
 © 2018, IJCSE All Rights Reserved 503

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-11, Nov 2018 E-ISSN: 2347-2693

Bug Localization Approach on Lexical Pattern Extraction with Lexical

Pattern Clustering

N. Kamaraj
1
*, A.V. Ramani

2

1
Information Technology, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Bharathiar University, Coimbatore

2
Computer Science, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Bharathiar University, Coimbatore

Available online at: www.ijcseonline.org

Accepted: 21/Nov/2018, Published: 30/Nov/2018

Abstract— Bug localization is an important task of classification in software programming data set resources. Software

programming data is used to find out the related programming codes, similar errors and files. Bug localization ranks the list of

possible relevant entities. The bug localization task determines which source code entity is relevant to a particular bug report.

In addition, the proposed paper also designs lexical pattern extraction clustering algorithm to classify the bugs in the given

bugs report. It measures the semantic similarity between words which is an important component in various tasks on the web,

such as relation extraction, community mining, and automatic extraction of metadata. To find out the various semantic relations

existing between two given bug sentences, this paper proposes a new pattern extraction algorithm and a pattern clustering

algorithm. The proposed method outperforms previously proposed web-based semantic similarity measures on the given data

sets. It shows a high correlation with human ratings. Moreover, the above proposed method significantly progresses the

accuracy in community mining task.

Keywords— Bug Localization, Lexical Pattern Extraction, Lexical Pattern Clustering, Information Retrieval

 I. INTRODUCTION

The new research problem in software programming resource

datasets are classification techniques which are applied for

related software programming databases. The traditional

manual bug localization is work-demanding since developers

need to consider thousands and thousands of source code

entities.

Current researches build bug localization classifiers which

are based on information retrieval models or schema, to trace

entities textually similar to bug reports.

Software developers typically utilize bug tracking databases,

such as Bugzilla to manage upcoming bug reports in their

software applications. For example, in the Eclipse project,

developers receive approximately 115 new bug reports every

day. Likewise, IBM Jazz projects get 105 new reports per

day. Mozilla get 152 reports per day [1].

Developers need to spend considerable time as well as effort

to study each new report and choose which source code

entities are related for fixing bugs. Bug localization [2], [3] is

a task which aims at classification problem: in which ‘n’

given source code entities and a bug report categorize, so that

it belongs to one of ‘n’ entities. The classifier yields a

ranked/sorted list of probable relevant entities, along with

similarity percent for each entity in the given list. An

individual entity is considered related if it certainly needs to

be altered to resolve bug report; otherwise considered as

irrelevant.

The recent bug localization researches make use of

Information Retrieval(IR) classifiers to find out similarity

between the given source code entities and the bug report.

However, results may be indistinct and paradoxical: Some

claim that Latent Dirichlet Allocation (LDA) [2] model is

best, whereas others claim that Vector Space Model (VSM)

provides the best performance [4], while still others argue

that a new IR model is required [5]. Their conclusion is

varying since they use different datasets, various performance

measures, and different classifier parameters.

The classifier configurations characterize the value of all the

configuration parameters that stipulate the behavior of a

classifier, such that which source code entity is preprocessed,

how its terms are weighted, and the similarity measure

between source code entities and bug reports.

The rest of this paper is organized as follows: Section 2

reviews the existing bug localization approaches and explains

related works and their limitations. Vector Space Model and

Data preprocessing used in our study is briefed in Section 3.

Our proposed bug localization aspects are detailed in Section

4. Section 5 discusses the lexical pattern extraction and

clustering approaches for bug localization. Section 6 provides

conclusion of the study.

II. LITERATURE

Existing IR-based bug localization classifiers consume. IR

models to find out text-based similarities between source

code entities (SC) (i.e., documents) and a bug report (BR)

(i.e., query). For example, if a bug report (BR) contains the

words, “Cannot open database required in login,” then an IR

model looks for entities that include (“database”, “login”

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 504

etc.). If a bug report and entity contain many common words,

then an IR-based classifier yields the entity a big relevancy

score. Those classifiers contain many parameters which

control their behavior [7].

