
 © 2019, IJCSE All Rights Reserved 451

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-4, April 2019 E-ISSN: 2347-2693

Bit Level Encryption Algorithm Using Chaos Version 1.0(BLEAUC-1.0)

Asoke Nath
1*

, Suchandra Datta
2
, Souptik Kumar Majumdar

3

1,2,3
Dept. of Computer Science, St. Xavier‟s College (Autonomous), Kolkata, India

*Corresponding Author: asokejoy1@gmail.com, Tel.: +033-

DOI: https://doi.org/10.26438/ijcse/v7i4.451456 | Available online at: www.ijcseonline.org

Accepted: 12/Apr/2019, Published: 30/Apr/2019

Abstract- Cryptographic algorithms attempt to generate ciphertexts which are as seemingly unrelated to the plain text as

possible. We attempt to add a further improvement to existing bit level encryption by incorporating chaos through Game of

Life. Chaos is introduced in our algorithm to make the enciphering process even more random. This is made possible by using

a reversible encryption process using XOR operation in the encryption algorithm. The algorithm is very bit sensitive i.e. any

change in plain text bits will produce a completely different result: cipher text using the same key. The main focus of our

algorithm was to introduce randomness in encryption which has been achieved by generating a random matrix consisting of

dead and alive cells. The said matrix is used for encryption. The matrix generated is seemingly random depending upon the key

given. Thus, achieving the desired target of making the encryption and decryption algorithm even more complex.

Keyword- Bit level encryption; differential attack; brute force attack; leftshift; rightshift; chaos using game of life matrix;

DNAsequence.

I. INTRODUCTION

The exponential growth in technologies, network traffic and

digital communication has resulted in augmenting the

importance of data as one of the most valuable and

vulnerable resources which affects companies and

individuals alike. It is imperative to disguise data whenever

it is in transit, a feat achieved by encryption, to prevent

unauthorized access. Over the years, encryption techniques

have evolved from simple shift ciphers to modern DNA

encryption algorithms. DNA cryptography is one of the

rapid emerging technology which works on concepts of

DNA computing. A new technique for securing data was

introduced using the biological structure of DNA called

DNA Computing (aka molecular computing or biological

computing). It was invented by Leonard Max Adleman in

the year 1994, for solving the complex problems such as

directed Hamilton path problem, NP-complete problem

similar to The Travelling Salesman problem[1].DNA stands

for deoxyribonucleic acid. It consists of four chemical bases

A(adenine), G(guanine), C(cytosine) and T(thymine). The

sequence of the bases determines the characteristics of the

organism. A always pairs with T and C with G to form base

pairs. Each base has a sugar and phosphate molecule

attached to it(together called a nucleotide). Nucleotides are

arranged in a double helical structure. An encryption

algorithm takes the information known as plaintext as input,

performs a series of operations on it to generate a seemingly

random sequence of bits, known as cipher text, which is

totally unrelated to the input plaintext [2]. The process of

converting the cipher text back to the plaintext is known as

decryption. If the keys used in both these processes are

mathematical inverses of each other, it is symmetric key

encryption else asymmetric key encryption. Symmetric key

encryption algorithms include mono-alphabetic and poly-

alphabetic substitution ciphers; the latter is less susceptible

to cryptanalysis attacks, both brute force and statistical

analysis [3]. The former involves trying out all possible keys

in the domain whilst the latter involves exploiting language

characteristics. For instance, the probability of occurrence of

each letter in the English alphabet is listed with „e‟ having

maximum probability, followed by„t‟ then „a‟. Other types

of attacks include known cipher text, chosen plaintext,

chosen ciphertext and ciphertext only.

John Conway‟s game of life is essentially a series of rules

which forms the backbone of a cellular automaton. It needs

an initial configuration to start, how the cells multiply or die

is solely controlled by the rules with generation of complex

patterns. If one is provided with an initial and final pattern,

there is no algorithm which exists to predict whether the

final pattern will ever appear.

Our algorithm attempts to incorporate Conway‟s Game of

Life rules during the encryption process to generate a

sufficiently random output. This algorithm is to be a module

which can be included in [1] or [3]. It hides individual letter

frequencies. Change in one bit in cipher text prevents

decryption to obtain original plaintext. Two plaintexts of

same length using the same key but differing in only one bit

generate completely random and different cipher texts. It

includes randomizations as described in [4]. Section II, III

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 452

describes the methodologies used, Section IV, V describes

the algorithm to be implemented, Section VI highlights the

results and Section VII includes conclusion and future scope.

