

 © 2019, IJCSE All Rights Reserved 41

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Generating Code-Smell Prediction Rules Using Decision Tree Algorithm

and Software Metrics

Mohammad Y. Mhawish

1*
, Manjari Gupta

2

1,2

DST-CIMS, Banaras Hindu University, Varanasi, India

*Corresponding Author: bniyaseen@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i5.4148 | Available online at: www.ijcseonline.org

Accepted: 12/May/2019, Published: 31/May/2019

Abstract— Code smells identified by Fowler [1] is as symptoms of possible code or design problems. Code smells have

adverse affecting the quality of the software system by making software challenging to understand and consequently increasing

the efforts to maintenance and evolution. The detection of code smells is the way to improve software quality by recovering

code smells and perform the refactoring processes. In this paper, we propose a code- smells detection approach based on a

decision tree algorithm and software metrics. The datasets we used to train the models are built by reforming the datasets used

by Arcelli Fontana et al. work [2]. We use two feature selection methods based on a genetic algorithm to select the most

essential features in each dataset. Moreover, we use the grid search algorithm to tuning the decision tree hyperparameters. We

extract a set of detection conditions using decision tree models, that are considered as prediction rules to detect each code smell

in our binary-class datasets.

Keywords— code smells, code smells detection, Feature selection, decision tree, prediction rules.

I. INTRODUCTION

In software development, there are functional and non-

functional quality requirements that the developers have to

follow to assure the software quality[3]. Developers, for

many reasons, focus on pure functional requirements and

neglect the non-functional requirements, e.g., modifiability,

maintainability, evolution and extensibility, testability,

understandability, and reusability[4]. The lack of these

requirements in software led to the low of software quality

and increased complexity and efforts for the maintenance and

evolution of the software due to the weakness of the design

rules. Thus, one should follow the design principles, e.g.,

encapsulation, modularity, and data abstraction.

Software maintenance is the modification applied to the

software in the propose of adapting or modifying the

environment of the software. The increase of maintenance

effort is typically caused by the weakening of software

design and lousy implementation style[5]. The understanding

and the comprehension of the software by increasing the

understandability of source code and design is fundamental

in the activity of the maintenance and the evolution process

of software systems. One field of software engineering that

supports the maintenance and evolution of software activity

is reverse engineering. Chikofsky[6] defines reverse

engineering as ―the process of analyzing a subject system to

identify the system’s components and their interrelationships

and to create representations of the system in another form or

at a higher level of abstraction.‖

Code-smells is defined as a term to describe the

characteristics in software that may indicate a design

problem. Code smells term was introduced by Fowler and

Beck [1]. They presented informal definitions of 22 code-

smells in the software system.

Several studies have investigated the disadvantage of code-

smells in software system[7][8][9][10][11]. The studies

shown that the existing code smells in the software implies to

increase the effort of maintenance and evolution activities of

software. Van Emden et al.[12] proposed the adverse impact

of code smells on the software, and they presented a

methodology to reduce this impact. Moreover, in [13] the

authors found that the existence of code-smells in the

software was affected directly to the software quality.

Olbrich et al.[14] show that one of the reasons for

performance degeneration of software is the presence of code

smells in the source code. Tufano et al.[15] explored the

reasons for the existence of the code smells in source code

and they evaluated many projects to get back on the impact

of code smells on the quality of software. Yamashita and

Moonen[9] evaluated the adverse impact of code smells in

the software maintenance, and they conducted the validation

of their work by expert observations of the software systems

that were placed for maintenance.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 42

All these studies found the relationships between the code-

smells and the increase of the risk of faults and failures of the

software system and the negative impact of code-smells on

the quality of the software and they recommended for

applying the refactoring in order to clean software system

from code-smells. The Recovery of code-smells in the source

code is the way to improve the maintenance and evolution

activities of software. The term of code-smell detection was

proposed by Fowler [1]. They identified 22 code-smells, and

they associated these code-smells with the refactoring

transformations that have to be applied to improve the

structure of software. Many approaches have been proposed

for detection code-smells; they used different techniques and

attempted with different code-smells. Several approaches

[16][17][18] used the manual detection methods based on

Fowler’s [1] identification of code-smells. On the other hand

several approaches used the automatic detection techniques

for example Metrics based code-smell detection [19] [20],

Heuristic-based code-smell detection: [21] and Machine

learning-based code-smell detection [2], [22]–[24].

