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Abstract— Bug localization is an important task of classification in software programming data set resources. Software 

programming data is used to find out the related programming codes, similar errors and files.  Bug localization ranks the list of 

possible relevant entities. The bug localization task determines which source code entity is relevant to a particular bug report. 

In addition, the proposed paper also designs lexical pattern extraction clustering algorithm to classify the bugs in the given 

bugs report. It measures the semantic similarity between words which is an important component in various tasks on the web, 

such as relation extraction, community mining, and automatic extraction of metadata. To find out the various semantic relations 

existing between two given bug sentences, this paper proposes a new pattern extraction algorithm and a pattern clustering 

algorithm. The proposed method outperforms previously proposed web-based semantic similarity measures on the given data 

sets. It shows a high correlation with human ratings. Moreover, the above proposed method significantly progresses the 

accuracy in community mining task. 
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                          I.  INTRODUCTION 
 

The new research problem in software programming resource 

datasets are classification techniques which are applied for 

related software programming databases. The traditional 

manual bug localization is work-demanding since developers 

need to consider thousands and thousands of source code 

entities. 
 

Current researches build bug localization classifiers which 

are based on information retrieval models or schema, to trace 

entities textually similar to bug reports.   

Software developers typically utilize bug tracking databases, 

such as Bugzilla to manage upcoming bug reports in their 

software applications. For example, in the Eclipse project, 

developers receive approximately 115 new bug reports every 

day. Likewise, IBM Jazz projects get 105 new reports per 

day. Mozilla get 152 reports per day [1].  
 

Developers need to spend considerable time as well as effort 

to study each new report and choose which source code 

entities are related for fixing bugs. Bug localization [2], [3] is 

a task which aims at classification problem: in which ‘n’ 

given source code entities and a bug report categorize, so that 

it belongs to one of ‘n’ entities. The classifier yields a 

ranked/sorted list of probable relevant entities, along with 

similarity percent for each entity in the given list. An 

individual entity is considered related if it certainly needs to 

be altered to resolve bug report; otherwise considered as 

irrelevant. 
 

The recent bug localization researches make use of 

Information Retrieval(IR) classifiers to find out similarity 

between the given source code entities and the bug report. 

However, results may be indistinct and paradoxical: Some 

claim that Latent Dirichlet Allocation (LDA) [2] model is 

best, whereas others claim that Vector Space Model (VSM) 

provides the best performance [4], while still others argue 

that a new IR model is required [5]. Their conclusion is 

varying since they use different datasets, various performance 

measures, and different classifier parameters.  

 

The classifier configurations characterize the value of all the 

configuration parameters that stipulate the behavior of a 

classifier, such that which source code entity is preprocessed, 

how its terms are weighted, and the similarity measure 

between source code entities and bug reports. 
 

The rest of this paper is organized as follows: Section 2 

reviews the existing bug localization approaches and explains 

related works and their limitations. Vector Space Model and 

Data preprocessing used in our study is briefed in Section 3. 

Our proposed bug localization aspects are detailed in Section 

4. Section 5 discusses the lexical pattern extraction and 

clustering approaches for bug localization. Section 6 provides 

conclusion of the study. 
 

II.   LITERATURE 
 

Existing IR-based bug localization classifiers consume. IR 

models to find out text-based similarities between source 

code entities (SC) (i.e., documents) and a bug report (BR) 

(i.e., query). For example, if a bug report (BR) contains the 

words, “Cannot open database required in login,” then an IR 

model looks for entities that include (“database”, “login” 
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etc.). If a bug report and entity contain many common words, 

then an IR-based classifier yields the entity a big relevancy 

score. Those classifiers contain many parameters which 

control their behavior [7].  
 

Specifying a value for the given parameters fully 

characterizes the configuration of overall classifier. The 

parameters are common for all IR-based classifiers which 

govern how the input text data are presented and processed as 

follows: 
 

a. Which parts of the source code should be taken, either 

comments, variables, or some other programming constructs, 

such as the previous bug reports coupled to each source code 

entity? 
 

b. Which parts of the bug report should be taken, either title 

or description or both? 
 

c. Should the source code and bug report be preprocessed?  

Do the variables/class names need to be split? Does the 

common stop need to be removed? Does the stemming need 

to be applied to their base form? 
 

