frequent Item Sets, Uncertain Data Set, FP Growth Algorithm,Association Rule Mining,Apriori Algorithm

I. INTRODUCTION

The databases used in much more applications such as
location based services, sensor monitoring systems are often
uncertain. Frequent patterns are patterns that present in a
data set frequently. For example, a set of items such as milk
and bread appear frequently together in a transaction data set
is frequent data set. A sequence such as buying first a milk,
then bread and then butter, if it occurs frequently in a
shopping history then it is frequent sequential pattern.
Frequent pattern mining [7] searches for relationships which
occur repeatedly in a given data set. Frequent item set
mining leads to the invention of associations and association
among items in large transactional or relational data sets.
With massive amounts of data continuously being gathered
and stored, more industries are becoming interested in
mining such patterns from their databases. The invention of
interesting association relationships among huge business
transaction records can help in much more business
decision-making processes, such as cross-marketing,
catalogue design, and customer shopping behavior analysis.
An example of frequent item set mining is market basket
analysis. In a market basket database rows represents
transactions, columns represents product purchases and
binary number indicate whether an item is contained within
a given transactions. This process analysis customer buying
habits by finding associations between the various items that
customer locates in their “shopping baskets”. Frequent

pattern mining is a key technique for the analysis of such
data. Fig 1 shows an online market application which carries
probabilistic information.

 In a probabilistic database each tuple has certain
probability of belonging to the database. A Probabilistic
database is a probability distribution on all database
instances called as possible worlds So, to interpret uncertain
database Possible World Semantics(PWS) are often used.
An uncertain transaction database generates possible worlds,
where each world is defined by a fixed set of transactions
.This Possible World Semantics (PWS) are used to interpret
uncertain databases. A set of deterministic samples or
illustrations called Possible Worlds consisting of set of
tuple. Any query estimation algorithm for an unsure
database has to be correct under PWS. This means that
results produced by the algorithm should be same as if the
query is estimated on every possible world. Although PWS
is intuitive and useful, querying or mining under this
concept is costly. This is because an unsure database has an
exponential number of possible worlds. For example, the
database in Fig. 1 has 23=8 possible worlds. Performing
data mining under PWS can, thus, be technically
challenging. In fact, the mining of unsure data has recently
attracted research attention. For example, in efficient
clustering algorithms were developed for unsure objects; in
[naive Bayes and decision tree classifiers designed for
unsure data were studied. In scalable algorithms develop for

 International Journal of Computer Sciences and Engineering Vol.-4(1), PP(43-50) Jan 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 44

finding frequent item sets (i.e., sets of attribute values that
appear together frequently in tuple) for unsure databases.
There are two common unsure database models, which
support both tuple uncertainty and attribute uncertainty. In
many applications information captured in transactions is
unsure since the existence of an item is associated with an
existential probability. Given an uncertain transaction
database, it is not sure how to identify whether an item or
item set is frequent because generally we cannot say for sure
whether an item set appears in a transaction. In a certain
transaction database, there will be simply scan and count the
transaction that include an item set. Dealing with such
databases is a difficult but interesting problem.

Customer Purchase Items

Jack (video:1/2),(food:1)

Mary (clothing:1),(video:1/3);(book:2/3)

Figure- 1: Illustrating an Uncertain Database

 The frequent item sets discovered from unsure data
are naturally probabilistic, in order to reflect the confidence
located on the mining results. Fig. 2 shows a Probabilistic
Frequent Item set (PFI) [14] extracted from Fig. 1. A PFI is
a set of attribute values that appear regularly with a
sufficiently high probability. In this paper we use Apriori
Algorithm for finding frequent item set. As in many cases
the Apriori candidate generation and test method
significantly decrease the size of candidate sets leading to
good result again.

 0.6
 0.4

 0 1 2
 Support count

Figure- 2: s-pmf of PMI {Video} from Figure 1

1) It may need to generate huge number of candidate sets.
For case, if there are 104 frequent 1-itemsets, the Apriori
algorithm will need to generate more than 107 candidate 2-
itemsets. Moreover, to invent a frequent pattern of size 100,
such as {a1…, a100}, it has to generate at least 2100-
1=1030 candidates in total.