In the existing approaches, there are many limitations,

including there no fair in the detection to detect all code-

smells and they focused on some smells and neglected the

rest of the code-smells. Moreover, many approaches used the

same software to experiment, but they generated different

results. This difference in the result due to some reasons,

including there, is no standard definition for code-smells or

they used different threshold values for metrics that were

used to decide if the instances are smell or no.

In this paper, four code smells are selected to apply the

experiments of our approach. The chosen code smells are

God Class, Data Class, Feature Envy, and Long Method.

This work aimed to increase the understanding of the

relationship between software metrics and code smell

prediction by defining the threshold values of software

metrics produced by decision tree prediction rules. In this

experiment, the decision tree algorithm is trained by tuning

most of the parameters that may impact the accuracy by

optimizing their values.

The remainder of this paper is structured as follows. Section

2 provides the related work. In section 3, we provide solution

approach and research framework. Section 4 presents the

results of the conducted experiments. Finally, in Section 5

we present the conclusion of our work.

II. RELATED WORK

In the literature many approaches have been proposed for

detecting code smells in software systems.

Marinescu [25] proposed a smells detection approach based

on software metrics. In this approach he defined detection

strategy; it is a mechanism that combines software metrics

using the logical operators (OR/AND). Abílio et al. [26]

proposed a detection methodology based on software

metrics. They investigated the software systems using their

methodology and discussed the presence of Shotgun Surgery,

God Class, and God Method smells in FOP language called

AHEAD. Vidal et al. [19] proposed a smell detection

approach to detect ten code smells including the popular

smells, Feature Envy, God Method, and God Class. Based on

their approach, they produced an Eclipse plugin for detecting

code smells called JSpIRIT4.

Moha et al. [21] introduced a method for specifying and

detecting smells using DSL (a Domain-Specific Language)

called DÉCOR. DÉCOR track for smells by the sequence of

steps starting with Description analysis, Specification,

Processing, Detection, and Validation. Suryanarayana et al.

[27] proposed a rule-based approach for smells detection.

The smells detected by defining a set of rules that check if

the class is referring to its subclasses. Rules are combined

with metrics to detect code smells. Baudry et al. [28]

proposed an approach to detect anti-patterns at the design

level rather than the implementation level by using UML

extension method. Langelier et al. [29] proposed

visualization approach to detect code smells. Their

visualization technique is combined with automatic analysis

along with human expertise. They have introduced a

framework that is specified for the quality analysis of large-

scale systems. They used 3D Box for classes representation.

Murphy-Hill et al. [30] proposed code-smells detector called

Stench Blossom. Their approach firstly gives an interactive

ambient visualization designed to provide the user a quick

high-level overview of the code smells in their system, and

then the users can deeply investigate the characteristics of the

source code items that are affected by smells through a list of

details that justify and explain the code smell presence.

Carneiro et al. [31] have proposed a compound apprehension

from different views to detect the bad smells in the source

code. The multiple perspectives approach improves four

categories of source code views with concern features,

namely: concern’s package class method structure, concern’s

inheritance wise structure, concern dependency, and concern

dependency weight. They conducted an exploratory study to

evaluate the extent to which visual views support code smell

detection.

 Kreimer[32] proposed a detection approach to detect two

code smells based on a decision tree model. The approach

was tested on the two small-scale software (WEKA package

and IYC system). They found that the use of prediction

models in code smells detection is effective.

 Amorin et al. [33] confirmed Kreimer’s finding by testing

his decision tree model over medium -scale system. Khomh

et al.[34], [35] proposed an approach using Bayesian Belief

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 43

Networks to detect three code smells from open-source

software.