After configuration of these parameters, each IR model need 

to have own set of additional parameters which control 

reduction factors, similarity metrics, term weighting, and 

other metrics. The remainder of this section describes: the 

Vector Space Model, Latent Semantic Indexing and an 

enhancement to the Vector Space Model. Then various 

preprocessing steps are described that can be applied to bug 

reports and source code entities [15]. 
 

2.1 Vector Space Model 

The Vector Space Model(VSM) algebraic model consists of 

the term-document matrix of a corpus [6]. The term-

document matrix is an m x n matrix whose individual 

terms/words is represented as rows individual documents are 

represented as columns. The matrix’s i
th

, j
th

 entry is the 

weight of term wi in document dj. The term-document matrix 

is represented as column vectors in VSM; the vector contains 

the words weights present in document and zeros otherwise. 

Similarity between two documents is calculated based on 

comparison of two vectors. The two documents will be 

considered as similar, if they contain minimum one shared 

term; If they have more shared terms then their similarity 

score will be higher [14].  
 

VSM uses the following parameters: Term weighting (TW): 

It is about the weight of the term/word in a  

document. Values for the parameter are raw frequency, i.e., 

the number of occurrences of term/word in document or tf-idf 

(term frequency, inverse document frequency). Similarity 

metric (SimMet): It deals with the similarity between two 

document vectors. A popular parameter value is cosine 

distance or KL divergence [15]. 
 

2.2 Data Preprocessing 

Several preprocessing steps are taken to reduce the noise and 

improve final resulting models. For example, Variable names 

are split using regular expressions into various parts based on 

naming conventions such as camel case (totalMark, under-

scores (total_mark) and capitalization changes 

(TOTALMark).  
 

Researchers have proposed advanced techniques to split 

identifiers based on automatic expansion and mining source 

code entities, which are more effective than basic regular 

expressions. Stemming of words are applied to detect each 

word’s root (e.g., “studying” and “study” both become 

“study”), typically using the Porter algorithm. 
 

The idea behind these optional steps is to confine developers’ 

intention, which is guessed to be encoded within the variable 

or identifier names and comments in source code entities. The 

rest of the source code entities, i.e., language keywords, 

special syntax and stop words are viewed as irrelevant/noise 

and will not be advantageous as input for various IR models 

[8]. 
  

2.3 Current IR-Based Bug Localization approaches 
At present, researchers have surveyed the use of IR models 

for bug localization approaches. Lukins et al. [7] evaluate the 

performance of LSI and LDA using small case studies. The 

authors built two IR classifiers on identifiers and comments 

of source code and compute similarity between each source 

code entity and a bug report using cosine similarity and 

conditional probability similarity metrics. After performing 

case studies on Mozilla and Eclipse (with a total of five and 

three bug reports, respectively), the authors found that LDA 

often outperforms LSI well. It is noted that authors use 

manual query expansion which influenced their results. 
 

Nguyen et al. [5] introduced a latest topic model based on 

LDA, termed as Bug Scout, in an effort to progress bug 

localization performance. Bug Scout explicitly reflected on 

past bug reports, in addition to comments and identifiers, on 

behalf of source code documents, using two data sources 

concurrently to recognize key technical concepts. The authors 

applied BugScout to four dissimilar projects and found that 

BugScout enhanced performance by up to 20 per cent over 

LDA which is applied only to source codes. 
 

2.4   Drawbacks of current research 

Researchers consider only a few configurations of classifiers 

(see Table 1), often with no justification given for why 

parameter values were chosen out of large space of possible 

values in current research. Worse, many parameter values 

were left unspecified, making replication of their results hard 

or impractical.  
 

Given that there were a number of choices for each parameter 

in configurations, and the parameters were independent, there 

were thousands of possible configurations for each 

underlying IR model.  

The effectiveness of each configuration which parameters are 

important and works best are currently unknown. As a result, 

researchers and practitioners are left to guess which 

configurations to use in their project. 
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Researchers have combined various approaches to do concept 

location. Poshyvanyk et al. [8] combine LSI with a dynamic 

feature location approach named scenario-based probabilistic 

ranking. These two approaches operate on various datasets 

and use various analysis methods. The results of combined 

approach are better than individual approach as evidenced by 

two different case studies on large projects. Poshyvanyk and 

Marcus [9] combine LSI and Formal Concept Analysis to 

accomplish similar effects. Cleary et al. [10] unite quite a few 

IR models with Natural Language Processing techniques and 

conclude that NLP techniques do not get better results. 

