
 © 2018, IJCSE All Rights Reserved 457

International Journal of Computer Sciences and Engineering Open Access
Review Paper Vol.-6, Issue-9, Sept. 2018 E-ISSN: 2347-2693

Multilevel Code Cleaning using Root Extract Method for Java Programs

Pooja Kapila
1*

, A. Sharma
2
, N. Kaur

3

1
Dept. of Information Technology, Chandigarh Engineering College, Mohali, India

2
Dept. of Information Technology, Chandigarh Engineering College, Mohali, India

3
Dept. of Information Technology, Chandigarh Engineering College, Mohali, India

Available online at: www.ijcseonline.org

Accepted: 25/Sept/2018, Published: 30/Sept/2018

Abstract—The code cleaning requires the incorporation of the various processes to remove the clones from the source

code as well as the programming irregularities, which improve the overall design of the code. In this paper, the proposed

model has been designed for the purpose of code cleaning by using the multi-factor code cleaning algorithm. The proposed

model is entirely based upon the elimination of the source code irregularities, which contains the bad smells, code clones

and other such problems. The proposed model is designed to work in the three primary components, which includes the

code clone and smell detection and marking algorithm, which is followed by the refactoring method estimation and then

the application of the refactoring application in the final phase for the act of cleaning the source code. The proposed model

utilizes the divide and conquer method, which is concerned with the extraction of the methods from the class files. Also

the proposed model analyzed and extracts the independent statements from the extracted methods, which incorporates the

common statement elimination, which removes the common statements from the duplication removal process. The

proposed model has been designed to refactor the code on the basis of the bad smell detection and elimination with the

appropriate method. The proposed model has been analyzed under the various kinds of the datasets for the experimental

evaluation, where it has been found better. The proposed model has been recorded with the significant values of the

parameters of the accuracy, precision and recall.

Keywords— Code clone detection, Code cleaning, Duplication detection, Overlapping shifting method.

I. INTRODUCTION

The proposed model has been designed for the removal of

the clones and other programming issues from the JAVA

source code. The proposed model has been designed

within the layered architecture to perform the various

operations in the multiple stages. The various objectives

of the proposed system are mentioned and described in the

full detail in the experimental design section.

The proposed model has been undergone the development

in the phases, which aims at performing the individual

tasks over the input source code. The proposed model has

been

Figure 1: Workflow of the Proposed Model

primarily divided in the four major parts, which can be

defined with the following flowchart describing the

layered architecture of the clone detection and refactoring

model.

The proposed model can easily described in the major

sections as per shown in the Fig 1. The proposed model

has been divided in the major modules as per the

following listings along with their description.

II. LITERATURE REVIEW

M. F. Zibran et. al. [24] has outlined the road to software

clone management: a survey. With regards to the

scheduling techniques, the evolutionary algorithms like

GA similarly because the artificial intelligence (AI)

techniques like heuristic based mostly approaches could

suffer from local optima, and do not guarantee optimality.

M, O’Keeleet. et. al. conducted associate degree empirical

comparison of simulated annealing (SA), GA and multiple

ascent hill-climbing techniques in scheduling refactoring

activities in five software systems written in Java. They

minimize that among those AI techniques, the hill-

climbing approach performed the most effective. M. F.

Zibran et. al. [25] has worked an on conflict-aware

optimal scheduling of inimized code clone refactoring.

Among few potential refactoring open doors, the

determination and request of gathering of refactoring

Source Code Acquisition

Clone Detection

Class Hierarchy and Smell Evaluation

Smell Elimination

Return the Source Code

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 458

activities could have distinguishable effect on the

design/code quality measured regarding software system

metrics. Additionally, there are also dependencies and

conflicts among those refactorings of different needs.

Tending to all of the conflicts, priorities and

dependencies, a manual plan of an ideal refactoring

timetable is extremely high priced, if not outlandish. In

this way an automated refactoring scheduler is vital to

maximize benefit and inimize refactoring efforts.

Nonetheless, the estimation of the efforts expected to

perform code clone refactoring could be a troublesome

task. T. Mens et. al. [15] has developed the A Survey of

software refactoring. This paper gives a broad outline

existing examination in the field of software refactoring.

