

© 2024, IJCSE All Rights Reserved 47

International Journal of Computer Sciences and Engineering
Vol.12, Issue.4, pp.47-54, April 2024

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Research Article

Functional Decomposition as an Anomaly in Object-Oriented Software

Design

Brahmaleen K. Sidhu
1

1Dept. of Computer Science and Engineering, Punjabi University, Patiala, India

Corresponding Author:brahmaleen.sidhu@gmail.com

Received: 04/Mar/2024; Accepted: 06/Apr/2024; Published: 30/Apr/2024. DOI: https://doi.org/10.26438/ijcse/v12i4.4754

Abstract: Software must evolve continuously and accept the changes imposed by the environment in order to stay relevant. As

the software undergoes updates, the quality of its design degrades. Poor design further deteriorates the quality of software. In the

traditional software development processes, quality is often measured at code level using metrics-based approaches. However,

quality assessment at model level has various advantages over code level. UML models provide a higher level of abstraction

allowing isolation of the core design problem from irrelevant coincidental problems, which typically interfere at code level.

Problems uncovered at the design level can be improved directly in the model. Early quality assessment reduces maintenance

costs and manages requirement volatility. This paper presents a design flaw detection approach based on machine learning for

UML models of object-oriented software. It advances the proposition of a concise quality assurance procedure wherein the root

cause of design defects is identified instead of a localized flaw detection and correction approach. The notion of functional

decomposition is advanced as an anomalous design tendency as object-oriented software architecture based on functional

decomposition compromises on major quality goals like comprehensibility, changeability and semantic consistency. A semi-

supervised machine learning technique is used in an unsupervised mode to detect functional decomposition as an anomaly. The

precision and recall of the proposed approach were found to be 0.8 each.

Keywords: Functional Decomposition, Machine Learning, Model Refactoring, Object-Oriented Design, Software Quality,

UML Class Diagram

1. Introduction

Software is the real driver of innovation and growth of

societies across the world. Software lies at the centre of the

sophisticated digital technologies, tools and methods that are

deployed by organizations for digitizing their operating

models. Such transformations from traditional business

practices have resulted in higher success rates for enterprises,

as per the McKinsey Global Institute report [1] that measures

the digitization of United States’ economy. Trends like the

digital ecosystem approach and replacement of legacy

applications by SaaS (Software as a Service) have built

momentum in the growth of software industry. Global

research and advisory firm, Gartner Inc. has anticipated

vigorous growth for the software industry in the forthcoming

years, as per their report [2].

The growing dependency of nearly all the segments of society

on technology has unlocked software’s immense potential for

social and economic benefit as well as impairment. A

malfunction of industrial-strength software system can have

huge impact in terms of financial or business loss,

inconvenience to users or loss of property and life. Thus,

software systems need to be of high quality with respect to

properties like – functionality, reliability, efficiency,

maintainability, portability, reusability, flexibility, and

interoperability. The shift from project-centric to product-

centric delivery in software industry has radically overhauled

development organizations.

In their report titled “Application Development and Platforms

Primer for 2019” [3], Gartner analysts Wong and Mann assert

that software development organizations must shift to a

continuous quality mind-set in order to shorten cycles and

improve delivery outcomes. Evolving application architecture

is said to drive better business outcomes. There is a

realization that software quality assurance needs to match up

the precision and decorousness of hardware quality processes.

Good quality needs to be assured at design stage of

development process ahead of construction stage.

In model-driven engineering, models depicting various

perspectives of users form the basis of implementation. Such

practices along with automatic code generation accommodate

https://orcid.org/0000-0001-6519-7957

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 48

frequent changes imposed by environment and higher user

acceptance, which is an important measure of product quality.

Model refactoring is a form of quality assurance process that

continually transforms software models in order to increase

their understandability and modifiability. The practice aims to

produce better quality and facilitate evolution of the software.