Specifying a value for the given parameters fully

characterizes the configuration of overall classifier. The

parameters are common for all IR-based classifiers which

govern how the input text data are presented and processed as

follows:

a. Which parts of the source code should be taken, either

comments, variables, or some other programming constructs,

such as the previous bug reports coupled to each source code

entity?

b. Which parts of the bug report should be taken, either title

or description or both?

c. Should the source code and bug report be preprocessed?

Do the variables/class names need to be split? Does the

common stop need to be removed? Does the stemming need

to be applied to their base form?

After configuration of these parameters, each IR model need

to have own set of additional parameters which control

reduction factors, similarity metrics, term weighting, and

other metrics. The remainder of this section describes: the

Vector Space Model, Latent Semantic Indexing and an

enhancement to the Vector Space Model. Then various

preprocessing steps are described that can be applied to bug

reports and source code entities [15].

2.1 Vector Space Model

The Vector Space Model(VSM) algebraic model consists of

the term-document matrix of a corpus [6]. The term-

document matrix is an m x n matrix whose individual

terms/words is represented as rows individual documents are

represented as columns. The matrix’s i
th

, j
th

 entry is the

weight of term wi in document dj. The term-document matrix

is represented as column vectors in VSM; the vector contains

the words weights present in document and zeros otherwise.

Similarity between two documents is calculated based on

comparison of two vectors. The two documents will be

considered as similar, if they contain minimum one shared

term; If they have more shared terms then their similarity

score will be higher [14].

VSM uses the following parameters: Term weighting (TW):

It is about the weight of the term/word in a

document. Values for the parameter are raw frequency, i.e.,

the number of occurrences of term/word in document or tf-idf

(term frequency, inverse document frequency). Similarity

metric (SimMet): It deals with the similarity between two

document vectors. A popular parameter value is cosine

distance or KL divergence [15].

2.2 Data Preprocessing

Several preprocessing steps are taken to reduce the noise and

improve final resulting models. For example, Variable names

are split using regular expressions into various parts based on

naming conventions such as camel case (totalMark, under-

scores (total_mark) and capitalization changes

(TOTALMark).

Researchers have proposed advanced techniques to split

identifiers based on automatic expansion and mining source

code entities, which are more effective than basic regular

expressions. Stemming of words are applied to detect each

word’s root (e.g., “studying” and “study” both become

“study”), typically using the Porter algorithm.

The idea behind these optional steps is to confine developers’

intention, which is guessed to be encoded within the variable

or identifier names and comments in source code entities. The

rest of the source code entities, i.e., language keywords,

special syntax and stop words are viewed as irrelevant/noise

and will not be advantageous as input for various IR models

[8].

2.3 Current IR-Based Bug Localization approaches
At present, researchers have surveyed the use of IR models

for bug localization approaches. Lukins et al. [7] evaluate the

performance of LSI and LDA using small case studies. The

authors built two IR classifiers on identifiers and comments

of source code and compute similarity between each source

code entity and a bug report using cosine similarity and

conditional probability similarity metrics. After performing

case studies on Mozilla and Eclipse (with a total of five and

three bug reports, respectively), the authors found that LDA

often outperforms LSI well. It is noted that authors use

manual query expansion which influenced their results.

Nguyen et al. [5] introduced a latest topic model based on

LDA, termed as Bug Scout, in an effort to progress bug

localization performance. Bug Scout explicitly reflected on

past bug reports, in addition to comments and identifiers, on

behalf of source code documents, using two data sources

concurrently to recognize key technical concepts. The authors

applied BugScout to four dissimilar projects and found that

BugScout enhanced performance by up to 20 per cent over

LDA which is applied only to source codes.

2.4 Drawbacks of current research

Researchers consider only a few configurations of classifiers

(see Table 1), often with no justification given for why

parameter values were chosen out of large space of possible

values in current research. Worse, many parameter values

were left unspecified, making replication of their results hard

or impractical.

Given that there were a number of choices for each parameter

in configurations, and the parameters were independent, there

were thousands of possible configurations for each

underlying IR model.