2) It may require repeatedly scanning the database and
checking a large set of candidates by pattern matching. It is
expensive to go over each transaction in the database to
determine the support of the candidate item sets. In this
article we use the FP-Growth algorithm for finding frequent
item set.

Table-1: Our Contributions (Marked [√])

Uncertainty
Model

Static Algorithm Incremental
Algorithms

Attribute Exact[6]
Approx.[√]

Exact[√]
Approx[√]

Tuple Exact[30]
Approx.(singleton)[35]
Approx.[multiple
items)[√]

Exact[√]

Approx[√]

 We can design a method that can mine the complete
sets of frequent item sets without candidate generation using
Frequent-Pattern growth algorithm. The FP-growth
algorithm is now one of the fastest approaches to find
frequent item set mining. This algorithm adopts a divide-
and-conquer strategy as follows. First, it wraps or
summarizes the database representing frequent items into a
frequent-pattern tree, or FP-tree, which preserves the item
set association information. It then divides the compressed
database into a set of limited databases (a special type of
projected database), each associated with one frequent item
and stores every such database separately.

An Apriori algorithm and FP-Growth Algorithm[4] both
support Attribute and Tuple uncertainty models.
Experiments on real data set and find reveal that our
algorithm significantly improves the performance of PFI
analysis, with a high degree of accuracy. In this paper we
present a novel array-based technique that greatly decreases
the need to traverse FP-trees, thus obtaining significantly
improved performance for FP-tree based algorithms. Our
technique works well for sparse datasets.

II. LITERATURE SURVEY

The frequent item sets discovered from uncertain data are
naturally probabilistic, in order to reflect the confidence
placed on mining results. For uncertain databases, Agawam
et al. and Chui et al. developed efficient frequent pattern
mining algorithms based on the expected support counts of
the patterns. However, Bernecker et al. , Sun et al., and Yiu
et al. found that the use of expected support may render
important patterns missing. Hence, they proposed to
compute the probability that a pattern is frequent, and
introduced the notion of PFI. In, dynamic-programming
based solutions were developed to retrieve PFIs from
attribute-uncertain databases. However, their algorithms
compute exact probabilities, and verify that an item set is a
PFI in O (n2) time. Our model-based algorithms avoid the
use of dynamic programming, and are able to verify a PFI
much faster (in O(n) time).Mining frequent item sets is an
important problem in data mining, and is also the first step
of deriving association rules[5] . Hence, many efficient item
set mining algorithms (e.g., Apriori and Incremental Mining

1/2 1/3
1/6 Probability

0

 0.2

 International Journal of Computer Sciences and Engineering Vol.-4(1), PP(43-50) Jan 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 45

Algorithm) have been proposed. Table 1 summarizes the
major work done in PFI mining. Here, “Static Algorithms”
refer to algorithms that do not handle database changes.
Hence, any change in the database necessitates a complete
execution of these algorithms. While these algorithms work
well for databases with precise values, it is not clear how
they can be used to mine probabilistic data. While Zhang et
al. only considered the extraction of singletons (i.e., sets of
single items), our solution discovers patterns with more than
one item. Recently, Sun et al. developed an exact threshold
based PFI mining algorithm. However, it does not support
attribute-uncertain data considered in this paper. In a
preliminary version of this paper, we examined a model-
based approach for mining PFIs.

 Here, we study how this algorithm can be extended to
support the mining of evolving data .In, model based
approach use which can efficiently extract threshold and
rank based PFIs. Other works on the retrieval of frequent
patterns from imprecise data include: approximate frequent
patterns [9] on noisy data, association rules on fuzzy sets;
and the notion of a “vague association rule.” However, none
of these solutions are developed on the uncertainty models
studied here. A few incremental mining algorithms that
work for exact data have been developed. For example, in
the Fast Update algorithm (FUP) was proposed to efficiently
maintain frequent item sets, for a database to which new
tuples are inserted. Our incremental mining framework is
inspired by FUP. In the FUP2 algorithm was developed to
handle both addition and deletion of tuples. ZIGZAG also
examines the efficient maintenance of maximal frequent
item sets for databases that are constantly changing. In a
data structure, called CATS Tree, was introduced to
maintain frequent item sets in evolving databases. Another
structure, called CanTree, arranges tree nodes in an order
that is not affected by changes in item frequency. The data
structure is used to support mining on a changing database.
In the density based clustering algorithm DBSCAN enhance
to express similarity between two fuzzy objects, which can
extract threshold and rank based PFIs. The adaptations of
spatial access methods and searching algorithm for
probabilistic versions of range queries, nearest neighbors
(NNs), spatial skyline and reverse NNs.