II. LITERATURE SURVEY

A. DNA cryptography

DNA cryptography is one of the emerging trends in data

security and the possible future of data storage. The usage of

this biological phenomenon in fields of cryptography and

steganography may give rise to unbreakable algorithms.

Although there are many drawbacks of DNA cryptography,

efforts are being made to solve these as it is believed that

they offer more advantages than traditional cryptographic

techniques.

The methodologies include bio-molecular structure usage,

OTP, DNA chip technology, DNA fragmentation and

PCR(Polymerase chain reaction). The input plaintext is

converted to bits for example if the input is “A” then the

binary string is 01000001. This binary data is encoded to a

DNA strand as follows:

00 is converted to A. 01 is converted to C.

10 is converted to G. 11 is converted to T.

So the result is “CAAC” after encryption. DNA

cryptography is based on DNA computing, whose main

advantages are parallelism and reducing bulk of data as

opposed to conventional silicon-based machines.

B. Game of Life

It was devised by the mathematician John Horton Conway in

1970. The working environment for the game of life is an

infinite, two-dimensional grid of cells which can be either

alive or dead. The initial pattern forms the seed of the

system. Generations are created by applying the following

rules simultaneously to every cell in the seed. Each cell

interacts with its eight neighbors which are the cells which

are horizontally, vertically or diagonally adjacent. The rules

to apply are as follow:

● Any live cell with less than two live neighbors dies,

as if by underpopulation.

● Any live cell with two or three live neighbors lives

on to the next generation.

● Any live cell with more than three neighbors dies, as

if by overpopulation.

● Any dead cell with exactly three live neighbors

becomes a live cell, as if by reproduction.

The key is used to randomly populate the grid to serve as the

seed. It is ensured that not too many cells are alive as then

probability of most of the cells dying increases. The final

pattern obtained by applying these rules is XOR-ed bitwise

with the plaintext for introducing sufficient randomization.

III. GAME OF LIFE MATRIX GENERATION FOR

RANDOMIZATION

To describe the method user for generation of the initial

starting game of life matrix, let us assume the plain text=”

AB”. Therefore, the number of plaintext bits=2*8=16=m.

Convert Plaintext to bits=0100000101000010

A square matrix of dimension n*n is initialized where

n=sqrt(m=16). Therefore n=4.

Initially all the cells (each element of the matrix) is dead

i.e.=0.

Depending upon the given key: A random number is

generated using the random class of Java to generate the

cells which will become alive (=1).

Since the initial matrix is a sparse matrix consisting mainly

of 0s (dead cells), the number of cells which will become

alive is an only a fraction of the total number of bits in the

plaintext. This fraction is essentially between 1/3
rd

 and 1/5
th

.

The first matrix generated is the initial state. Once the first

matrix with live cells are generated, depending upon the

rules of Conway‟s Game of Life, subsequent matrices are

generated with live and dead cells as specified.

IV. ALGORITHM FOR FUNCTION ENCRYPTION ():

Step-1: Start

Step-2: Input the Key

Step-3: Convert the bytes of the input file to bits

Step-4: Calculate the total number of bits in input text

Step-5: Initialize the Game of Life Matrix using the total

number of bits in plaintext and generate the live cells

using the given Key.

Step-6: Final Matrix is XORed bitwise the plaintext bits.

If the number of plaintext bits is a perfect square, then all

the bits are XORed. However, if that is not so, only the

first n^2 of plaintext bits are XORed with the matrix (of

dimension nXn). Remaining bits are unchanged.

Step-7: Store the XORed bits in a 2-dimensional

array(nXn) and residual bits into a 1-dimensional array.

Step-9: Perform the following shifting operations on the 2-

dimensional array.

Step-10: Perform bitwise left-shift //To shift all bits in

each row by 1 unit on LHS

Step-11: Perform bitwise up-shift //To shift all bits in each

column by 1 unit towards up

Step-12: Perform bitwise right-shift //To shift all bits in

each row by 1 unit on RHS

Step-13: Perform Cyclic Operation on the matrix:

Clockwise operation on the outermost layer. Anti-Clockwise

operation on the next layer and so on. (// To perform circular

shift of bits anti clock wise and then clock-wise in alternate

periphery of the square)

Step-14: Perform bitwise down-shift //To shift all bits in

each column by 1 unit towards down.