Fontana et al. [22] [2][24] [23] proposed several effective

approaches in code smells detection. They built four datasets

for four code smells by analyzing 74 software [36]. They

conducted their experiments using 16 machine learning

models. In [24], they proposed work on the classification of

the severity of code smells. The degree of severity provided

an assessment for refactoring by categorizing the code smells

as harmfully degree, from the perspective that the high

severity needs more efforts to maintainability.

We observed that the conventional code smells detection

techniques have a limitation due to the ambiguity in the code

smells definition and the selection of software metrics that

indicate the occurrence of smells in the source code.

Moreover, the quality of the rules that are used as an

indication of the existence of smells might be non-exhaustive

and inaccurate and is the main reason for the false positive

result. In the metrics-based approaches, we observed that the

difference of software metrics used and the selection

threshold values of these metrics may cause a variation on

the results because there is no standard benchmark for

threshold values for metrics used due to the difference in the

software domain and size. In machine learning based

approaches, we recognized that the accuracy of these

techniques relies on the training dataset quality. It may not

enough build big size datasets that include all size and

domain of the software, but should be taken into account

many factors including, the manner of the dataset is built

with balancing examples and preprocessing classification

steps.

III. SOLUTION APPROACH

In this approach, we build code-smells prediction approach

to generate the code smells prediction rules based on

software metrics and decision tree algorithm. Software

metrics have played a key role in measuring software quality

by understanding the characteristics of the source code in

software systems. Metrics capture the static information of

source code such as the number of classes, methods, and

parameters, and measure the coupling, and Cohesion

between objects in the system. The list of steps we followed

to build the code smells prediction model is as follows:

 Initially, we prepared datasets by creating a new form of

datasets — further, we are applying feature selection

techniques to reduce the dimension of the dataset and select

the most impact metrics. Next, we are training the decision

tree algorithm by applying parameter optimization

techniques. Finally, we evaluate the performance metrics and

generating the prediction rules for each code smell.

A. Datasets And Dataset Representation

In this paper, four code smells were selected to apply the

experiments of our approach. We created our datasets based

on datasets that were published by Arcelli Fontana et al. [2].

We have adapted the original datasets to increase the realism

factors of existence of the code smells side to side with other

code-smells in the source code.

The selected code smells belong to class level (God Class,

Data Class) and method level(Feature Envy, Long Method)

[37][1]. Each instance in dataset represented by a software

metrics vector, the instance consists of 61 software metrics in

the class-level code smells, and 82 software metrics in the

method-level code smells.

B. Feature Selection

Feature selection is a technique aimed to find the most

influence features in the dataset by removing the redundant

features to increase the performance and to increase the

knowledge of the software metrics that play a significant role

in code smell prediction.

In this paper, we applied two feature selection methods based

on the Genetic algorithm. The first feature selection method

is genetic algorithm based on Naïve Bayes as a fitness

function, and the second method is genetic algorithm based

on CFS (correlated features to the target class) [38] as a

fitness function as shown in figure 1.

For both feature selection methods, we set the Genetic

algorithm operators and parameters as a following:

 population size: 20 individuals

 maximum number of generations: 100 iterations

 selection method: tournament selection method

 cross-over method: one-point crossover

 cross over probability: 0.95

 mutation probability: 0.1

Figure 1 proposed feature selection method

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 44

C. Decision Tree Algorithm

Tree-based algorithm considered one of the most accurate

and commonly used supervised learning methods. Tree-

based algorithms map the nonlinear relationships among the

instance features and the target classes in the dataset,

moreover, the algorithms provide classification rules that can

ease the interpretation of the classification models[39].

The decision tree algorithm is a supervised learning

algorithm that consists of nodes that are splitting based on

splitting rules for each specific feature[40]. In the decision

tree, the data is passed from root to leaves, and the feature

value is separated based on splitting rules in each node

according to predictor class until it reaches the stopping

criteria. The hyperparameters of the decision tree algorithm,

maximal depth and split criterion are optimized using

parameter optimization techniques[41].