Finally, Revile [11] combine LSI, web mining algorithms and 

dynamic analysis for feature location. They find that 

combination outperforms any of the individual approaches. 
 

III.    METHODOLOGIES 
 

The goal of this case study is to assess the space of bug 

localization classifier configurations: which preprocessing 

steps, data representations, and other IR model parameters 

result in best bug localization routine.  
 

3.1 Case Study Design 

The design of the case study is outlined: which classifiers to 

be defined, which software projects need to be tested, the data 

collection technique, and the performance metrics, i.e., 

criterion functions need to be used. 
 

3.2. Defined Classifiers 

Two families of classifiers are considered: IR-based 

classifiers and entity metric-based (EM-based) classifiers. 

Tables 1 and 2 list the parameters and values in the classifier 

assessment, for IR-based classifiers and entity metric-based 

classifiers, respectively. It aims to choose realistic values that 

are representative of those used most often in the study, while 

keeping a number of configurations. Each parameter and its 

possible values. 
 

IR-based classifiers are built based on three popular IR 

models: VSM, LSI, and LDA. For each IR model, it must be 

decided which bug report representation is to be used for 

query, which source code entity representation is to be used 

to build index, how to preprocess bug report and source code 

representation, and remaining parameter values for particular 

IR model. For source code entity representation, six values 

are considered. First three are based on text of the source 

code entity itself: only identifier names, i.e., method names 

and variables (B1), only comments (B2), and identifiers as 

well as comments (B3). Like Nguyen et al. [6], the past bug 

reports (PBR) related to a particular source code entity are 

related. To do so, it is corresponded to the source code entity 

as a collection of text of all of its PBRs. So, a new bug report 

may be more textually similar to an old bug report than to 

comment or identifier names of an entity, giving the IR 

model a improved chance for success. They consider two 

values are: using the entire PBRs of an entity (B4) and using 

just ten most recent, i.e., min(10, |PBR|)  PBRs of a given 

entity (B5). Finally, it is regarded as all possible data for an 

entity: its comments, identifier and all PBRs (B6). For bug 

report, i.e., query representation, three values are deemed: 

title of the bug report only (A1), description of bug report 

only (A2), and title as well as and description of bug report 

(A3). In this study, the comments or other metadata related to 

the bug report are not considered as this information is 

usually not available at time of bug localization.  
 

No query expansion technique carried out besides 

preprocessing steps described below. There are three 

common preprocessing steps: removing stop words, splitting 

identifiers using basic simple regular expressions and apply 

stemming. The programming language keywords and 

punctuation can also be eliminated. Since the application of 

each preprocessing step is twofold, i.e., performed/not 

performed, three preprocessing steps can be applied 

independently. A total of eight possible preprocessing 

techniques (C0-C7) are tested. 
 

The VSM model has two parameters: term weighting (A) and 

similarity score (B). For term weighting (A), the tf-idf (D1), 

sub linear tf-idf (D2) weighting scheme as well as more basic 

Boolean (D3) weighting scheme are considered.  
 

For similarity score (B), both cosine (E1) and overlap 

similarity (E2) scores are considered. The LSI model has 

three parameters: similarity score, term weighting and 

number of topics. The exact three terms weighting schemes 

are considered, it is done as for the VSM model (F1-F3).  

The similarity score constant at cosine (H1) is embraced, 

since research has shown this is the best similarity score for 

LSI. Finally, it is deemed that four values for number of 

topics: 32, 64, 128, and 256 (G32-G256). Smaller values 

yield coarser-grained topics, while larger values yield finer-

grained topics. At present, there is no automatic methodology 

for selecting an optimal number of topics and so the values 

that cover the typical value ranges are selected. 
 