The effectiveness of each configuration which parameters are

important and works best are currently unknown. As a result,

researchers and practitioners are left to guess which

configurations to use in their project.

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 505

Researchers have combined various approaches to do concept

location. Poshyvanyk et al. [8] combine LSI with a dynamic

feature location approach named scenario-based probabilistic

ranking. These two approaches operate on various datasets

and use various analysis methods. The results of combined

approach are better than individual approach as evidenced by

two different case studies on large projects. Poshyvanyk and

Marcus [9] combine LSI and Formal Concept Analysis to

accomplish similar effects. Cleary et al. [10] unite quite a few

IR models with Natural Language Processing techniques and

conclude that NLP techniques do not get better results.

Finally, Revile [11] combine LSI, web mining algorithms and

dynamic analysis for feature location. They find that

combination outperforms any of the individual approaches.

III. METHODOLOGIES

The goal of this case study is to assess the space of bug

localization classifier configurations: which preprocessing

steps, data representations, and other IR model parameters

result in best bug localization routine.

3.1 Case Study Design

The design of the case study is outlined: which classifiers to

be defined, which software projects need to be tested, the data

collection technique, and the performance metrics, i.e.,

criterion functions need to be used.

3.2. Defined Classifiers

Two families of classifiers are considered: IR-based

classifiers and entity metric-based (EM-based) classifiers.

Tables 1 and 2 list the parameters and values in the classifier

assessment, for IR-based classifiers and entity metric-based

classifiers, respectively. It aims to choose realistic values that

are representative of those used most often in the study, while

keeping a number of configurations. Each parameter and its

possible values.

IR-based classifiers are built based on three popular IR

models: VSM, LSI, and LDA. For each IR model, it must be

decided which bug report representation is to be used for

query, which source code entity representation is to be used

to build index, how to preprocess bug report and source code

representation, and remaining parameter values for particular

IR model. For source code entity representation, six values

are considered. First three are based on text of the source

code entity itself: only identifier names, i.e., method names

and variables (B1), only comments (B2), and identifiers as

well as comments (B3). Like Nguyen et al. [6], the past bug

reports (PBR) related to a particular source code entity are

related. To do so, it is corresponded to the source code entity

as a collection of text of all of its PBRs. So, a new bug report

may be more textually similar to an old bug report than to

comment or identifier names of an entity, giving the IR

model a improved chance for success. They consider two

values are: using the entire PBRs of an entity (B4) and using

just ten most recent, i.e., min(10, |PBR|) PBRs of a given

entity (B5). Finally, it is regarded as all possible data for an

entity: its comments, identifier and all PBRs (B6). For bug

report, i.e., query representation, three values are deemed:

title of the bug report only (A1), description of bug report

only (A2), and title as well as and description of bug report

(A3). In this study, the comments or other metadata related to

the bug report are not considered as this information is

usually not available at time of bug localization.

No query expansion technique carried out besides

preprocessing steps described below. There are three

common preprocessing steps: removing stop words, splitting

identifiers using basic simple regular expressions and apply

stemming. The programming language keywords and

punctuation can also be eliminated. Since the application of

each preprocessing step is twofold, i.e., performed/not

performed, three preprocessing steps can be applied

independently. A total of eight possible preprocessing

techniques (C0-C7) are tested.

The VSM model has two parameters: term weighting (A) and

similarity score (B). For term weighting (A), the tf-idf (D1),

sub linear tf-idf (D2) weighting scheme as well as more basic

Boolean (D3) weighting scheme are considered.

For similarity score (B), both cosine (E1) and overlap

similarity (E2) scores are considered. The LSI model has

three parameters: similarity score, term weighting and

number of topics. The exact three terms weighting schemes

are considered, it is done as for the VSM model (F1-F3).

The similarity score constant at cosine (H1) is embraced,

since research has shown this is the best similarity score for

LSI. Finally, it is deemed that four values for number of

topics: 32, 64, 128, and 256 (G32-G256). Smaller values

yield coarser-grained topics, while larger values yield finer-

grained topics. At present, there is no automatic methodology

for selecting an optimal number of topics and so the values

that cover the typical value ranges are selected.