D. Parameter Optimization

In the machine learning algorithms, some hyper-parameters

need to be tuned to ensure the improvement of the

performance accuracy of the algorithms. In this paper, we

used a grid-search algorithm based on parameter

optimization technique. In this paper, the Grid search

algorithm is used to find the combination of the optimal

values for parameters of the decision tree algorithm in order

to optimize parameters on each dataset. The grid search

algorithm is an optimization method, aims to find the optimal

values for a set of parameters in a machine learning

algorithm. It is based on exhaustively searches for the

combination of parameters that returned the best

performance value in the prediction model[42].

To performed the optimization, we identified a set of values

that have to test for each parameter. For nominal parameters,

we have defined the set nominal value, and for continuous

parameters, we discretized the parameter values by setting

the value range and number of steps for each parameter. The

tested values are assigned within upper and lower bounds of

range based on the specified steps assigned for each

parameter as shown in Table 1.

Table 1 Tuning parameters and the specified steps

assigned for each parameter
Parameter From To Step

maximal depth 1 20 5

Apply pre-pruning True or False

Apply pruning True or False

Minimal size for
split

1 10 10

Minimal gain 0 1 10

Criterion gain ratio, information gain, Gini index, or

accuracy

E. Validation Methodology

For measuring the effectiveness of each experiment, we

considered four performance parameters such as precision,

recall, f-measure, and accuracy.

F-measure is defined as the harmonic mean of precision and

recall, while the Precision is the positive-classified instances

which are positive. The recall is the real-positive instances

classified as positive. F-measure is a way of having a single

number combining the two measures calculated using the

following formulas.

Accuracy is one of the performance measures for

classification. It is the percentage of correctly classified

instances in the positive and negative class and is calculated

as follows:

IV. EXPERIMENTAL RESULTS AND

DISCUSSIONS

This study aimed to select the most relevant features that is

not only for examining the impact of feature selection in

improving the accuracy of the model, but also for

comprehending the software metrics that play a significant

role in the code-smells prediction process and producing the

decision rules regarding to identify the code smells form

software systems using software metrics. Also, this

experiment aimed to increase the understanding of the

relationship between software metrics and code smell

prediction by defining the threshold values of software

metrics produced by decision tree prediction rules.

Tables 2 and 3 showed the sets of features selected by feature

selection methods for code-smell datasets. In the God class

and Data class smell datasets, the GA -Naïve Bayes and GA-

CFS methods selected 9 and 7 features respectively. In the

long method dataset, both feature selection methods selected

8 features. Also, in feature envy dataset, 11and 7 features are

selected by GA -Naïve Bayes and GA- CFS methods

respectively.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 45

Table 2 GA -Naïve Bayes feature selection methods

results

Dataset GA -
Naïve
Bayes

Selected metrics by GA -Naïve Bayes

Data class 9 AMW, CFNAMM, DIT, LCOM5, LOC_project,

TCC, WOC, num_not_final_not_static_attributes,

number_constructor_DefaultConstructor_methods

God class 9 CFNAMM, FANOUT, LOC, NMO,

NOCS_project, NOII, NOM_project, WMC,

number_constructor_DefaultConstructor_methods

long
method

8 AMW, ATFD_method, CDISP_method,

LOC_method, MAXNESTING_method, NIM,

NOAV_method, NOCS_project

Feature
envy

11 ATFD_method, CFNAMM, FANOUT,

FDP_method, LAA_method, NMO, NOI_project

NOII, NOM_project, NOPK_project, TCC

Table 3 GA- CFS feature selection methods results

Dataset GA-
CFS

Selected metrics by GA - CFS

Data class 7 AMW, NIM, RFC, NOAM, WMC,

WOC,

number_private_visibility_methods

God class 7 ATFD, CFNAMM, LOC, LOCNAMM,

WMC, WMCNAMM

long
method

8 CDISP_method, CYCLO_method,

LOC_method, MAXNESTING_method,

NOAV_method, NOLV_method,

num_final_not_static_attributes, WMC

Feature
envy

7 ATFD_method, ATFD, CDISP_method,

FDP_method, LAA_method,

LOC_method, NOMNAMM_package

As shown in table 4 The GA_CFS method scored the best

accuracy in predicting the Data class smells by 98.05% and

98.54% F-measure. The parameters of the decision tree

algorithm are tuned using the grid search algorithm and the

best accuracy is achieved by setting the following parameter

values:

 maximal depth = 5

 criterion = gain ratio

 apply pruning = true

 minimal size for split = 8

 minimal gain = 0.0

 apply pre-pruning = true

Table 4 Performance accuracy evaluation results

The prediction rules that are extracted from the decision tree

model to predict Data class is as follows:

WOC > 0.356

| AMW > 1.310: no smell

| AMW ≤ 1.310

| | NOAM > 3.500

| | | NIM > 19.698: no smell

| | | NIM ≤ 19.698: DATA class

| | NOAM ≤ 3.500: no smell

WOC ≤ 0.356

| NOAM > 2.500

| | RFC > 43: no smell

| | RFC ≤ 43: DATA class

| NOAM ≤ 2.500: no smell

The rules detected the data code smells when achieved the

following conditions:
When WOC ≤ 0.356 && NOAM > 2.500 && RFC ≤

43

These conditions predicted 129 out of 140 data class smells,

almost 92% of the number of data class smells in the dataset.

These combinations of rules detect the data class if the

weight of the class metric is less or equal 0.356 and the class

has more than two accessor methods (getter and setter) with

the response of the class metric value less than 43. On the

other hand, when the class has less than two accessor

methods, 44 no-smell classes were detected by these rules.

Also, if the first and second rules are satisfied and the

response of the class metric was more than 43, then no-smell

classes are detected.

WOC > 0.356 && AMW ≤ 1.310 && NOAM >

3.500 && NIM ≤ 19.698

The second combination of rules that detected the data class

is if the weight of the class metric is greater than 0.356 and

the class have more than three accessor methods (getter and

setter) with a number of inherited methods less than 19. That

combination of rules detected 10 out of 140 data class smells.

In the God class smell, the GA-CSF feature selection method

scored the best accuracy of 97.56% and with F-measure

value 98.08%. The parameters of the decision tree algorithm

that achieved this accuracy are tuned as follows:

 maximal depth = 5

Code

smell

GA -Naïve Bayes GA- CFS

Accuracy F-score Accuracy F-score

Data class 96.83% 97.00% 98.05% 98.54%

God class 97.32% 97.97% 97.56% 98.08%

Long

method

92.96% 93.96% 94.31% 95.16%

Feature

envy

98.38% 98.69% 98.11% 98.43%

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 46

 criterion = accuracy

 apply pruning = true

 minimal size for split = 1

 minimal gain = 0.2

 apply pre-pruning = true

The prediction rules that are extracted from the decision tree

model to predict God class are as follows:

WMCNAMM > 47.500: GOD class

WMCNAMM ≤ 47.500

| LOCNAMM > 415: GOD class

| LOCNAMM ≤ 415: no smell

From the prediction rules, it is shown that only one condition

is applied to detect the god class: WMCNAMM > 47.500.

This condition detected 137 out of 140 God class smells in

the dataset. The "Weighted methods count of not accessor or

mutator methods" metric (WMCNAMM) considers the

measure of the complexity of the method defined in the class

excludes the accessor and mutator methods. On the other

hand, the combination of rules to detect the no-smell classes

is when WMCNAMM ≤ 47.500 and if the number of lines of

code excluding accessor or mutator methods is

(LOCNAMM) ≤ 415.

In the long method smell, the GA-CSF feature selection

method scored the best accuracy of 94.31% and with F-

measure value 95.16%. The parameters of the decision tree

algorithm that achieved this accuracy are tuned as follows:

 maximal depth = 20

 criterion = accuracy

 apply pruning = false

 minimal size for split = 1

 minimal gain = 0.0

 apply pre-pruning = false

Prediction rules that are extracted from the decision tree

model to predict long method smell as follows:

LOC_method > 79.500

| CYCLO_method > 7.500: long method

| CYCLO_method ≤ 7.500: no smell

LOC_method ≤ 79.500: no smell

The rules detected the long method smells when achieved the

following conditions:

LOC_method > 79.500 && CYCLO_method >

7.500

These conditions predicted 140 out of 140 long method

smells, that means 100% of the number of Long Method

code smells in the dataset. The rules detect the smells if the

number of lines of code for the method is greater than 79 and

Cyclomatic Complexity for a method is greater than 7.5. The

Cyclomatic Complexity is the maximum number of linearly

independent paths in a method.
In the feature envy smell, the GA -Naïve Bayes feature

selection method scored the best accuracy of 98.38% and

with F-measure value 98.69%. The parameters of the

decision tree algorithm that achieved this accuracy are tuned

as follows:

 maximal depth = 9

 criterion = information gain

 apply pruning = false

 minimal size for split = 1

 minimal gain = 0.0

 apply pre-pruning = true

The prediction rules that are extracted from the decision tree

model to predict feature envy smells as follows:

ATFD_method > 4.500

| LAA_method > 0.323

| | ATFD_method > 8.500: feature envy

| | ATFD_method ≤ 8.500

| | | NOPK_project > 30: feature

envy

| | | NOPK_project ≤ 30

| | | | CFNAMM > 66: feature envy

| | | | CFNAMM ≤ 66: no smell

| LAA_method ≤ 0.323: feature envy

ATFD_method ≤ 4.500

| ATFD_method > 2.500

| | LAA_method > 0.450: no smell

| | LAA_method ≤ 0.450: feature envy

| ATFD_method ≤ 2.500: no smell

The rules detected the long method smells when achieved the

following conditions:

ATFD_method > 4.500 && LAA_method ≤ 0.323

ATFD_method > 4.500 && LAA_method > 0.323

&& ATFD_method > 8.500

ATFD_method > 4.500 && LAA_method > 0.323

&& ATFD_method ≤ 8.500 && NOPK_project >

30

The first combination of rules shows that if the method

accessed to foreign data is greater than 4.5 and the locality of

attribute accesses is equal or less than 0.323, these conditions

predicted 113 out of 140 feature envy code smells in the

dataset.

The second combination of rules that detects 16 out of 140

feature envy code smells is when the method accessed to

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 47

foreign data is greater than 8.5, and the locality of attribute

accesses is greater than 0.323.

The third combination of rules is when the no of method

accessed to foreign data is greater than 4.5 and equal or less

than 8.5, if the locality of attribute accesses is greater than

0.323 and the total number of packages in the system is more

than 30. In this case, the rules detected 6 out of 140 smells in

the dataset.

V. CONCLUSION

In this paper, we proposed an approach based on machine

learning and software metrics to detect code smells from

software systems and to find the metrics that play critical

roles in the detection process. We have trained a decision

tree model in binary-class datasets. We used two feature

selection methods to select the influenced metrics in each

code smell dataset. We applied our experiments using four

code smells. This work aimed to increase the understanding

of the relationship between software metrics and code smell

prediction by defining the threshold values of software

metrics produced by decision tree prediction rules, and we

presented a set of conditions to detect each smell. We

showed in the result that GA_CFS method scored the best

accuracy in predicting the Data Class, God Class, and Long

Method smells by 98.05%, 97.56%, and 94.31%

respectively, and in the long method smell the GA -Naïve

Bayes feature selection method scored the best accuracy of

98.38%.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

Refactoring: improving the design of existing code. Addison-

Wesley Professional, 1999.

[2] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino,

―Comparing and experimenting machine learning techniques for

code smell detection,‖ Empir. Softw. Eng., vol. 21, no. 3, pp.

1143–1191, 2016.

[3] I. C. S. S. E. S. Committee and I.-S. S. Board, ―IEEE

recommended practice for software requirements specifications,‖

1998.

[4] L. Chung and J. C. S. do Prado Leite, ―On non-functional

requirements in software engineering,‖ in Conceptual modeling:

Foundations and applications, Springer, 2009, pp. 363–379.