Thus, high quality is an important goal of software

development process. In model driven development, high

software (code) quality can be reached only if the design

quality, i.e. the quality of involved models is high. Quality

assessment at model level has other advantages also. Models

provide a higher level of abstraction allowing isolation of the

core design problem from irrelevant coincidental problems,

which typically interfere at code level. Problems uncovered at

the design level can be improved directly in the model. Early

quality assessment reduces maintenance costs and manages

requirement volatility.

Present study focuses on models’ quality in object-oriented

software as object-oriented development paradigms continue

to dominate, as reported by the 2024 TIOBE Index, 2023

IEEE Spectrum Ranking, and 2022 GitHub's Octoverse. The

main reason is that the technique of object-orientation models

a system analogous to human perception of the real world.

The software system is fabricated out of mutually interacting

objects that encapsulate behaviour and information associated

with the corresponding real-world entities. Also, considerable

number of software development paradigms and methods

follow object-oriented principles as they are inherently

immune to bad design.

This paper is organized as follows, Section 1 contains the

introduction of software quality and discusses its significance.

The context of the presented study is discussed. Section 2

contain the related work of software design flaw detection. It

lists relevant research works carried out in the area of code

smell detection and model smell detection. Section 3

introduces the notion of functional decomposition as an

anomalous design choice in object-oriented software. Section

4 contain the methodology of implementation of proposed

algorithm. Section 5 discusses the results and section 6

concludes research work with future directions.

2. Related Work

The identification of deviations from good design principles

and heuristics is known as smell detection. The term “bad

smells” was coined by Fowler et al. in the book Refactoring:

Improving the Design of Existing Code [4] to refer to

structures in the code that are potential candidates for

improvement. Extensive research has been carried out in code

smell detection [5] [6]. Similar to code smells, model smells

are defined as elements within the model that symptomize

design defects or bad alternatives to recurring design

problems (anti-patterns) in object-oriented design.

Redundancies, ambiguities, inconsistencies, incompleteness,

non-adherence to design conventions or standards, abuse of

the modelling notation are typical model smells [7].

UML is a widely accepted modelling language in the field of

software engineering. It allows for the visual representation

of systems, software architectures, and designs in a

standardized way. Various strategies have been used in the

literature for analysing the design defects, i.e. smells in UML

models. Studies employing pattern-based smell detection [8],

[9], [10], [11], [12], [13], [14] identify areas of a design that

would benefit from the implementation of design patterns.

These design patterns are pre-established templates that

provide expert knowledge-based solutions for common

design issues. They offer a tried-and-tested approach to

implementing relationships and interactions between classes

or objects.

Anti-patterns are the recurring and counterproductive design

practices. Studies employing metrics-based smell detection

[15], [16], [17], [18], [19], [20], [21] use threshold values of

quality metrics to mark refactoring opportunities. The

selection of threshold is subjective and thus cannot be applied

universally. Human judgement plays an important role in

using values of quality metrics as indications of smell.

Thirdly, there are research works using rule-based smell

detection approaches [22], [23], [24]. These identify both

model smells and anti-patterns using a declarative rule

definition. These rules are manually defined to identify the

symptoms that characterize the smell. Suitable refactoring

operations are selected to fix the identified model smells.

In a PhD thesis titled “Development of refactoring technique

for architecture-based evolution of object-oriented software

systems” [25], it is argued that the conventional methods of

model smell detection suffer from various drawbacks. For

instance, the selection of threshold value in metric-based

approaches is subjective and thus cannot be applied

universally. Smells uncovered by deviant values of individual

metrics are consequences of sub-optimal realization of design

principles, thus, are superficial in nature. In the context of

refactoring class diagrams, localized iterative refactoring

operations are used to fix architectural defects. Such design

transformations introduce cascaded flaws in the design and

trigger a vicious cycle of re-evaluation, re-refactoring and

synchronization among various parts of the model. This

resultant ravel of problems signals the need for a different

perspective on bad design in order to derive a more effective

refactoring technique. Also, none of the prior works was

found to be using machine learning techniques.