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 453

Step-15: Repeat the Steps 10-14 „k‟ number of times

depending upon the random number generated as follows:

(i)Initialize counter to index of last character in bit string

obtained in step 6. Initialize term to 1. Initialize sum to zero.

(ii)Check the bit present in the bit string obtained in step 6 at

position whose value is given by the value in the counter. If

this bit is zero, go to step (iv) otherwise proceed to step (iii).

(iii)Add the current value of term to the sum.

(iv)Update the term as term=term+2 and counter=counter-1

(v)If the value of counter is greater than or equal to zero go

to step (ii)

(vi)The last two digits of the sum thus obtained gives the

value of „k‟.

Step-16: Store the final result in a 1-Dimensional array along

with the residual bits.

Step-17: Take the first 8 bits from the 1-D array. These 8-

bits are XORed with the each of next 8-Bits (Blocks) of the

1-D array. The resultant 8-bits replace each of the

corresponding 8-bits with which the first 8-bits are XORed.

Step-18: Take the final 8 bits from the 1-D array. These 8-

bits are XORed with the each of previous 8-Bits (Blocks) of

the 1-D array. The resultant 8-bits replace each of the

corresponding 8-bits with which the last 8-bits are XORed.

Final 8-bits are shifted to be the First 8-bits of the array.

Step-19: Take the final 4 bits from the 1-D array. These4-

bits are XORed with the each of previous 4-Bits (Blocks) of

the 1-D array. The resultant 4-bits replace each of the

corresponding 4-bits with which the last 4-bits are XORed.

Step-20: Take the first 4 bits from the 1-D array. These 4-

bits are XORed with the each of next 4-Bits (Blocks) of the

1-D array. The resultant 4-bits replace each of the

corresponding 4-bits with which the first 4-bits are

XORed.First 4-bits are shifted to be the Final 4-bits of the

array.

Note that after the first 4 bits are taken for XOR, the bit at 5
th

position is skipped randomly and then the rest of the bits are

divided into blocks of 4 bits and XOR-ed as described.

Step-21: Take 2 bits at a time and convert it into DNA

sequences: 00 ->A, 01 ->C, 10->G, 11->T

Step-21(a): Randomize it using following shifting

operations:

Leftshift(), Upshift(), Diagonalshift(), Cycling(),

Rightshift(), Downshift ()

Step-22: Convert the DNA sequence into bits.

Step-23: Convert bits to bytes and store it into a file as

cipher text. Store the value of „k‟ as the last byte of the file.

Step 24: End

V. ALGORITHM FOR FUNCTION DECRYPTION()

Step-1: Start

Step-2: Input the Key

Step-3: Convert the bytes of input file to bits

Step-4: Take 2 bits at a time and convert it into DNA

sequences: 00 ->A, 01 ->C, 10->G, 11->T

Step-5: Upshift (), Leftshift(), Cycling(), Diagonalshift(),

Downshift (), Rightshift().

Step-6: Convert DNA sequence into bits.

Step-7: Take the first 4 bits from the 1-D array. These 4-bits

are XORed with the each of next 4-Bits (Blocks) of the 1-D

array. The resultant 4-bits replace each of the corresponding

4-bits with which the first 4-bits are XORed.First 4-bits are

shifted to be the Final 4-bits of the array.

Note that prior to XOR, the bit in the first position is skipped

and then the remaining bits are divided into blocks of 4 and

XOR-ed as described.

Step-8: Take the final 4 bits from the 1-D array. These 4-bits

are XORed with the each of previous 4-Bits (Blocks) of the

1-D array. The resultant 4-bits replace each of the

corresponding 4-bits with which the last 4-bits are XORed.

Step-9: Take the final 8 bits from the 1-D array. These 8-bits

are XORed with the each of previous 8-Bits (Blocks) of the

1-D array. The resultant 8-bits replace each of the

corresponding 8-bits with which the last 8-bits are XORed.

Final 8-bits are shifted to be the First 8-bits of the array.