 To our best knowledge, maintaining frequent item sets
in evolving uncertain databases has not been examined
before. We propose novel incremental mining algorithms for
both exact and approximate PFI discovery [8]. Our
algorithms can also support attribute and tuple uncertainty
models. Under the Possible World Semantics, D generates a
set of possible worlds W. Table 2 lists all possible worlds
for Figure. 1. Each world, which consists of a subset of
attributes from each transaction, occurs with probability.

Table-2: Possible Words of Figure 1.

III. IMPLEMENTATION DETAILS

In uncertain dataset the extraction of frequent itemset is
tedious work because uncertain database contain an
exponential number of possible worlds. To solve this
problem we propose PFI (Probabilistic Frequent Itemset)
techniques. In our base paper, PFI testing and old PFI set is
being used to make the mining but we implement using PFI
Approximation method. By using this, large scale of
uncertain dataset user like location based service, sensor
monitoring system, biometric applications and data
integration and so on got beneficial mining result.
To summarize our contributions are:
1. Develop a more efficient method
2. First loading the transaction database as a simple list of
integer arrays, sorting it, and building the FP-tree

Figure- 3: System Architecture

As figure 3 shows, dataset is given as input to candidate
generate phase for the purpose of candidate generation. here
we include generate singleton method for generation of
candidate. This subroutine simply returns the union of all
single items in database also another way is use Apriori-gen
method to generate candidate. Next phase is candidate
pruning; the main goal of this phase is to remove infrequent

W Tuple in W Prob.

w1 {food};{clothing} 1/9

w2 {food};{clothing,video} 1/18

w3 {food};{clothing,book} 2/9

w4 {food};{clothing,book,video} 1/9

w5 {food,video};{clothing} 1/9

w6 {food,video};{clothing,video} 1/18

w7
 w8

{food,video};{clothing,book}
 {food,video};{clothing,book,video}

2/9
 1/9

Dataset Candidate
Generate

Candidate
Pruning

Apriori PFI

Preprocess

Recall

Mining
Result

PFI

 International Journal of Computer Sciences and Engineering Vol.-4(1), PP(43-50) Jan 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 46

item sets from a set of candidate. Resulted output is passing
to Apriori PFI for the purpose of verifying whether these
generated candidates are really PFI. Then these candidates
are passing to preprocess recall and then generated result is
gives to PFI. Here Apriori algorithm arrange item base on
probability.
 In Apriori algorithm candidate generate [13] and test
method, candidate pruning will be used. While using Apriori
algorithm this question arise “Can we design a method that
mines the complete set of frequent itemset without candidate
generation?” So, FP-Growth algorithm is designs, which
adopts a divide and conquer strategy as follows. First it
compress the database representing frequent items into a
frequent pattern tree or also called as FP-Tree, which retains
the itemset association information. To ensure that the tree
structure is compact and informative, only frequent length-1
items will have nodes in the tree. The tree nodes are
arranged in such a way that more frequently occurring nodes
will have better chances of sharing nodes than less
frequently occurring ones. It then divides the compressed
database into a set of conditional databases; each associated
with one frequent item or “Pattern fragment” and mines
each database separately.
The first scan of database is same as Apriori, which derives
the set of frequent items (1 item set) and their support counts
(frequencies). An FP-tree is constructed as follows. First
create the root of the tree as “Null” .Scan database second
time. The items in each transaction are processed in L order
(i.e., sorted according to descending support count), and a
branch is created for each transaction.

A. The Apriori Algorithm:

Apriori is an algorithm for frequent item set mining and
association rule [5] learning over transactional databases. It
proceeds by identifying the frequent individual items in the
database and extending them to larger and larger item sets as
long as those item sets appear sufficiently often in the
database. The frequent item sets determined by Apriori can
be used to determine association rules, which highlight
general trends in the database.

Algorithm 1: Frequent itemset generation of the Apriori

algorithm.