3. Functional Decomposition in Object-Oriented

Design

Software design methods involve three fundamental decisions

[26]. The first and foremost is the criteria for partitioning the

software into components. This process of decomposition,

also known as factoring, aids the understanding of software to

be built, makes the design process easy and leads to an

effective design. The decomposition paradigm also lays the

foundation for the other two design decisions: regarding

various representations of software and design quality. The

design phase of the software development process translates

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 49

the requirements models representing the problem domain

into design models representing the solution domain, to be

used as blueprints for construction of software.

A function-oriented design approach views the software

solution as one big process and partitions it into smaller,

simpler processes (tasks) that need to be performed. On the

other hand, object-oriented design approach partitions the

system into classes or objects that interact among themselves

to achieve the software solution.

While cataloguing model smells for UML class diagrams in a

study [27], it was discovered that most of the design flaws are

caused when object-oriented software is designed with

procedural design instincts, i.e. when object-oriented software

is contrived on functional decomposition. Such software

systems exhibit poor design and face severe drawbacks

during the inevitable process of evolution. In the work

presented in this paper, functional decomposition is cast as an

anomaly in object-oriented design.

Object-oriented software architecture based on functional

decomposition compromises on major quality goals like

comprehensibility, changeability and semantic consistency

and thus calls for a big refactoring (a long series of repeated

operations). Following functional decomposition, objects are

constructed around tasks (functions) instead of data. The class

diagram in Error! Reference source not found. shows an

example of an object-oriented design exhibiting functional

decomposition.

Figure 1. Anomalous UML Class Diagram Detected by Proposed Algorithm

The design depicted in the diagram has improper

encapsulation, suboptimal use of inheritance, high coupling

and unwieldy size. The class diagram is a part of a navigation

system’s design. 7 out of the 13 classes, namely, Student,

Professor, Guest, users, Location, Register and Place contain

only data members and do not specify any operations for the

instantiated objects. This is in violation with the object-

oriented principle of encapsulated objects. Objects must have

a well-defined interface that specifies the stimuli to which the

object responds. Classes Find_people, Login, Select_place

and Maps_user represent isolated functions instead of

encapsulated objects.

Most of the operations performed in the example system have

been clubbed into the class WebService. This class does not

contain any data and is heavily associated to other classes that

avail its services. Thus, the parts of the system are strongly

coupled. Proper encapsulation of attributes and operations in

the class users would reduce redundancy in the classes Login,

Find_people and Register, achieve effective inheritance and

cut down the unwieldy size of the model. It would also cut

down the unnecessary associations and coupling in the model.

In the approach proposed here, class models which have

lower leverage of the essential object-oriented principles like

extensible classes, inheritance, reusability, and polymorphism

are identified as anomalies.

4. Methodology of Proposed Approach

“No set of metrics rivals informed human intuition”, these

words of Beck and Fowler (Fowler et al., 1999) accentuate

the role of human perspicacity in performing the refactoring

process. Thus, artificial intelligence is an instinctive choice

for automating the process. Machine learning is a form of

artificial intelligence which enables a computer program to

learn from experience (seen data) and subsequently apply the

acquired knowledge to make predictions for unseen cases. It

is proposed that machine learning has huge application

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 50

potential in model refactoring because it would provide the

capability to discover the subtle relationships among elements

of a graphical model that indicate flawed design but are

inconspicuous to human eye.

Another motivation to apply machine learning is the

snowballing growth of the software engineering world with

advances in development paradigms, design methodologies,

programming techniques and automated testing. The rapidly

changing business rules also have an intriguing effect on

quality notions. The current software yield is an assortment of

varied sizes and designs. Even within the object-oriented

domain, a rigid definition of good design exists no more. This

diversity has made manual decisions nearly impossible. Smell

detection rules used in the refactoring process must

continuously adapt to the changing perceptions of good and

bad design. Here, a machine learning algorithm trained by

data can outperform human judgement.