Table 1. The IR Family of Classifiers Studied

Parameter Value

Parameters common to the entire IR classifiers

Preprocessing

Steps

C0 (None)

C1 (Split only)

C2 (Stop only)

C3 (Stem only)

C4 (Split+stop)

C5 (Split+stem)

C6 (Stop+stem)

C7 (Split+stop+stem)

Entity

Representation

B1 (Variables only)

B2 (Comments only)

B3(Variables+comments)

B4 (OBR-All)

B5 (OBR-10 only)

B6(Variables+comments+OBR-

All

Bug report A1 (Title only)

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 506

representation A2 (Description only)

A3 (Title+description)

Parameters for VSM only

Term weight D1(tf-idf)

D2 (Sublinear tf-idf)

D3 (Boolean)

Similarity metric E1 (Cosine)

E2 (Overlap)

Parameters for LSI only

Term weight F1 (tf-idf)

F2 (Sublinear tf-idf)

F3 (Boolean)

Number of

topics

G32 (32topics)

G64 (64topics)

Similarity metric H1 (Cosine)

Parameters for LDA only

Number of

iterations

I1 (Unit model convergence)

Number of

Topics

J32 (32topics)

J64 (64topics)

 K1 (Optimized based on K)

 L1 (Optimized based on K)

Similarity N1 (Conditional probability)

Configuration parameters and values are shown that they are

considered for each of the three IR models: VSM, LSI and

LDA. OBR is Old Bug Reports.

The LDA model has five parameters: a) number of topics, b)

a document-topic smoothing parameter, c) a topic-word

smoothing parameter, d) number of sampling iterations, and

e) similarity score. They considered two values for the

number of topics are: 32 and 64 (J32-J64), to be consistent

with the choices for LSI model. The LDA implementation is

called MALLET [12], automatically optimizes for the

document-topic and topic-word smoothing parameters, so the

values for these parameters are not set manually. It is also not

specified that the number of iterations manually, and let the

model run till convergence.

Finally, conditional probability score is considered (N1), as it

is most related for IR applications. Conditional probability

does not require the bug reports to be included in the LDA

model at runtime. In contrast, other similarity measures are

not practical as they require LDA to be retuned (the bug

reports and the source code entities) every time a new bug

report appears.

EM (Entity Metric) based Classifiers: The last decade was

very active on research in the area of bug prediction. This

research focuses at measuring features of source code, such

as lines of code (LOC), change proneness, past bug-

proneness and logical coupling between classes, to forecast

which source code entities contain bugs/errors.

The researcher is the first to put forward importing these

methods from bug prediction studies to generate bug

localization classifiers. To this end, EM-based classifiers first

calculate one or more metrics on source code entities. Then,

the classifiers rank the source code entities based on metrics.

For example, a higher LOC metric indicates more errors, so

one EM-based classifier would order entities by their LOC. It

is noted that dissimilar to other IR-based classifiers.

The rankings of EM-based classifiers are not based on given

bug reports and so the same ranked list will be generated for

each and every bug report. Still, it is noted (and the error

prediction literature confirmed) that since errors are highly

concentrated in small number of source code entities, this list

is likely to be precise for given bug report.

The EM-based classifier has a single parameter: which entity

metric is used to find out the bug-proneness of an entity. Four

metrics are considered: LOC of an entity, churn of the entity

(number of LOC that were added, changed or deleted since

the preceding version), cumulative bug count of the entity

(the number of bugs that have been allied with this entity

earlier), new bug count of the entity (the number of bugs only

since the earlier version). Previous research shows that these

metrics are fine predictors of bug-proneness of the entity, so

it is supposed that the metrics to have reasonable

performance for bug localization.

Fully Factorial Design: To quantify the performance of all

possible classifiers (given the considered parameters and their

possible values), a fully factorial design of the case study is

used. In this design, every possible combination of parameter

values is explored. Configuration parameters and values are

shown that we consider.