1: k=1.
2: Fk={i|i∈I∧σ({i})≥N×minsup}.
{Find all frequent1-itemsets}
3: repeat
4: k=k+1.
5: Ck= Apriori-gen (Fk−1). {
Generate candidate itemset}
6: foreach transaction t∈T do
7: Ct=subset (Ck,t).
{Identify all candidates that belong to t}
8: for each candidate itemset c∈Ct do

9: σ(c) =σ(c) +1. {Increment support count}
10: end for
11: end for
12: Fk= {c|c∈Ck∧σ(c) ≥N×minsup}.
{Extract the frequent k –itemsets}
13: until Fk=∅
14: Result =Fk
 The algorithm initially makes a single pass over the
data set to determine the support of each item. Upon
completion of this step, the set of all frequent 1-itemsets,F1,
will be known (steps 1 and 2).Next, the algorithm will
iteratively generate new candidate k-itemset using the
frequent (k−1)-itemset found in the previous iteration (step
5). Candidate generation is implemented using a function
called Apriori gen.To count the support of the candidates,
the algorithm needs to make an additional pass over the data
set (steps 6–10). The subset function is used to determine all
the candidate itemset in Ck that are contained in each
transaction t. After counting their supports, the algorithm
eliminates all candidate itemset whose support counts are
less than minsup (step 12). The algorithm terminates when
there are no new frequent itemset generated, i.e., Fk=∅
(Step 13)

 The frequent itemset generation part of the Apriori
algorithm has two important characteristics. First, it is a

Level-wise algorithm; i.e., it traverses the itemset lattice one
level at a time, from frequent 1-itemsets to the maximum
size of frequent itemset. Second, it employs a generate-and-
test strategy for finding frequent itemset. At each iteration,
new candidate itemset are generated from the frequent
itemset found in the previous iteration. The support for each
candidate is then counted and tested against the minsup
threshold. The total number of iterations needed by the
algorithm is k max +1, where k max is the maximum size of
the frequent itemset.

B. FP-Growth:

The FP-Growth Algorithm is an alternative way to find
frequent itemset without using candidate generations, thus
improving performance. For so much it uses a divide-and-
conquer strategy. The core of this method is the usage of a
special data structure named frequent-pattern tree (FP-tree),
which retains the itemset association information. In simple
words, this algorithm works as follows: first it compresses
the input database creating an FP-tree instance to represent
frequent items. After this first step it divides the compressed
database into a set of conditional databases, each one
associated with one frequent pattern. Finally, each such
database is mined separately. Using this strategy, the FP-
Growth reduces the search costs looking for short patterns
recursively and then concatenating them in the long frequent
patterns, offering good selectivity. In large databases, it’s
not possible to hold the FP-tree in the main memory. A
strategy to cope with this problem is to firstly partition the

 International Journal of Computer Sciences and Engineering Vol.-4(1), PP(43-50) Jan 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 47

database into a set of smaller databases (called projected
databases), and then construct an FP-tree from each of these
smaller databases. The next subsections describe the FP-tree
structure and FP-Growth Algorithm[17]

1) FP-Tree structure

The frequent-pattern tree (FP-tree) [16] is a compact
structure that stores quantitative information about frequent
patterns in a database.

 FP-tree as the tree structure defined below:

1. One root labelled as “null” with a set of item-prefix sub
trees as children, and a frequent-item-header table
2. .Each nodes in the item-prefix sub tree consist of three
fields:
 1. Item-name: registers which item is represented by the
node;
 2. Count: the number of transactions represented by the
portion of the path reaching the node;
 3. Node-link: links to the next node in the FP-tree
carrying the same item-name, or null if there is none.
3. Each entry in the frequent-item-header table consists of
two fields:
 1. Item-name: as the same to the node;
 2. Head of node-link: a pointer to the first node in the
FP-tree carrying the item-name.

Additionally the frequent-item-header table can have the
count support for an item. The Figure below show an
example of a FP-tree.

Figure- 4: An Example of an FP-Tree From

Algorithm 2: FP-tree construction

Input: A transaction database DB and a minimum support
threshold?
Output: FP-tree, the frequent-pattern tree of DB.
Method: The FP-tree is constructed as follows.

1. Scan the transaction database DB once. Collect F, the set
of frequent items, and the support of each frequent item.
Sort F in support-descending order as F List, the list of
frequent items.