Table 1.  The IR Family of Classifiers Studied 

Parameter Value 

Parameters common to the entire IR classifiers 

Preprocessing 

Steps 

C0 (None) 

C1 (Split only) 

C2 (Stop only) 

C3 (Stem only) 

C4 (Split+stop) 

C5 (Split+stem) 

C6 (Stop+stem) 

C7 (Split+stop+stem) 

Entity 

Representation 

B1 (Variables only) 

B2 (Comments only) 

B3(Variables+comments) 

B4 (OBR-All) 

B5 (OBR-10 only) 

B6(Variables+comments+OBR-

All 

Bug report A1 (Title only) 
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representation A2 (Description only) 

A3 (Title+description) 

Parameters for VSM only 

Term weight D1(tf-idf) 

D2 (Sublinear tf-idf) 

D3 (Boolean) 

Similarity metric E1 (Cosine) 

E2 (Overlap) 

Parameters for LSI only 

Term weight F1 (tf-idf)  

F2 (Sublinear tf-idf) 

F3 (Boolean) 

Number of 

topics 

G32 (32topics) 

G64 (64topics) 

 

Similarity metric H1 (Cosine) 

Parameters for LDA only 

Number of 

iterations 

I1 (Unit model convergence) 

Number of 

Topics 

J32 (32topics)  

J64 (64topics)  

 K1 (Optimized based on K) 

 L1 (Optimized based on K) 

Similarity N1 (Conditional probability) 

 

Configuration parameters and values are shown that they are 

considered for each of the three IR models: VSM, LSI and 

LDA. OBR is Old Bug Reports. 

 

The LDA model has five parameters: a) number of topics, b) 

a document-topic smoothing parameter, c) a topic-word 

smoothing parameter, d) number of sampling iterations, and 

e) similarity score. They considered two values for the 

number of topics are: 32 and 64 (J32-J64), to be consistent 

with the choices for LSI model. The LDA implementation is 

called MALLET [12], automatically optimizes for the 

document-topic and topic-word smoothing parameters, so the 

values for these parameters are not set manually. It is also not 

specified that the number of iterations manually, and let the 

model run till convergence.  

 

Finally, conditional probability score is considered (N1), as it 

is most related for IR applications. Conditional probability 

does not require the bug reports to be included in the LDA 

model at runtime. In contrast, other similarity measures are 

not practical as they require LDA to be retuned (the bug 

reports and the source code entities) every time a new bug 

report appears. 

 

EM (Entity Metric) based Classifiers: The last decade was 

very active on research in the area of bug prediction. This 

research focuses at measuring features of source code, such 

as lines of code (LOC), change proneness, past bug-

proneness and logical coupling between classes, to forecast 

which source code entities contain bugs/errors. 

The researcher is the first to put forward importing these 

methods from bug prediction studies to generate bug 

localization classifiers. To this end, EM-based classifiers first 

calculate one or more metrics on source code entities. Then, 

the classifiers rank the source code entities based on metrics. 

For example, a higher LOC metric indicates more errors, so 

one EM-based classifier would order entities by their LOC. It 

is noted that dissimilar to other IR-based classifiers. 

 

The rankings of EM-based classifiers are not based on given 

bug reports and so the same ranked list will be generated for 

each and every bug report. Still, it is noted (and the error 

prediction literature confirmed) that since errors are highly 

concentrated in small number of source code entities, this list 

is likely to be precise for given bug report.  

 

The EM-based classifier has a single parameter: which entity 

metric is used to find out the bug-proneness of an entity. Four 

metrics are considered: LOC of an entity, churn of the entity 

(number of LOC that were added, changed or deleted since 

the preceding version), cumulative bug count of the entity 

(the number of bugs that have been allied with this entity 

earlier), new bug count of the entity (the number of bugs only 

since the earlier version). Previous research shows that these 

metrics are fine predictors of bug-proneness of the entity, so 

it is supposed that the metrics to have reasonable 

performance for bug localization. 

 

Fully Factorial Design: To quantify the performance of all 

possible classifiers (given the considered parameters and their 

possible values), a fully factorial design of the case study is 

used. In this design, every possible combination of parameter 

values is explored. Configuration parameters and values are 

shown that we consider. 