Table 2. The EM Family of Classifiers Studied

Parameter Value

Metric M1 (Lines of Code)

M2 (Churn)

M3 (New error count)

M4 (cumulative error count)

IV. ANALYSIS AND MPLEMENTATION

4.1 Co-occurrence measures
Generally, page counts-based co-occurrence measures do not

consider the local perspective in which source code/bug co-

occurs. This can be problematic if one or both words are

different but with the same meaning, or when page counts are

unreliable. On the other hand, the snippets present in the

source code for the conjunctive query of two words provide

useful clues related to the semantic relations that exist

between two words. A snippet contains a window of text

selected from a document (source code entity or bug report)

that includes the queried words. Snippets are useful for

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 507

finding similarity because, most of the time, a user can read

that and make a decision whether a particular content is

relevant. The circumstance is also computationally

competent. For example, consider the snippet

Relation is a synonym word for Table in RDBMS

terminology.

A snippet with synonym

Here, the phrase ‘is a’ indicates a semantic relationship

between ‘Table’ and ‘Relation’. Many such phrases point out

semantic relationships. For example, ‘also known as’, ‘is a’,

‘part of’, ‘is an example of’ all indicate semantic relations of

different types. In the example given above, words indicating

the semantic relation between ‘Table’ and ‘Relation’ come

into view between the term words. Replacing the term words

by variables X and Y, it is able to form the pattern ‘X is a Y’

from the example given above.

In spite of the efficiency of using snippets, pose two major

challenges are posed: first, a snippet could be a fragmented

sentence; second, a snippet might be produced by selecting

multiple text fragments from different portions in a document

(source code entity or bug report). Because most syntactic

parsers assume complete sentences as input, deep parsing of

snippets yields incorrect results. So, it is proposed that a

lexical pattern extraction algorithm using snippets, to

distinguish the semantic relations that exist between two term

words.

4.2 Lexical Pattern Extraction and Clustering

The similarity between source code entities and bug reports

present lexical pattern extraction and clustering approach

which better outperforms in finding similarity.

Input: Patterns A (a1, … ,an), threshold 

Output: Clusters C

 SORT (A)

 C  {}

 for pattern ai  A do

 max  - 

 c
*
  null

 for cluster cj  C do

 sim  cosine (ai, cj)

 if sim > max then

 max  sim

 c  cj

 end if

 end for

 if max >  then

 c*  c*  ai

 else

 C  C  {ai}

 end if

 end for

 return C

4.2.1 Lexical Patterns Extractions

These patterns have been used in various natural language

processing tasks such as extracting meronyms or hypernyms,

paraphrase extraction and question answering. Although we

might produce a snippet by selecting multiple text fragments

from various portions in a source code entity or bug report, a

predefined delimiter can be used to break up different

fragments. For example, in Google search engine, the

delimiter “...” is used to break up various fragments in a

snippet. Such delimiters are used to split a snippet before

executing the proposed lexical pattern extraction algorithm

on each fragment.

Given two term words P and Q, one can search in the source

code entity using the wildcard query “P * * * * * Q” and get

snippets. The “*“operator matches one word or none in a

source code entity. Therefore, the wildcard query obtains

snippets in which P and Q appear within a window of seven

words. Here it is assumed that the seven word window is

sufficient to cover most relations between two words in

source code blocks. In fact, most of the lexical patterns

extracted by the proposed method contain less than five

words. One can try to approximate the local meaning of two

words using wildcard queries. For example, a snippet

retrieved for the query “Cannot login.”

 cannot open database required in login

A snippet retrieved for pattern ‘cannot * * * login’.

For a snippet, retrieved for a word pair (P, Q), the two terms

P and Q are replaced respectively, with variables X and Y.

Numeric values are replaced by D, an indicator for digits.