Anomaly detection has been widely researched as a problem

of machine learning and data mining since Edgeworth’s paper

On Discordant Observations [28]. It refers to the problem of

identifying patterns in data that do not conform to expected

behaviour. In other words, anomalies are outliers or

exceptions that deviate significantly from the majority of the

data.

The presented attempt to identify design flaws as anomalies

at the modelling stage of object-oriented software

development is a first, to the best of our knowledge. The

proposed method uses semi-supervised learning technique in

an unsupervised mode in order to detect use of functional

decomposition in object-oriented design. A semi-supervised

learning method [29] uses training data with labelled

instances only for the normal classes and an unsupervised

method works sans training data. Proposed method is a

parametric statistical technique that uses an unlabelled dataset

as training data, assuming that the test data contains few

anomalies and the model learned during training is robust to

these few anomalies.

The proposed approach uses data science methods to tag the

outlier UML class diagrams that follow process-based

decomposition and do not conform to the data-based object-

oriented manifesto of ease of development, low complexity,

reusability and easy maintainability (understandability,

modifiability, fault detection, testability). Following sections

give the details of the approach.

4.1 Feature Set

The algorithm uses an unlabelled training set T = {x
1
, x

2
,…,

x
m
} of m number of UML class diagrams selected randomly.

It is assumed that the number of normal examples outnumber

the number of anomalous examples in the training set. Each

element of T is a feature vector x of size n, representing n

features of a class diagram that are indicative of anomalous

object-oriented design. The feature space (R
n
) comprises n

metrics measuring design properties viz. inheritance, coupling

and size to identify the outlier software models (c.f. Table 1).

Table 1. Features Used to Detect Anomalous Class Diagrams

Feature Name Description

Inheritance Features

(reusability, modifiability, testability, probability of fault detection)

Number of

generalizations

Number of parent-child pairs in generalization

relationship in the diagram.

Maximum depth

of inheritance

The maximum among the DIT [30] values of

classes in the diagram. The DIT value for a class

within a generalization hierarchy is the length of

the longest path from the class to the root of the

hierarchy.

Coupling Features

(complexity, understandability, maintainability)

Number of

associations

Number of associations in the diagram; includes

aggregation and composition. There is an

association from class C to class D if C has an

attribute of type D.

Total coupling

Sum of Direct Class Coupling (DCC) values of all

classes in the diagram. The DCC value for a class

is a count of the different number of classes that

the class is directly related to [31]. The metric

includes classes that are directly related by

attribute declarations and message passing

(parameters) in methods. Bidirectional

associations are counted twice, because C knows

D and vice versa.

Maximum

coupling

The maximum among DCC values of classes in

the diagram.

Number of

dependencies

Number of dependencies in the diagram. There is

a dependency from class C to class D if C has an

operation with a parameter of type D.

Size Features

(reusability, complexity, development effort, maintainability)

Number of

classes
Number of classes in the diagram.

Number of

attributes

Total number of attributes in the classes of the

diagram.

Number of

operations

Total number of operations in the classes of the

diagram.

Thus, the dataset is an m × n matrix where the columns

represent the features and each row is a vector representing

one class diagram example. The proposed approach requires

feature vectors to have normally distributed values. Scaling,

logarithmic transformations and square root transformations

were applied to features with skewed distributions. Skewness

measures asymmetry in given dataset. It represents the

manner in which the data are clustered around the average. In

a skewed distribution data falls to a side of the mean value.

Kurtosis is used as a measure of skewness as follows (1):

 Sk =

1
n

∑ (xi − μ)4n
i=1

(
1
n

∑ (xi − μ)2n
i=1)

2 (1)

Here, Sk computes the kurtosis for vector x with size n and

mean µ. As per the given function, kurtosis of the normal

distribution is 3. In the calculations, 3 was subtracted from

the computed values of Sk, so that the normal distribution has

kurtosis of 0. The resultant histograms showing the normally

distributed feature vectors are plotted in Figure 2.