This exploration is compared and discussed in light of

various criteria: the refactoring activities that are

supported, the particular methods and formalisms that are

utilized for supporting these activities, the types of

software artifacts that are being refactored, the essential

issues that need to be taken into account when building

refactoring tool support, and the impact of refactoring on

the software process. E. Murphy-Hill et. al. [14] has

outlined the why don’t people use refactoring tools? Tools

that perform refactoring are at present under-used by

software engineers. As more progressed refactoring tools

are outlined, an incredible great argument between how

the tools must be utilized and how programmers need to

utilize them. In this position paper, we portray the

predominant procedure of refactoring; shows the

numerous research tools don’t support this procedure, and

start a suggestion to take action for originators of future

refactoring tools. E. Kodhai et. al. [12] has surveyed that

Method-Level Code Clone Modification using

Refactoring Techniques for Clone Maintenance.

Researchers concentrated on exercises for example, clone

support to help the programmers. Refactoring is a surely

understood procedure to enhance the maintainability of

the software. Program refactoring is a method to improve

readability, structure, execution, abstraction,

maintainability, or different characteristics by changing a

program. This paper adds to more brought together

approach for the phases of clone maintenance with an

emphasis on clone modification.

III. EXPERIMENTAL DESIGN

Extract Method: Extract method is a forming strategy

inside the refactoring techniques. During this extract

technique, these take a group of codes and switch it into

its own method. Additionally, flip the fragment into a

method whose name clarifies the point of the method [4].

e.g.:

void printOwing (double amount) {

printBanner ();

//print details

System.out.println (“name:” + _name);

System.out.println (“amount” + amount);

}

Becomes:

void printOwing (double amount) {

printBanner();

printDetails(amount);

}

void printDetails (double amount) {

System.out.println (“name:” + _name);

System.out.println (“amount” + amount);

}

Inline Method: A method’s body is pretty much as clear

as its name. Put the method’s body into the body of its

callers and expel the method [4]. For example, check the

following code segment:

int getRating () {

 return (moreThanFiveLateDeliveries ()) ? 2 : 1;

}

458inimiz moreThanFiveLateDeliveries () {

return _numberOfLateDeliveries > 5;

}

Become:

int getRating () {

 return (_numberOfLateDeliveries > 5) ?

2 : 1;

}

Move Method: A method is, or will utilize, or utilized by

extra features of another class than the class on which it is

characterized [4]. Make a replacement with a same body

within the class it utilizes most. Either transform the old

method into a simple delegation, or take away it inside

and out.

Figure 2: Move Method

e.g.:

class Project {

 Person[] participants;

}

class Person {

 int id;

 458inimiz participate (Project p) {

 for(int i=0; i<p.participants.length; i++)

{

 if (p.participants[i].id == id)

return(true);

 }

 return (false);

 }

 }

.. if (x.participate(p)) ...

After applying the Move Method

class Project {

Class 1

aMethod()

Class 1
Class 2 Class 2

aMethod()

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 459

 Person[] participants;

 459inimiz participate(Person x) {

 for(int i=0; i<participants.length; i++) {

 if (participants[i].id == x.id)

return(true);

 }

 return (false);

 }

}

class Person {

int id;

}

... if (p.participate (x)) ...

Pull Up Method: At the point when copied code crosswise

over two separate classes then the best refactoring

technique to implement is to pull (Drag) that duplicate

code up into a super class thus we tend to DRY (Don’t

Repeat Yourself) out the code and allow it to be used in

different places while not duplication (which means

changes in future just need to happen in one place) [4].

Fundamentally, Pull Up Method is managing the

Generalization. Generalization creates its own batch of

refactoring, basically managing moving methods around a

hierarchy of inheritance. Pull Up Field and Pull Up

Method both promote function up hierarchy. There are

lots of procedures that are utilized with Generalization [4].

Figure 3: Pull Up Method

Push Down Method: Push down method is defines as

behavior on a superclass is relevant only for some of its

subclasses. Push Down Method and Push Down Field

push function downward.

Figure 4: Push Down Method

Extract Superclass Method: In Extract Superclass Method,

Create a superclass and move the common features to the

superclass.