2) Create the root of an FP-tree, T, and label it as “null”. For
each transaction Trans in DB do the following:

a. Select the frequent items in Trans and sort them according
to the order of F List. Let the sorted frequent-item list in
Trans be [p | P], where p is the first element and P is the
remaining list. Call insert tree ([p | P], T).

b. The function insert tree ([p | P], T) is performed as
follows. If T has a child N such that N .item-name = p. item-
name, then increment N ’s count by 1; else create a new
node N , with its count initialized to 1, its parent link linked
to T , and its node-link linked to the nodes with the same
item-name via the node-link structure. If P is nonempty, call
insert tree (P, N) recursively.

By using this algorithm, the FP-tree is constructed in two
scans of the database. The first scan collects and sort the set
of frequent items, and the second constructs the FP-Tree.

2) 3.3 FP-Growth Algorithm

After constructing the FP-Tree it’s possible to mine it to find
the complete set of frequent patterns. To accomplish this
job, a group of lemmas and properties, and there after
describes the FP-Growth Algorithm as presented below in
Algorithm 3.

Algorithm 3: FP-Growth

Input: A database DB, represented by FP-tree constructed
according to Algorithm 1, and a minimum support
threshold?.
Output: The complete set of frequent patterns.
Method: call FP-growth (FP-tree, null).
Procedure FP-growth (Tree, a)
{

1. If Tree contains a single prefix path then // Mining
single prefix-path FP-tree {

2. let P be the single prefix-path part of Tree;
 3. Let Q be the multipath part with the top branching
node replaced by a null root;
 4. for each combination (denoted as ß) of the nodes in
the path P do
 5. Generate pattern ß ∪ a with support = minimum
support of nodes in ß;
 6. Let freq pattern set (P) be the set of patterns so
generated;
}
 7. Else let Q is Tree;
 8. for each item ai in Q do
{
 // Mining multipath FP-tree
 9. Generate pattern ß = ai ∪ a with support = ai
.support;

 International Journal of Computer Sciences and Engineering Vol.-4(1), PP(43-50) Jan 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 48

 10. Construct ß’s conditional pattern-base and then ß’s
conditional FP-tree Tree ß;
 11. If Tree ß ≠ Ø then
 12. Call FP-growth (Tree ß, ß);
 13. Let freq pattern set (Q) be the set of patterns so
generated ;}
 14. Return (freq pattern set(P) ∪ freq pattern set(Q) ∪
(freq pattern set(P) × freq pattern set(Q)))
}
When the FP-tree contains a single prefix-path, the complete
set of frequent patterns can be generated in three parts: the
single prefix-path P, the multipath Q, and their combinations
(lines 01 to 03 and 14). The resulting patterns for a single
prefix path are the enumerations of its subpaths that have the
minimum support (lines 04 to 06). Thereafter, the multipath
Q is defined (line 03 or 07) and the resulting patterns from it
are processed (lines 08 to 13). Finally, in line 14 the
combined results are returned as the frequent patterns found.

 Advantages of FP-Growth
1] Only 2 pass over data-set
2] No candidate generation
3] Much faster than Apriori

Disadvantages of FP-Growth
1] FP-Tree may not fit in memory!
2] FP-Tree is expensive to build
3] Support can only be calculated once the entire data-set is
added to the FP-Tree.

IV. EXPERIMENAL RESULT

A. Comparison of FP-Growth and Apriori Algorithm:
The main purpose of this test is to verify whether the tree
based FP Growth algorithm is time efficient or not as
compared with the Apriori based algorithm. In the
experiment the same dataset accident is used for the
algorithms for mining of the frequent itemsets. Here, the
experimentation is done with the minsup value as 0.4 so the
same constant is used in these experiments. The execution
time for all the algorithms is noted by varying the minsup
value from 0.1 to 0.9.The process is repeated number of
times and the average value for the time required is
computed. The performance of the algorithms is as shown in
the graph.

Filename Apriori FPGrowth

Accident 1239235.1333333 11386.47

200 23.375 19.5555555556

Retail 371 530

Mushroom 605.3 124

chess 4532826.667 12100.16667

Filename Apriori FPGrowth
Accident 161.2454062 26.7385482788086

200 12.892643929 15.712817382812

Retail 0 13.5192947387695

Mushroom 13.6092506408691 16.9984924316406

chess 1222.67089109969 15.7512817382812

A) Time Chart B) Space Chart

 Fig- 5: Comparision of Apriori Algorithm and FP- Growth Algorithm

 So,from Fig.a) above we can say that as the time required
for FP-Growth is very less than Apriori algorithm.Also from
fig b)shows that as the space required for Apriori and FP-
Growth.