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 51

Figure 2. Histograms of Feature Vectors

4.2 Probability Density Estimation

In this step, a statistical model is fit to the training data. A

probability density test is applied to determine if an unseen

instance of class diagram belongs to this model or not. The

training data is modelled as a multivariate Gaussian

distribution, a generalization of the one-dimensional normal

distribution to higher dimensions. A multivariate Gaussian

distribution captures the correlations between class diagram

features and is a better choice than univariate distribution

when the number of training examples is much greater than

the number of features.

The training set of m examples, {x
1
, x

2
,…, x

m
}, such that x

i
 ϵ

R
n
, is modelled using multivariate Gaussian distribution with

parameters µ and Σ i.e. x ~ Ɲ(µ, Σ) ,such that µ = { µ1,

µ2,…, µn}
T
 is a vector consisting of mean values of n features

(µ ϵ R
n
) and Σ is the covariance matrix measuring the

variability of the features (Σ ϵ R
n×n

). µ is computed as in (2).

 μ =
1

m
∑ xi

m

i=1

 (2)

The covariance matrix Σ is the matrix whose (i, j)
th

 entry is

the covariance Σij computed as in (3) where the operator E

denotes the mean value of the argument.

 Σij = cov(xi,xj) = Ε [(xi-μj
) (xj-μj

)] = Ε[xixj]-μi
μ

j
 (3)

Given a new example xtest = {x
1
,x

2
,…,x

n
}

T
, a feature vector

representing a class diagram under observation, the

probability of xtest, represented as p(xtest), quantifies the

proximity of model to object-oriented design. p(xtest) is

computed as in (4).

 p(xtest) =
exp (-

1
2

(xtest-μ)TΣ-1(xtest-μ))

(2π)
n
2|Σ|

1
2

 (4)

Test instances that have lower probability of being generated

from the learned model are declared as anomalies, i.e. the

class model under observation, represented by xtest, is tagged

as an anomaly if p(xtest) < ɛ, where ɛ is the threshold value.

p(xtest) is the probability of xtest conforming to the object-

oriented behaviour depicted by training set.

5. Results and Discussion

In the training phase of the algorithm, UML class diagrams

were serialized using OMG’s standard XMI
1
 format for

creating textual representations of MOF-compliant models.

The design quality measurement tool SDMetrics
2
 (version

2.35) was used to calculate the metrics(features listed in

Table 1) for the XMI representations. 86 UML class diagrams

selected randomly from repository of UML class models

offered by [32] were used. Hence, the training dataset was

sized 86×9. The anomaly detection algorithm was

implemented using MATLAB
3
 R2017b (version 9.3).

The anomaly detection model learned from the training

dataset was validated using validation dataset comprising

feature vectors from 21 UML class models. The algorithm

output a probability score for each example in dataset. The

threshold value (ɛ) decides the classification of the examples

as being normal or anomalous. It is the value above which an

example is marked as positive.

Since the problem at hand is an imbalanced binary

classification problem (the number of anomalous examples is

usually few), the F-measure was used to find the best value of

ɛ to use for identifying outliers based on the results from the

validation set and the ground truth. Ground truth was

established by manual inspection. F-measure, the harmonic

mean of precision P (5) and recall R (6) is computed as in (7).

 P =
truePositives

truePositives + falsePositives
 (5)

 R =
truePositives

truePositives + falseNegatives
 (6)

 F =
2PR

P+R
 (7)

The metric precision used here measures the ability of the

model to mark only the relevant class diagrams. Precision is

defined as the number of true positives per the sum of number

of true positives and number of false positives. True positives

(truePositives) are correctly identified class diagrams that

show presence of functional decomposition, and false

positives (falsePositives) are the diagrams the model labels as

positive for depicting functional decomposition but actually do

not (cf. Table 2).

Recall measures the ability of the model to find all the

relevant cases in the validation dataset. Recall is defined as

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 52

the number of true positives per the sum of number of true

positives and number of false negatives. False negatives

(falseNegatives) are the class diagrams the model identifies as

negative that actually are positive.