Figure 5: Extract Superclass Method

Introduce Explaining Variable and Rename Methods: In

these two methods, place the results of the style, or

portions of the expression, in a very temporary variable

with a name that clarifies the point [4].

e.g.:

if ((platform.toUpperCase () .indexOf (“MAC”) > - 1)

&&

(browser.toUpperCase () .indexOf (“IE”) > -1) &&

wasInitialized () && resize > 0)

{

// do something

}

Become:

final booleanisMacOs = platform.toUpperCase (

).indexOf (“MAC”) >-1;

final booleanisIEBrowser = browser.toUpperCase (

).indexOf (“IE”) >-1;

final booleanwasResized = resize > 0;

if (isMacOs && isIEBrowser && wasInitialized() &&

wasResized) {

// do something

}

IV. RESULT ANALYSIS

The proposed source code clone analyzer has been deeply

analyzed for its performance over the various source code

segments. The proposed model utilizes the pattern

matching method for the detection of the code clone in the

given source code. The rules are predefined in the training

data, which are further analyzed for the purpose of the

code clone detection in the given source code. The clones

Party

Get Annual Cost

get Name

Employee

getAnnualC

ost

getId

Departmen

t

Get Annual

Cost
Get

HeadCount

Department

Get Total

Annual Cost ge

tName get Head

Count

Employee

Get Annual Cost

get Name get Id

Employee

getQuo

ta

Salesman Salesman

Employee

Salesman

getQuo

ta

Salesman

Employee

Employee

name

Salesman

name

Salesman

name

Salesman Salesman

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 460

have been detected by using the iterative approach over all

of the code segments which successfully processed under

the feature description algorithm.

Table 1: The Results Obtained From the Source Code

Analyzer over the Given Source Code Files

Program Correctly

Detected

Clones

False

Positives

False

Negatives

Code1.JAVA 2 0 1

Code2.JAVA 1 0 0

Code3.JAVA 1 1 0

Code4.JAVA 0 0 1

Code5.JAVA 3 1 1

Total 7 2 3

Total of five files of the JAVA source code has been used

for the testing the code clone code analyzer. The proposed

model has been found better with the few testing, where it

has also failed to detect and analyze some of the source

code. The proposed model has been evaluated for its

performance over the given JAVA dataset. The proposed

model has been evaluated for the multi-disciplinary clones

by using the pattern matching and classification. The

proposed model has been recorded with the moderately

higher accuracy because of the higher level of false

positive and false negative cases.

Table 2: The Accuracy Based Evaluation of the Proposed

Model

Accuracy 58.33 %

Precision 77.78 %

Recall 70.00 %

Figure 6: Graph Showing Accuracy of the Proposed

Model

The overall accuracy of the proposed model is 58.33%

recorded under this performance evaluation study. The

proposed model recall rate has been recorded at 70% and

the precision at 77.78%. The proposed model can be

improved by using the more robust pattern recognition

with the highly dense pattern training data for the code

clone detection. Also the classification method can be

further improved from the non-probabilistic to the

probabilistic classifier for the code clone detection.

V. CONCLUSION

The proposed model has been designed for the code clone

detection in the method level and statement level

evaluation. The proposed model has been designed by

using the divide and conquer method, which is responsible

for the method level extraction by estimating the

delimiting characters for the function definitions. The

code clone estimation is performed in the dual behavior,

where the dual level detection method includes the

detection of the code clones in the inter-class method and

intra-class fashion. The proposed model also evaluates the

other forms of the source code smells by analyzing the

source code. The various kinds of the experiments over

the source code evaluation and then apply the bad smell

elimination, which has been tested over the variety of the

testing sets. The proposed model has been found efficient

on the basis of all of the evaluations over the acquired

datasets. In the future, the code cloning can be detected by

utilizing the code crawlers for the in-depth analytical

application. The proposed model can be also extended by

using the swarm intelligent algorithm based solution for

the optimization and assessment of the code clones and

the bad smells.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing

Code, Addison-Wesley, 2000.

[2] W. G. Griswold, W. F. Opdyke, The Birth of Refactoring: A

retrospective on the Nature of High-Impact Software

Engineering Research, IEEE Software, 32 (6) (2015), 30-38.

[3] R. Geiger, Evolution Impact of Code Clones, Diploma Thesis,

University of Zurich, October, 2005.

[4] M. Hafiz, J. Overbey, Refactoring Myths, IEEE Software 32 (6)

(2015), 39-43.

[5] ToolIclonehttp://www.softwareclones.org/iclones.php>(accesse

d December 2015).