[5] P. Rai, A. Pradhan, M. Pradhan, A. Chettri, and B. Limboo,

―Comparative Study on Various Techniques Used in Examination

System : A Survey,‖ vol. 7, no. 2, pp. 24–28, 2019.

[6] E. J. Chikofsky and J. H. Cross, ―Reverse engineering and design

recovery: A taxonomy,‖ IEEE Softw., vol. 7, no. 1, pp. 13–17,

1990.

[7] A. Yamashita and L. Moonen, ―Exploring the impact of inter-

smell relations on software maintainability: An empirical study,‖

Proc. - Int. Conf. Softw. Eng., pp. 682–691, 2013.

[8] A. Yamashita and S. Counsell, ―Code smells as system-level

indicators of maintainability: An empirical study,‖ J. Syst. Softw.,

vol. 86, no. 10, pp. 2639–2653, 2013.

[9] A. Yamashita and L. Moonen, ―Do code smells reflect important

maintainability aspects?,‖ IEEE Int. Conf. Softw. Maintenance,

ICSM, pp. 306–315, 2012.

[10] D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T.

Dyba, ―Quantifying the effect of code smells on maintenance

effort,‖ IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1144–1156,

2013.

[11] D. SAHIN, M. KESSENTINI, S. BECHIKH, and K. DEB, ―Code-

Smells Detection as a Bi-Level Problem,‖ ACM Trans. Softw. Eng.

Methodol., vol. 24, no. 1, 2014.

[12] E. Van Emden and L. Moonen, ―Java quality assurance by

detecting code smells,‖ Proc. - Work. Conf. Reverse Eng. WCRE,

vol. 2002-Janua, no. November, pp. 97–106, 2002.

[13] M. Influential, P. Award, and E. Van Emden, ―Assuring Software

Quality by Code Smell Detection.‖

[14] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoøberg, ―Are all code

smells harmful? A study of God Classes and Brain Classes in the

evolution of three open source systems,‖ IEEE Int. Conf. Softw.

Maintenance, ICSM, 2010.

[15] M. Tufano et al., ―When and why your code starts to smell bad,‖

Int. Conf. Softw. Eng. ICSE, vol. 1, pp. 403–414, 2015.

[16] O. Ciupke, ―Automatic detection of design problems in object-

oriented reengineering,‖ in Technology of Object-Oriented

Languages and Systems, 1999. TOOLS 30 Proceedings, 1999, pp.

18–32.

[17] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, ―Detecting

defects in object-oriented designs: using reading techniques to

increase software quality,‖ in ACM Sigplan Notices, 1999, vol. 34,

no. 10, pp. 47–56.

[18] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, ―A

comprehensive approach for the development of modular software

architecture description languages,‖ ACM Trans. Softw. Eng.

Methodol., vol. 14, no. 2, pp. 199–245, 2005.

[19] S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia, and

W. Oizumi, ―JSpIRIT: A flexible tool for the analysis of code

smells,‖ Proc. - Int. Conf. Chil. Comput. Sci. Soc. SCCC, vol.

2016-Febru, 2016.

[20] R. Marinescu, ―Measurement and quality in object-oriented

design,‖ IEEE Int. Conf. Softw. Maintenance, ICSM, vol. 2005, pp.

701–704, 2005.

[21] N. Moha and Y. Guéhéneuc, ―DECOR: A method for the

specification and detection of code and design smells,‖ IEEE

Trans. Softw. Eng., vol. 36, no. 1, pp. 20–36, 2010.

[22] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mäntylä, ―Code

smell detection: Towards a machine learning-based approach,‖

IEEE Int. Conf. Softw. Maintenance, ICSM, pp. 396–399, 2013.

[23] U. Azadi, F. A. Fontana, and M. Zanoni, ―Machine learning based

code smell detection through WekaNose,‖ Proc. 40th Int. Conf.

Softw. Eng. Companion Proceeedings - ICSE ’18, no. June, pp.

288–289, 2018.

[24] F. Arcelli Fontana and M. Zanoni, ―Code smell severity

classification using machine learning techniques,‖ Knowledge-

Based Syst., vol. 128, pp. 43–58, 2017.