Table 2. Confusion Matrix

 PREDICTED

 Positive Negative

ACTUAL Positive truePositive falseNegative

Negative falsePositive trueNegative

The threshold selection algorithm iterates over the probability

scores of validation set and computes F-measure for the

different values of ɛ. The best value of F-measure gives the

best value for threshold. Using the said validation dataset best

threshold value of 6.5865e-09 was obtained at the best F1

measure of 0.6667.

The Receiver Operating Characteristic (ROC) curve was used

to visualize the performance of the model (cf. Figure 3) The

ROC curve plots the True Positive Rate (8) versus the False

Positive Rate (9).

True Positive Rate =
truePositives

truePositives + falseNegatives
 (8)

False Positive Rate =
falsePositives

falsePositives + trueNegatives
 (9)

Two anomalous class models were detected in validation set.

The vectors representing class diagrams of validation dataset

are plotted as in Figure 4. Dashed lines in red represent

anomalous examples (labelled 1 by the algorithm).

A test dataset comprising feature vectors from randomly

selected 39 UML class models and the threshold value

selected during validation was used to test the accuracy of

proposed approach. Precision of 0.8 and recall of 0.8 were

obtained. The items of test set are plotted in Figure 5 with the

anomalous marked in red colour

Figure 3. ROC Curve

Figure 4. Validation Dataset Plot (a) Values of Features (b) Standardized

Principal Component Scores of Features

Figure 5. Test Dataset Plot (a) Values of Features (b) Standardized Principal

Component Scores of Features

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 53

6. Conclusion and Future Scope

This paper presents a novel perspective on flawed software

design. A wider perspective is proposed in contrast to the

traditional approaches which use individual model smells to

mark flawed design. It is suggested that a quality assurance

framework working at the roots of design flaws would be

incisive. Proposed approach targets object-oriented software

at model-level and aims to detect the presence of functional

decomposition, a dominant cause of design smells.

Functional decomposition basically represents lack of object-

oriented approach. Following function-oriented approach, a

software system is viewed a process. During the design

activity, the system is partitioned into a series of

subfunctions. On the other hand, in object-oriented approach

the system is viewed as a set of objects interacting with each

other in order to achieve the common goal.

The proposed algorithm uses semi-supervised anomaly

detection technique in an unsupervised mode in order to

detect use of functional decomposition in object-oriented

design. UML class models were transformed into a feature set

that trained the proposed system to spot anomalous design.

This approach draws attention to the potential of machine

learning methods in model-level software quality assurance.

Some practical problems were confronted during the

execution of the proposed algorithm. It was observed that

defining a feature space that totally typifies object-oriented

design is a challenge. Discerning such features and then

quantifying them in order to make them fit for application of

statistical models is major obstacle especially when the

observations are graphical models of software. Notational

inconsistencies were found in the UML class diagrams

retrieved for training and testing the proposed model. These

were handled during the transformation of diagrams into

metrics by manual inspection and intervention. Lack of

standardized measures and tools that interact with graphical

models also restrict the research work.

The perspective of software quality is constantly changing

and has many aspects comprising structural quality,

conformance to requirements, fitness for user’s needs and

satisfaction, compliance with standards, and aesthetic quality.

Further work is certainly required to develop and validate

definitions of flawed design that are more extensive than

model smells and evolve with the concept of quality.

Conflict of Interest

Author declares that there is no conflict of interest.

Funding Source

None.

Acknowledgements

The author would like to express sincere gratitude to Dr.

Kawaljeet Singh and Dr. Neeraj Sharma for their invaluable

guidance, encouragement, and support throughout the course

of this research work. They provided valuable insights,

constructive feedback, and unwavering support at every stage

of the research process, contributing significantly to the

success of this work.

References

[1] J. Manyika, S. Ramaswamy, S. Khanna, A. Yaffe, H. Sarrazin, G.