[6] ToolJcdhttp://www.swag.uwaterloo.ca/jcd/> (accessed

December 2015).

[7] R. Koschke, I. D. Baxter, M. Conradt, J. R. Cordy, Software

Clone Management Towards Industrial Application, Dagstuhl

Seminar 12071 on 2 (2) (2012) 21-57.

[8] M. Kim, Z. Thomas, N. Nachiappan, An Empirical Study of

Refactoring Challenges and Benefits at Microsoft, Software

Engineering, IEEE Transactions on 40, (7) (2014) 633-649.

[9] E. Kodhai, S. Kanmani, Method-Level Code Clone

Modification using Refactoring Techniques for Clone

Maintenance, Advanced Computing: An International Journal

(ACIJ), 4 (2), March 2013, 7-26.

[10] E. Murphy-Hill, C. Parnin, A.P. Black, Refactoring Tools:

Fitness for Purpose, IEEE Transactions on Software

Engineering, 25, (5), (2008) 38-44.

[11] E. Murphy-Hill, A. P. Black, Why Don’t People Use

Refactoring Tools?, in proceedings of the Computer Science

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 461

Faculty Publications and Presentations, Portland State

University, Portland, (2007), Paper 115.

[12] T. Mens, T. Tourwé, A Survey of Software Refactoring, IEEE

Transactions on Software Engineering, 30, (2), (2004) 126-139.

[13] M. O’Keeffe, M. Ó, Cinnéide, Search-based refactoring: an

empirical study, J. Softw.Maint.Evol, Res. Pract., 20, (2008),

345–364.

[14] C.K. Roy, J.R. Cordy, A Survey on Software Clone Detection

Research, Technical Report 2007-541, Queen’s University at

Kingston Ontario, Canada, 2007, p.115.

[15] C.K Roy, M.F Zibran, R. Koschke, The Vision of Software

Clone Management: Past, Present, and Future (keynote paper),

in: proceeding of the Software Maintenance and Reengineering

and Reverse Engineering, Antwerp, Belgium, (CSMR-WCRE),

2014, pp. 18-33.

[16] D. Rattan, R. Bhatia, and M. Singh, Software clone detection:

A systematic review, Information and Software Technology 55

(7) (2013) 1165-1199.

[17] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A.

D. Lucia, D. Poshyvanyk, When and Why Your Code Starts to

Smell Bad, in: Proceedings of the 37th International

Conference on Software Engineering, Florence, Italy, 2015, pp.

403-414.

[18] N. Tsantalis, D. Mazinanian, G. P. Krishnan, Assessing the

Refactorability of Software Clones, Software Engineering,

IEEE Transactions on 41 (11) (2015) 1055-1090.

[19] M. D Wit, A. Zaidman, A. V. Deursen, Managing Code Clones

Using Dynamic Change Tracking and Resolution, In:

proceeding of the ICSM, 2009 pp. 169–178.

[20] M. D Wit, Managing Clones Using Dynamic Change Tracking

and Resolution, Master’s thesis, Software Engineering

Research Group, Delft University of Technology, 2009.

[21] M. F. Zibran, C. K. Roy, The Road to Software Clone

Management: A survey, Technical Report 2012–03, The

University of Saskatchewan, Canada, Feb., 2012 p. 54.

[22] M. F. Zibran, Chanchal Kumar Roy, Conflict-aware optimal

scheduling of prioritised code clone refactoring, IET Software,

on 7 (3) (June, 2013) 167-186.

Authors Profile

Pooja Kapila received the B.TECH degree

in information technology from Chandigarh

engineering college in mohali, Punjab, in

2015.She is currently pursuing the MTECH

in information technology with the

Chandigarh engineering college mohali,

Punjab. Her research interests include software

engineering.

Mr. Amitabh Sharma has a total experience

of 20 years in the field of teaching. He has

been working as Assistant Professor at

Chandigarh Engineering College since

2006. He has so far published around 50

papers in various International and National

Scopus journals

Assistant Prof. Navleen Kaur is working in

the field of education for last 5 years and

has been offering her services in

Chandigarh Group of Colleges, Landran

since June 2013 in the Department of

Information Technology (IT) at

Chandigarh Engineering College. She has

so far published around 15 papers in various International

and National Scopus journals. Her research work is in the

field of software engineering in Test Case Prioritization