B Min_Sup vs Space
The main purpose of this test is to verify whether the tree
based FP Growth algorithm is space efficient as compared
with the Apriori based algorithm. In the experiment the
same dataset accident is used for the algorithms for mining
of the frequent item sets. Here, the experimentation is done
with the minsup value as 0.4 so the same constant is used in
these experiments. The execution time for all the algorithms
is noted by varying the minsup value from 0.1 to 0.9.The
process is repeated number of times and the average value
for the space required is computed. The performance of the
algorithms is as shown in the graph fig. 6 and fig.7.

Fig 6: Time Chart for Apriori and FP-Growth Algorithm for Accident

Dataset with Different Support
.

Fig 7: Space Chart for Apriori and FP Growth Algorithm for Accident

Dataset with Different Support

Result Comparison

Time

Space

 International Journal of Computer Sciences and Engineering Vol.-4(1), PP(43-50) Jan 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 49

V. CONCLUSION

We have proposed a novel data structure, frequent pattern
tree (FP-tree), for storing compressed, crucial information
about frequent patterns, and developed a pattern growth
method, FP-growth, for efficient mining of frequent patterns
in large databases. There are several advantages of FP-
growth over other approaches:

(1) It constructs a highly compact FP-tree, which is usually
substantially smaller than the original database, and thus
saves the costly database scans in the subsequent mining
processes.

(2) It applies a pattern growth method which avoids costly
candidate generation and test by successively concatenating
frequent 1-itemset found in the (conditional) FP-trees: In
this context, mining is not Apriori-like (restricted)
generation-and-test but frequent pattern (fragment) growth
only. The major operations of mining are count
accumulation and prefix
Path count adjustment, which are usually much less costly
than candidate generation and pattern matching operations
performed in most Apriori like algorithms.

(3) It applies a partitioning-based divide- and-conquer
method which dramatically reduces the size of the
subsequent conditional pattern bases and conditional FP-
trees.

ACKNOWLEDGMENT

We thank anonymous references whose comments improved
this paper. Inspiration and guidance are invaluable in every
aspect of life, especially in the field of education, which I
have received from our respected principal, H. O. D., guide,
teachers, colleagues and family to accomplishment of the
project.

REFERENCES

[1] Liang Wang, David Wai-Lok Cheung, Reynold Cheng,

S Lee, X Yung,“Efficient Mining of Frequent Item Sets
onLarge Uncertain Databases”,IEEE Trans Knowledge
and Data Eng.,2012 pp.110-115.

[2] A. Veloso, W. Meira Jr., M. de
Carvalho,S.Parthasarathy, and M.J. Zaki, “Mining
Frequent Itemsets inEvolving Databases”,Proc. Second
SIAM Int’l Conf. Data Mining(SDM), 2002 pp.210-

215.
[3] C. Aggarwal, Y. Li, J. Wang, and J. Wang, “Frequent

PatternMining with Uncertain Data”,Proc. 15th ACM
SIGKDD Int’l Conf.Knowledge Discovery and Data
Mining (KDD), 2009 pp.160-170.

[4] C. Aggarwal and P. Yu, “A Survey of Uncertain Data
Algorithms and Applications”,IEEE Trans Knowledge
and Data Eng., vol. 21,no. 5, May 2009,pp. 609-623.

[5] R. Aggrawal, T. Imieli_nski, and A. Swami, “Mining
AssociationRules between Sets of Items in Large
Databases”,Proc. ACMSIGMOD Int’l Conf.
Management of Data, 1993 pp.348-255.

[6] O. Benjelloun, A.D. Sarma, A. Halevy, and J. Widom,
“ULDBs:Databases with Uncertainty and
Lineage”,Proc. 32nd Int’l Conf.Very Large Data Bases
(VLDB), 2006 pp.440-445.