Then it is preparing that all subsequences of words from

snippet that satisfy all of the following conditions:

a. A subsequence should contain one occurrence

 of each X and Y.

b. The maximum length of a subsequence is ‘L’

 words.

c. A subsequence is allowed to leave out one or

 more words. However, more than ‘g’ numbers

 of words are not left consecutively. Moreover,

 the total number of words skipped in a

 subsequence should not exceed ‘G’.

d. While generating subsequences word is not left out,

 For example, this condition ensures that from the

 snippet X is not a Y, subsequence X is a Y is not

 produced. Finally, the frequency of generated

 subsequences is counted and subsequences are used

 that occur more than T times as lexical patterns.

The sample training data which contains paragraphs with

sentences containing lexical pattern phrases like ‘is a’, ‘is a

flying’, ‘is a flying bird’ and the like. For example, if a

sentence is ‘Ostrich is a flying bird’ and the other sentence is

‘Ostrich is an Australian flying bird’ then during the lexical

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 508

pattern extraction (with skip count set to 1 or 2) The sentence

‘Ostrich * * * * bird’ is given as into input. Then both the

phrases ‘is a flying’ and ‘is an Australian flying’ are extracted

out.

 Lexical Patterns Extractions

4.2.2 Lexical Pattern Clustering

Normally, a semantic relation can be articulated using more

than one pattern. Consider the two distinct patterns, X is a Y,

and X is a large Y. Both patterns point out that there exists an

is-a relation between X and Y. Different patterns

identification that express the same semantic relation allows

to signify the relation between two term words precisely.

According to the distributional hypothesis [13], term words

that present in the same perspective have similar meanings.

Distributional hypothesis has been used in different related

processes, like identifying related words and digging out

paraphrases. If the term word pairs is considered that assure

(i.e., co-occur with) a given lexical pattern as the context of

that lexical pair, then from the distributional hypothesis, it

follows that the lexical patterns which are similarly

distributed over word pairs must be semantically similar.

The patterns are clustered using the lexical pattern clustering

algorithm. The patterns are clustered and then the count and

co-occurrence of the word can be considered. Based on this

the word can be extracted. The cluster can be grouped based

on the threshold value, the words are clustered and then the

results are produced. It is a brief window of text extracted by

a search engine around the query term in a document. It

provides useful information regarding the local context of the

query term. Snippets, a brief window of text extracted by a

search engine around the query term in a document, provide

useful information regarding the local context of the query

term. Semantic similarity measures defined over snippets,

have been used in query expansion, personal name

disambiguation, and community mining.

Processing snippets is also efficient because it obviates the

trouble of downloading web pages, which mining is time

consuming depending on the size of the pages. However, a

widely acknowledged drawback of using snippets is that,

because of the huge scale of the web and the large number of

documents in the result set, only those snippets for the top

ranking results for a query can be processed efficiently.

Ranking of search results, hence snippets, is determined by a

complex combination of various factors unique to the

underlying search engine. Therefore, no guarantee exists that

all the information requered to measure semantic similarity

between a given pair of words is contained in the top -

ranking snippets. Drawback because of the huge scale of the

web and the large number of documents in the results set,

only those snippets for the top ranking results for a query can

be processed efficiently.

Lexical Pattern Clustering

V. CONCLUSION

Resolving the bug localization problem has major

implications for programmers or developers because it can

reduce the ‘time and effort’ required to maintain/manage

software. In this paper, we detail the bug localization problem

as one of classification and analyze the effect classifier

configuration on bug localization performance, in addition

with, whether classifier combination could help. The

summary of our main findings are as follows:

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 509

a) The individual IR-based classifier uses the Vector

Space Model, with the index built using tf-idf term weighting

on available data in source code entities (i.e., variables,

comments, and old bug reports for all entities), which has

been stemmed, stopped, and split, and queried with all

available data in bug report (i.e., title and description) with

cosine similarity.

b) Classifier combination helps in almost all cases, no

matter the underlying classifiers used or the specific

combination technique used.

We also like to investigate further whether preprocessing bug

reports by removing noise in the code snippets could be

advantageous to bug localization results. We also found a

semantic similarity measure using both page counts and

snippets retrieved from code snippets. We developed a lexical

pattern extraction method to extract numerous semantic

relations exist between two term words. In addition, a

sequential pattern clustering algorithm was developed to

identify various lexical patterns that describe the identical

semantic relation. Lexical pattern clusters were used to define

features for a word pair.