Step-10: Take the first 8 bits from the 1-D array. These 8-

bits are XORed with the each of next 8-Bits (Blocks) of the

1-D array. The resultant 8-bits replace each of the

corresponding 8-bits with which the first 8-bits are XORed.

Step-11: Store the final result in a 1-Dimensional array along

with the residual bits.

Step-12: Store the XORed bits in a 2-dimensional

array(nXn) and residual bits into a 1-dimensional array.

Step-13: Perform the following shifting operations on the 2-

dimensional array.

Step-14: Perform bitwise up-shift //To shift all bits in each

column by 1 unit towards up.

Step-15: Perform Cyclic Operation on the matrix: Anti-

Clockwise operation on the outermost layer. Clockwise

operation on the next layer and so on. (// To perform circular

shift of bits anti clock wise and then clock-wise in

alternateperiphery of the square)

Step-16: Perform bitwise left-shift //To shift all bits in each

row by 1 unit on LHS

Step-17: Perform bitwise down-shift //To shift all bits in

each column by 1 unit towards down.

Step-18: Perform bitwise right-shift // To shift all bits in

each row by 1 unit on RHS

Step-19: Repeat the Steps 14-18 „k‟ number of times which

is present as the last byte read from the file.

Step-20: Calculate the total number of bits in cipher text

Step-21: Initialize the Game of Life Matrix using the total

number of bits in ciphertext and generate the live cells

using the given Key.

Step-22: Final Matrix is XORed bitwise the ciphertext bits.

If the number of ciphertext bits is a perfect square, then all

the bits are XORed. However, if that is not so, only the first

n^2 of ciphertext bits are XORed with the matrix (of

dimension nXn). Remaining bits are unchanged.

Step-23: Store the XORed bits in a 2-dimensional

array(nXn) and residual bits into a 1-dimensional array.

Step-24: Convert bits to bytes.

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 454

Step-25: Plaintext is obtained.

Step-26: End.

VI. RESULTS AND DISCUSSION

In the table given below some plain texts and the

corresponding ASCII value of cipher text are shown. There

are many instances where it was observed for the same key,

almost similar plain texts, the cipher texts are totally

different. So, without knowing the secret text-key and the

actual decryption process it is quite impossible for the

intruder to generate the plain text from the cipher text. The

present algorithm can even encrypt ASCII 0, ASCII 1, and

ASCII 255 which normally impossible in standard

encryption methods like DES, RSA etc.

Table -1: Some Plain texts and ASCII code of Encrypted

Texts

Plaintext Key ASCII Number of

Ciphertext

16 ASCII „0‟ 10 4,68,68,68,71,200,70,20

1,244,99,81,132,108,204

,210,82

16 ASCII „1‟ 10 0,16,184,20,211,226,34,

133,161,164,5,160,32,53

,128,0

16 ASCII „2‟ 10 160,160,32,162,32,129,1

60,173,241,32,147,108,9

7,65,37,182

16 ASCII

„255‟

10 240,15,255,236,191,1,25

5,30,191,118,100,79,21,

175,255,170

8 ASCII

„1‟+8 ASCII

„2‟

10 2,6,162,40,2,86,6,6,98,1

62,103,162,62, 125,27,4

7 ASCII „1‟+

2 ASCII „0‟+

7 ASCII „2‟

10 223,223,254,205,157,33,

222,62,141,215,76,127,5

3,143,221,170

ASCII „1‟ +

ASCII „2‟ +

ASCII „4‟

+ASCII „8‟

10 85,208,29,25

Table-2: Input characters vs. corresponding cipher text.

PLAIN

TEXT

K

E

Y

CIPHERTEXT (ASCII

VALUE)

CIPHE

RTEXT

(CHAR)

HE IS

GOOD

10 16,12,177,100,118,85,36,166,10

0,63

±dvU$?

d?

HE IS

GOON

10 198,206,88,163,234,110,160,168

,66,22

Æ?X£ên

 ?B

8 A +

B + 8

A

10 22,55,182,180,155,120,3,188,23,

27,13,10,54,187,82,242,4

7???x¼

6»Rò

16 A 10 190,58,142,11,126,81,16,172,10

6,12,112,123,126,249,166,5

?:?

~Q¬jp{

~ù?