[7] T. Bernecker, H. Kriegel, M. Renz, F. Verhein, and A.
Zuefle,“Probabilistic Frequent Itemset Mining in
Uncertain Databases”,Proc. 15th ACM SIGKDD Int’l
Conf. Knowledge Discovery and DataMining (KDD),
2009 pp.523-530

[8] L.L. Cam, “An Approximation Theorem for the Poisson
Binomial Distribution”,Pacific J. Math., vol. 10, ,1990,
pp. 1181-1197.

[9] H. Cheng, P. Yu, and J. Han, “Approximate Frequent
ItemsetMining in the Presence of Random Noise”,Proc.
Soft Computing forKnowledge Discovery and Data
Mining, 2008,pp. 363-389.

[10] R. Cheng, D. Kalashnikov, and S. Prabhakar,
“EvaluatingProbabilistic Queries over Imprecise
Data”,Proc. ACM SIGMODInt’l Conf. Management of
Data, 2003 pp.789-792.

[11] D. Cheung, J. Han, V. Ng, and C. Wong, “Maintenance
ofDiscovered Association Rules in Large Databases: An
IncrementalUpdating Technique”,Proc. 12th Int’l Conf.
Data Eng. (ICDE), 1996 pp.890-892.

[12] D. Cheung, S.D. Lee, and B. Kao, “A General
IncrementalTechnique for Maintaining Discovered
Association Rules”,Proc.Fifth Int’l Conf. Database
Systems for Advanced Applications(DASFAA), 1997

pp.267-270.
[13] W. Cheung and O.R. Zaiane, “Incremental Mining

of FrequentPatterns with Candidate Generation or
Support Constraint”,Proc. Seventh Int’l Database Eng.
and Applications Symp. (IDEAS),2003 pp.300-345.

[14] C.K. Chui, B. Kao, and E. Hung, “Mining Frequent
Itemsets fromUncertain Data”,Proc. 11th Pacific-Asia
Conf. Advances in KnowledgeDiscovery and Data
Mining (PAKDD), 2007 pp.867-870.

[15] G. Cormode and M. Garofalakis, “Sketching
Probabilistic DataStreams”,Proc. ACM SIGMOD Int’l
Conf. Management of Data,2007.

[16] M Adnan, R Alhajj, K Barker - Advances in
Artificial Intelligence “Costructing complete FP tree for
incremental mining of frequent patterns in dynamic
database”, 2006 – Springer

[17] J. Han, M. Kamber, “Data Mining Concepts and
Techniques”, 3rd edition, Morgan Kaufmann Publishers,
San Francisco, USA, ISBN 9780123814791, 2012,pp.

243-262.

 International Journal of Computer Sciences and Engineering Vol.-4(1), PP(43-50) Jan 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 50

[18] Thomas Bernecker, Hans-Peter Kriegel, Matthias
Renz,FlorianVerhein,AndreasZuefle,”Probabilisttc
Frequent Itemset Mining in Uncertain Databases”

In Proc.11th Int. Conf. on Knowledge Discovery and Data
Mining (KDD'09),Paris, France,pp.300-365,2009.

[19] Leung, C.K.-S., Carmichael, C.L., Hao, B.:
Efficient mining of frequent patterns from uncer-tain
data. In: Proc. IEEE ICDM Workshops, pp. 489–494
,2007

[20] C.-K. Chui, B. Kao, E. Hung. Mining Frequent
Itemsets from Uncertain Data.PAKDD.pp.500-512,
2007

[21] H. Cheng, P. Yu, and J. Han.”Approximate frequent
itemset mining in the presence of random noise”.Soft
Computing for Knowledge Discovery and Data Mining,
pp.612-615,2008

[22] Carson Kai-Sang Leung,Quamrul I. Khan ,Tariqul
Hoque.” CanTree: A Tree Structure for Efficient
Incremental Mining of Frequent Patterns”pp.700-
712,2005

[23] Charu C. Aggarwal,Senior Member, and Philip S.
Yu,Fellow “A Survey of Uncertain Data Algorithms
and Applications“conf on ieee transactions on
knowledge and data engineering, vol. 21,may 2005
pp.523-540.

[24] Jianxiong Luo, Susan M.Bridges”Mining fuzzy
Association rules and fuzzy frequency episodes for
intrusion detection”pp.812-816.August,2000.

[25] S. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong. The design of an acquisitional query processor
for sensor networks. In ACM SIGMOD, pp.435-
440,2003