REFERENCES

[1] Mozilla Foundation, Bugzilla.2012.

[2] S.K. Lukins, N.A. Kraft, and L.H. Etzkorn, Bug Localization

Using Latent Dirichlet Allocation, Information and Software

Technology, vol. 52, no. 9,pp. 972-990, 2010.

[3] A.T. Nguyen, T.T. Nguyen, J. Al-Kofahi,H.V. Nguyen, and T.N

Nguyen, “A Topic-Based Approach for Narrowing the Search

Space of Buggy Files from a Bug Report,” Proc. 26th Int’l Conf

Automated Software Eng., pp. 263-272, 2011.

[4] S. Rao and A. Kak, “Retrieval from Software Libraries for Bug

Localization: A Comparative Study of Generic and Composite Text

Models,” Proc. Eighth Working Conf. Mining Software

Repositories, pp. 43-52, 2011.

[5] A.T. Nguyen, T.T. Nguyen, J. Al-Kofahi, H.V. Nguyen, and T.N.

Nguyen, “A Topic-Based Approach for Narrowing the Search

Space of Buggy Files from a Bug Report,” Proc. 26th Int’l Conf.

Automated Software Eng., pp. 263-272, 2011.

[6] G. Salton, A. Wong, and C.S. Yang, “A Vector Space Model for

Automatic Indexing,” Comm. ACM, vol. 18, no. 11, pp.613-620,

1975.

[7] S.K. Lukins, N.A. Kraft, and L.H. Etzkorn, Source Code Retrieval

for Bug Localization Using Latent Dirichlet Allocation, Proc. 15th

Working Conf. Reverse Eng., pp. 155-164, 2008.

[8] D.Poshyvanyk, Y. Gueheneuc, A. Marcus, G.Antoniol, and V.

Rajlich, “Feature Location Using Probabilistic Ranking of Methods

Based on Execution Scenarios and Information Retrieval,” IEEE

Trans. Software Eng., vol. 33, no. 6 pp. 420-432, June 2007.

[9] D.Poshyvanyk and A. Marcus, “Combining Formal Concept

Analysis with Information Retrieval for Concept Location in

Source Code,” Proc. 15th Int’l Conf. Program Comprehension, pp.

37-48, 2007.

[10] B.Cleary, C.Exton, J.Buckley, and M.English, “An Empirical

Analysis of Information Retrieval Based Concept Location

Techniques in Software Comprehension,” Empirical Software

Eng., vol. 14, no. 1, pp. 93-130, 2008.

[11] M. Revelle, B. Dit, and D. Poshyvanyk, Using Data Fusion and

Web Mining to Support Feature Location in Software, Proc. 18th

Int’l Conf. Program Comprehension, pp. 14-23, 2010.

[12] A.K. McCallum, “Mallet: A Machine Learning for Language

Toolkit,” http://mallet.cs.umass.edu, 2002.

[13] Z. Harris, “Distributional Structure,” Word, vol. 10, pp. 146-162,

1954.

[14] J.Ren,M.Harman,M.Di Penta,“ Cooperative Co-evolutionary

optimization of software project staff assignments “ in

Proc.Int.Symp.Search –Based Sotw. Eng., 2011 , pp. 127-141

[15] C.D.Manning, P.Raghavan and H.Schutze, Introduction to

Information retrieval, vol.1, Cambridge Univ. Press Cambridge,

2008.

Authors Profile

N.Kamaraj Assistant Professor in Information

Technology Department at SRMV College of

Arts and Science, Coimbatore, TamilNadu. He

has many Publications in national &

international journal and Conferences. Currently

he is doing research in the area of Software

Engineering

Dr.A.V.Ramani Completed his PhD degree

fromBharathiya university, TamilNadu, India.

He has 25 publications to his credit He has 30

years of teaching experience .Presently he is

working as a associate Professor and HOD in

computer Science, SRMVCAS, Coimbatore,

Tamilnadu, India