[25] R. Marinescu, ―Detection strategies: Metrics-based rules for

detecting design flaws,‖ in Software Maintenance, 2004.

Proceedings. 20th IEEE International Conference on, 2004, pp.

350–359.

[26] R. Ab’ilio, J. Padilha, E. Figueiredo, and H. Costa, ―Detecting

Code Smells in Software Product Lines--An Exploratory Study,‖

in Information Technology-New Generations (ITNG), 2015 12th

International Conference on, 2015, pp. 433–438.

[27] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring

for software design smells: managing technical debt. Morgan

Kaufmann, 2014.

[28] B. Baudry, Y. Le Traon, G. Sunyé, and J.-M. Jézéquel,

―Measuring and improving design patterns testability,‖ in

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 48

Proceedings of Metrics Symposium 2003, 2003.

[29] G. Langelier, H. Sahraoui, and P. Poulin, ―Visualization-based

analysis of quality for large-scale software systems,‖ in

Proceedings of the 20th IEEE/ACM international Conference on

Automated software engineering, 2005, pp. 214–223.

[30] E. Murphy-Hill and A. P. Black, ―An interactive ambient

visualization for code smells,‖ in Proceedings of the 5th

international symposium on Software visualization, 2010, pp. 5–

14.

[31] G. de F. Carneiro et al., ―Identifying code smells with multiple

concern views,‖ in Software Engineering (SBES), 2010 Brazilian

Symposium on, 2010, pp. 128–137.

[32] J. Kreimer, ―Adaptive detection of design flaws,‖ Electron. Notes

Theor. Comput. Sci., vol. 141, no. 4, pp. 117–136, 2005.

[33] L. Amorim, E. Costa, N. Antunes, B. Fonseca, and M. Ribeiro,

―Experience report: Evaluating the effectiveness of decision trees

for detecting code smells,‖ in Software Reliability Engineering

(ISSRE), 2015 IEEE 26th International Symposium on, 2015, pp.

261–269.

[34] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, ―A

bayesian approach for the detection of code and design smells,‖ in

Quality Software, 2009. QSIC’09. 9th International Conference

on, 2009, pp. 305–314.

[35] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,

―BDTEX: A GQM-based Bayesian approach for the detection of

antipatterns,‖ J. Syst. Softw., vol. 84, no. 4, pp. 559–572, 2011.

[36] E. Tempero et al., ―The Qualitas Corpus: A curated collection of

Java code for empirical studies,‖ in Software Engineering

Conference (APSEC), 2010 17th Asia Pacific, 2010, pp. 336–345.

[37] A. J. Riel, Object-oriented design heuristics. Addison-Wesley

Longman Publishing Co., Inc., 1996.

[38] M. A. Hall, ―Correlation-based feature subset selection for

machine learning,‖ Thesis Submitt. Partial fulfillment Requir.

degree Dr. Philos. Univ. Waikato, 1998.

[39] D. W. Aha, D. Kibler, and M. K. Albert, ―Instance-based learning

algorithms,‖ Mach. Learn., vol. 6, no. 1, pp. 37–66, 1991.

[40] L. Rokach and O. Z. Maimon, Data mining with decision trees:

theory and applications, vol. 69. World scientific, 2008.

[41] V. K. Gujare and P. Malviya, ―Big Data Clustering Using Data

Mining Technique,‖ vol. 5, no. 2, pp. 9–13, 2017.

[42] C. J. L. Chih Wei Hsu, Chih Chung Chang, ―A Practical Guide to

Support Vector Classification,‖ BJU Int., vol. 101, no. 1, pp.

1396–400, 2008.

AUTHORS PROFILE

Mr. Mohammad Mhawish Bachelor of

Computer Science from Al- Balqa' Applied

University in 2009 and Master of Computer

Science from Banaras Hindu University in

year 2015. He is currently pursuing Ph.D in

Computer Science from Banaras Hindu

University.

Dr. Manjari Gupta is currently working as Associate

Professor in the DST-CIMS, Banaras Hindu University,

Varanasi, India. He is currently working in the area of

Software Engineering.