 

Table 2.  The EM Family of Classifiers Studied 

Parameter Value 

Metric M1 (Lines of Code) 

M2 (Churn) 

M3 (New error count) 

M4 (cumulative error count) 

 

IV.    ANALYSIS AND MPLEMENTATION 

 

4.1 Co-occurrence measures 
Generally, page counts-based co-occurrence measures do not 

consider the local perspective in which source code/bug co-

occurs. This can be problematic if one or both words are 

different but with the same meaning, or when page counts are 

unreliable. On the other hand, the snippets present in the 

source code for the conjunctive query of two words provide 

useful clues related to the semantic relations that exist 

between two words. A snippet contains a window of text 

selected from a document (source code entity or bug report) 

that includes the queried words. Snippets are useful for 
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finding similarity because, most of the time, a user can read 

that and make a decision whether a particular content is 

relevant. The circumstance is also computationally 

competent. For example, consider the snippet 

 

Relation is a synonym word for Table in RDBMS 

terminology. 

A snippet with synonym 

Here, the phrase ‘is a’ indicates a semantic relationship 

between ‘Table’ and ‘Relation’. Many such phrases point out 

semantic relationships. For example, ‘also known as’, ‘is a’, 

‘part of’, ‘is an example of’ all indicate semantic relations of 

different types. In the example given above, words indicating 

the semantic relation between ‘Table’ and ‘Relation’ come 

into view between the term words. Replacing the term words 

by variables X and Y, it is able to form the pattern ‘X is a Y’ 

from the example given above.  

 

In spite of the efficiency of using snippets, pose two major 

challenges are posed: first, a snippet could be a fragmented 

sentence; second, a snippet might be produced by selecting 

multiple text fragments from different portions in a document 

(source code entity or bug report). Because most syntactic 

parsers assume complete sentences as input, deep parsing of 

snippets yields incorrect results. So, it is proposed that a 

lexical pattern extraction algorithm using snippets, to 

distinguish the semantic relations that exist between two term 

words.  
 

4.2 Lexical Pattern Extraction and Clustering 

The similarity between source code entities and bug reports 

present lexical pattern extraction and clustering approach 

which better outperforms in finding similarity. 

Input: Patterns A (a1, … ,an), threshold  

Output: Clusters C 

 SORT (A) 

 C  {} 

 for pattern ai  A do 

 max  -  

 c
*
  null 

 for cluster cj  C do 

 sim  cosine (ai, cj) 

 if sim > max then 

 max  sim 

 c  cj 

 end if 

 end for 

 if max >  then 

 c*  c*  ai 

 else 

 C  C  {ai} 

 end if   

 end for 

 return C 

 

4.2.1  Lexical Patterns Extractions 

These patterns have been used in various natural language 

processing tasks such as extracting meronyms or hypernyms, 

paraphrase extraction and question answering. Although we 

might produce a snippet by selecting multiple text fragments 

from various portions in a source code entity or bug report, a 

predefined delimiter can be used to break up different 

fragments. For example, in Google search engine, the 

delimiter “...” is used to break up various fragments in a 

snippet. Such delimiters are used to split a snippet before 

executing the proposed lexical pattern extraction algorithm 

on each fragment. 

 

Given two term words P and Q, one can search in the source 

code entity using the wildcard query “P * * * * * Q” and get 

snippets. The “*“operator matches one word or none in a 

source code entity. Therefore, the wildcard query obtains 

snippets in which P and Q appear within a window of seven 

words. Here it is assumed that the seven word window is 

sufficient to cover most relations between two words in 

source code blocks. In fact, most of the lexical patterns 

extracted by the proposed method contain less than five 

words. One can try to approximate the local meaning of two 

words using wildcard queries. For example, a snippet 

retrieved for the query “Cannot login.” 

 

          cannot open database required in login 

A snippet retrieved for pattern ‘cannot * * * login’. 

 

For a snippet, retrieved for a word pair (P, Q), the two terms 

P and Q are replaced respectively, with variables X and Y. 

Numeric values are replaced by D, an indicator for digits. 

Then it is preparing that all subsequences of words from 

snippet that satisfy all of the following conditions: 

a. A subsequence should contain one occurrence   

    of each X and Y.  

b. The maximum length of a subsequence is ‘L’  

     words.  

c. A subsequence is allowed to leave out one or  

    more words. However, more than ‘g’ numbers  

    of words are not left consecutively. Moreover,  

    the total number of words skipped in a  

    subsequence should not exceed ‘G’. 

d. While generating subsequences word is not left out,  

     For example, this condition ensures that from the  

     snippet X is not a Y, subsequence X is a Y is not  

     produced. Finally, the frequency of generated   

     subsequences is counted and subsequences are used  

     that occur more than T times as lexical patterns. 