Fig 1: Relationship between Ciphertext and Plaintext

(Plaintext:7 ASCII „1‟+ 2 ASCII „0‟+ 7 ASCII „2‟)

Fig 2: Relationship between Ciphertext and Plaintext

(Plaintext:8ASCII „1‟ + 8 ASCII „2‟)

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 455

Fig 3: Relationship between Ciphertext and Plaintext

(Plaintext:16ASCII „16‟)

Fig 4: Relationship between Ciphertext and Plaintext

(Plaintext:16ASCII „64‟)

Fig 5: Relationship between Ciphertext and Plaintext

(Plaintext:16ASCII „255‟)

Fig 5: Relationship between Ciphertext and Plaintext

(Plaintext:8 A + B + 8A)

In above table the results show that the cipher texts ate

totally unpredictable even though the Plain texts contain

some trivial patterns. The present method shows cipher texts

always different even if input plain contains all characters

same.In Figures 1 to 5 the encrypted data and also plain text

data are shown. The results show that the Cipher texts

patterns are totally unpredictable. The hackers will not be

able apply any kind of brute force method to find Plain Text

without knowing secret key. The present may be used to

encrypt confidential message such as password, key etc.

VII. CONCLUSION AND FUTURE SCOPE

The present method applied on different files like .txt, .png,

.jpg, .ddl, .exe etc. and results were quite satisfactory onany

type of file. The user has to input some initial secret key for

encryption and decryption. One cannot decrypt the

encrypted text without knowing the initial secret key. Many

standard method like left shift (), right shift (), downshift

(),upshift(), cycling(),diagonal shift(),xor(), are applied in

plain text in the bit level so if two plain texts differ slightly,

the encrypted text differs huge and so it is free from any type

of brute force attack. In addition to above functions, bits are

XOR-ed with a randomly generated matrix (Game of Life)

which makes the ciphertext even more difficult for

decryption without proper key. To make this system further

complex bitwise operations were used. Every application has

its merits and demerits. The present method has covered

almost all requirements. Further requirements and

improvements can easily be done since coding is mainly

structured or modular in nature. This method can be

extended using DNA computing.

REFERENCES

[1]. Asoke Nath, Soumyadip Ray, Salil Anthony Dhara, Sourav Hazra

“3-DIMENSIONAL BIT LEVEL ENCRYPTION ALGORITHM

VERSION-3 (3DBLEA-3)” International Journal of Latest Trends

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 456

in Engineering and Technology Vol.(10)Issue(2), pp.347-353

May 2018

[2]. Behrouz A. Forouzan, “Cryptography and Network Security”,

Special Indian edition 2007, Tata Mc-Graw Hill publishing

company limited

[3]. Asoke Nath, Ayan Ghosh, Enakshi Ghosh and Jayisha Saha, ”3-

Dimensional Bit Level Encryption Algorithm Ver-2(3DBLEA-2)”,

, International Journal of Innovative Research in Computer and

Communication Engineering (IJIRCCE), Vol. 4, page: : 8611-

8618 Issue 5, MAY 2017.

[4]. Asoke Nath, Saima Ghosh, MeheboobAlam Mallik, “Symmetric

Key Cryptography using Random Key generator” Proceedings of

International conference on security and management (SAM-10)

held at Las Vegas, USA, July 12-15, 2010, Vol-2, Page: 239-

244(2010).

AUTHORS PROFILE

Dr. Asoke Nath is working as Associate Professor in the Department of Computer Science, St.

Xavier‟s College (Autonomous), Kolkata. He is engaged in research work in the field of Cryptography

and Network Security, Steganography, Green Computing, Big data analytics, Li-Fi Technology,

Mathematical modelling of Social Area Networks, MOOCs etc. He has published

more than 242 research articles in different Journals and conference proceedings.

Souptik Kumar Majumdar is currently pursuing his Bachelor‟s degree in Computer Science from St.

Xavier‟s College(Autonomous), Kolkata, which will be completed by May 2019. He is adept at programming with frequent

participation in coding competitions and internships to his credit.

Suchandra Datta is currently pursuing her Bachelor‟s degree in Computer Science from St. Xavier‟s College(Autonomous),

Kolkata, which will be completed by May 2019. She is passionate about programming and areas of interest include

cryptography and machine learning.