Pinkus and G. Sethupathy, "Digital America: A tale of the haves

and have-mores," McKinsey & Company, December 2015.

[2] N. Gupta, H. Swinehart, J. Poulter and B. Abbabatulla, "Forecast

Analysis: Enterprise Application Software, Worldwide, 4Q18

Update," 2019.

[3] J. Wong and K. Mann, "Application Development and Platforms

Primer for 2019," 2019.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke and d. Roberts,

Refactoring: Improving the Design of Existing Code, Addison-

Wesley, 1999.

[5] M. . Y. Mhawish and M. Gupta, "Generating Code-Smell

Prediction Rules Using Decision Tree Algorithm and Software

Metrics," International Journal of Computer Sciences and

Engineering, Vol.7, No.5, pp.41-48, 2019.

[6] M. Kaur and D. Kaur, "Improve the accuracy and time complexity

of code smell detection using SVM and Decision Tree with Multi-

label Classification," International Journal of Computer Sciences

and Engineering, Vol.8, No.12, pp.66-69, 2020.

[7] T. Mens, G. Taentzer and D. Müller, "Challenges in Model

Refactoring," in Proceedings of 1st Workshop on Refactoring

Tools, University of Berlin, July, 2007.

[8] C. Bouhours, H. Leblanc and C. Percebois , "Bad smells in design

and design patterns," Journal of Object Technology, May-June,

Vol.8, No.3, pp.43-63, 2009.

[9] G. E. Boussaidi and H. Mili, "Understanding design patterns - what

is the problem?," Software: Practice and Experience, December,

Vol.42, No.12, pp.1495–1529, 2012.

[10] M. El-Sharqwi, H. Mahdi and I. El-Madah , "Pattern-Based Model

Refactoring," in Proceedings of The 2010 International Conference

on Computer Engineering and Systems (ICCES), Cairo, Egypt,

2010.

[11] R. France, S. Ghosh, E. Song and D.-K. Kim, "A metamodeling

approach to pattern-based model refactoring," IEEE

Software,Special Issue on Model Driven Development, vol. 20, no.

5, pp. 52-58, September/October 2003.

[12] S. R. Judson, R. B. France and D. L. Carver, "Supporting Rigorous

Evolution of UML Models," in Proceedings of Ninth IEEE

International Conference on Engineering Complex Computer

Systems, 2004., 2004.

[13] D.-K. Kim, "Design pattern based model transformation with tool

support," Software: Practice and Experience, April, Vol.45, No.4,

pp.473-499, 2015.

[14] X.-B. Wang, Q.-Y. Wu, H.-M. Wang and D.-X. Shi, "Research and

Implementation of Design Pattern-Oriented Model

Transformation," in Proceedings of International Multi-Conference

on Computing in the Global Information Technology (ICCGI

2007), Guadeloupe City, 2007.

[15] T. v. Enckevort, "Refactoring UML models: using

openarchitectureware to measure uml model quality and perform

pattern matching on UML models with OCL queries," in

Proceedings of the 24th ACM SIGPLAN conference companion on

Object oriented programming systems languages and application

(OOPSLA), Orlando, Florida, USA, 2009.

[16] M. V. Kempen, D. Kourie, M. Chaudron and A. Boake, "Towards

Proving Preservation of Behaviour of Refactoring of UML

Models," in Proceedings of the 2005 annual research conference of

the South African institute of computer scientists and information

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 54

technologists on IT research in developing countries SAICSIT '05,

2005.

[17] U. Mansoor, M. Kessentini, M. Wimmer and K. Deb, "Multi-view

refactoring of class and activity diagrams using a multi-objective

evolutionary algorithm," Software Quality Journal, Vol.25,

pp.473–501, 2017 .

[18] M. Mohamed, M. Romdhani and K. Ghedira, "M-REFACTOR: A

New Approach and Tool for Model Refactoring," ARPN Journal of

Systems and Software, July, Vol.1, No.4, pp.117-122, 2011.