 

The sample training data which contains paragraphs with 

sentences containing lexical pattern phrases like ‘is a’, ‘is a 

flying’, ‘is a flying bird’ and the like. For example, if a 

sentence is ‘Ostrich is a flying bird’ and the other sentence is 

‘Ostrich is an Australian flying bird’ then during the lexical 
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pattern extraction (with skip count set to 1 or 2) The sentence 

‘Ostrich * * * * bird’ is given as into input. Then both the 

phrases ‘is a flying’ and ‘is an Australian flying’ are extracted 

out. 

         Lexical Patterns Extractions 

 
 

 
 

4.2.2 Lexical Pattern Clustering 

Normally, a semantic relation can be articulated using more 

than one pattern. Consider the two distinct patterns, X is a Y, 

and X is a large Y. Both patterns point out that there exists an 

is-a relation between X and Y. Different patterns 

identification that express the same semantic relation allows 

to signify the relation between two term words precisely. 

According to the distributional hypothesis [13], term words 

that present in the same perspective have similar meanings. 

Distributional hypothesis has been used in different related 

processes, like identifying related words and digging out 

paraphrases. If the term word pairs is considered that assure 

(i.e., co-occur with) a given lexical pattern as the context of 

that lexical pair, then from the distributional hypothesis, it 

follows that the lexical patterns which are similarly 

distributed over word pairs must be semantically similar. 

 

The patterns are clustered using the lexical pattern clustering 

algorithm. The patterns are clustered and then the count and 

co-occurrence of the word can be considered. Based on this 

the word can be extracted. The cluster can be grouped based 

on the threshold value, the words are clustered and then the 

results are produced. It is a brief window of text extracted by 

a search engine around the query term in a document. It 

provides useful information regarding the local context of the 

query term. Snippets, a brief window of text extracted by a 

search engine around the query term in a document, provide 

useful information regarding the local context of the query 

term. Semantic similarity measures defined over snippets, 

have been used in query expansion, personal name  

disambiguation, and community mining. 

 

Processing snippets is also efficient because it obviates the 

trouble of downloading web pages, which mining is time 

consuming depending on the size of the pages. However, a 

widely acknowledged drawback of using snippets is that, 

because of the huge scale of the web and the large number of 

documents in the result set, only those snippets for the  top 

ranking results for a query can be processed  efficiently.  

 

Ranking of search results, hence snippets, is determined by a 

complex combination of various factors unique to the 

underlying search engine. Therefore, no guarantee exists that 

all the information requered to measure semantic similarity 

between a given pair of words is contained in the top - 

ranking snippets.  Drawback because of the huge scale of the 

web and the large number of documents in the results set, 

only those snippets for the top ranking results for a query can 

be processed efficiently. 

Lexical Pattern Clustering 

 
V.      CONCLUSION 

 

Resolving the bug localization problem has major 

implications for programmers or developers because it can 

reduce the ‘time and effort’ required to maintain/manage 

software. In this paper, we detail the bug localization problem 

as one of classification and analyze the effect classifier 

configuration on bug localization performance, in addition 

with, whether classifier combination could help. The 

summary of our main findings are as follows: 
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a) The individual IR-based classifier uses the Vector 

Space Model, with the index built using tf-idf term weighting 

on available data in source code entities (i.e., variables, 

comments, and old bug reports for all entities), which has 

been stemmed, stopped, and split, and queried with all 

available data in bug report (i.e., title and description) with 

cosine similarity.  

b) Classifier combination helps in almost all cases, no 

matter the underlying classifiers used or the specific 

combination technique used. 
 

We also like to investigate further whether preprocessing bug 

reports by removing noise in the code snippets could be 

advantageous to bug localization results. We also found a 

semantic similarity measure using both page counts and 

snippets retrieved from code snippets. We developed a lexical 

pattern extraction method to extract numerous semantic 

relations exist between two term words. In addition, a 

sequential pattern clustering algorithm was developed to 

identify various lexical patterns that describe the identical 

semantic relation. Lexical pattern clusters were used to define 

features for a word pair. 
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