[19] T. Ruhroth, H. Voigt and H. Wehrheim, "Measure, Diagnose,

Refactor: A Formal Quality Cycle for Software Models," in

Proceedings of 35th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), Patras, Greece,

2009.

[20] T. Arendt and G. Taentzer, "Implementation Details of Smells and

Refactorings for UML Models within the Eclipse Modeling

Framework," Philipps Universität Marburg, Marburg, November 4,

2011.

[21] A. C. Jensen and B. H. Cheng, "On the use of genetic programming

for automated refactoring and the introduction of design patterns,"

in Proceedings of the 12th annual conference on Genetic and

Evolutionary Computation (GECCO), Portland, Oregon, USA,

2010.

[22] M. Akiyama, S. Hayashi, T. Kobayashi and M. Saeki, "Supporting

Design Model Refactoring for Improving Class Responsibility

Assignment," in Model Driven Engineering Languages and

Systems (Proceedings of 14th International Conference, MODELS

2011, Wellington, New Zealand, October 16-21, 2011), vol. 6981 of

Lecture Notes in Computer Science, J. Whittle, T. Clark and T.

Kühne , Eds., Springer Berlin Heidelberg, pp.455-469, 2011.

[23] Ł. Dobrzanski, "UML Model Refactoring- Support for

Maintenance of Executable UML Models," Sweden, July 2005.

[24] M. Stolc and I. Polasek, "A visual based framework for the model

refactoring techniques," in Proceedings of IEEE 8th International

Symposium on Applied Machine Intelligence and Informatics

(SAMI), Herlany, Slovakia, 2010.

[25] B. K. Sidhu, "Development of refactoring technique for

architecture based evolution of object oriented software systems,"

Punjabi University, Patiala, 2019.

[26] R. S. Pressman, Software Engineering, A Practitioner's Approach,

7th ed., New York: McGraw-Hill, 2010.

[27] B. K. Sidhu, K. Singh and N. Sharma, "A Catalogue of Model

Smells and Refactoring Operations for Object-Oriented Software,"

in Second International Conference on Inventive Communication

and Computational Technologies (ICICCT), Coimbatore, 2018.

[28] F. Y. Edgeworth, "On discordant observations," The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, Vol.23, No.143, pp.364-375, 1887.

[29] O. Chapelle, B. Scholkopf and A. Zien, Semi-Supervised Learning,

The MIT Press, 2006.

[30] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object

Oriented Design," IEEE Transactions on Software Engineering,

June, Vol.20, No.6, pp.476-493, 1994.

[31] J. Bansiya and C. G. Davis, "A hierarchical model for object-

oriented design quality assessment," IEEE Transactions on

Software Engineering, January, Vol.28, No.1, pp.4-17, 2002.

[32] B. Karasneh and M. R. Chaudron, "Img2UML: A System for

Extracting UML Models from Images," in 39th Euromicro

Conference on Software Engineering and Advanced Applications,

Santander, Spain, 2013.

AUTHOR’S PROFILE
Brahmaleen K. Sidhu earned her Ph.D.

degree in Faculty of Engineering and

Technology from Punjabi University, Punjab,

India, M.Tech. degree in Computer Science

and Engineering from the Punjab Technical

University, Punjab, India, and B.Tech. degree

in Computer Science and Engineering from

Punjabi University. She is currently working

as Assistant Professor in the Department of

Computer Science and Engineering, Punjabi University and has

around 18 years of teaching experience. Her research interests

include software architecture, software evolution, software quality,

refactoring, model-driven development, data science and machine

learning. She has around 80 research papers in reputed international

journals including Thomson Reuters (SCI & Web of Science) and

conferences including IEEE, and a book titled "A Handbook of

Reinforcement Learning" published in 2023. She has been awarded

the “International Innovative Educator Award 2021" and is listed in

“100 Eminent Academicians of 2021” by International Institute of

Organized Research.

