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Abstract— Code smells identified by Fowler [1] is as symptoms of possible code or design problems. Code smells have 

adverse affecting the quality of the software system by making software challenging to understand and consequently increasing 

the efforts to maintenance and evolution. The detection of code smells is the way to improve software quality by recovering 

code smells and perform the refactoring processes.  In this paper, we propose a code- smells detection approach based on a 

decision tree algorithm and software metrics. The datasets we used to train the models are built by reforming the datasets used 

by Arcelli Fontana et al. work [2]. We use two feature selection methods based on a genetic algorithm to select the most 

essential features in each dataset. Moreover, we use the grid search algorithm to tuning the decision tree hyperparameters. We 

extract a set of detection conditions using decision tree models, that are considered as prediction rules to detect each code smell 

in our binary-class datasets. 
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I.  INTRODUCTION  

 

In software development, there are functional and non-

functional quality requirements that the developers have to 

follow to assure the software quality[3]. Developers, for 

many reasons, focus on pure functional requirements and 

neglect the non-functional requirements, e.g., modifiability, 

maintainability, evolution and extensibility, testability, 

understandability, and reusability[4]. The lack of these 

requirements in software led to the low of software quality 

and increased complexity and efforts for the maintenance and 

evolution of the software due to the weakness of the design 

rules. Thus, one should follow the design principles, e.g., 

encapsulation, modularity, and data abstraction.  

 

Software maintenance is the modification applied to the 

software in the propose of adapting or modifying the 

environment of the software. The increase of maintenance 

effort is typically caused by the weakening of software 

design and lousy implementation style[5]. The understanding 

and the comprehension of the software by increasing the 

understandability of source code and design is fundamental 

in the activity of the maintenance and the evolution process 

of software systems. One field of software engineering that 

supports the maintenance and evolution of software activity 

is reverse engineering. Chikofsky[6] defines reverse 

engineering as ―the process of analyzing a subject system to 

identify the system’s components and their interrelationships 

and to create representations of the system in another form or 

at a higher level of abstraction.‖ 

 

Code-smells is defined as a term to describe the 

characteristics in software that may indicate a design 

problem. Code smells term was introduced by Fowler and 

Beck [1]. They presented informal definitions of 22 code-

smells in the software system. 

 

Several studies have investigated the disadvantage of code-

smells in software system[7][8][9][10][11]. The studies 

shown that the existing code smells in the software implies to 

increase the effort of maintenance and evolution activities of 

software. Van Emden et al.[12] proposed the adverse impact 

of code smells on the software, and they presented a 

methodology to reduce this impact. Moreover, in [13] the 

authors found that the existence of code-smells in the 

software was affected directly to the software quality. 

Olbrich et al.[14] show that one of the reasons for 

performance degeneration of software is the presence of code 

smells in the source code. Tufano et al.[15] explored the 

reasons for the existence of the code smells in source code 

and they evaluated many projects to get back on the impact 

of code smells on the quality of software. Yamashita and 

Moonen[9] evaluated the adverse impact of code smells in 

the software maintenance, and they conducted the validation 

of their work by expert observations of the software systems 

that were placed for maintenance. 
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All these studies found the relationships between the code-

smells and the increase of the risk of faults and failures of the 

software system and the negative impact of code-smells on 

the quality of the software and they recommended for 

applying the refactoring in order to clean software system 

from code-smells. The Recovery of code-smells in the source 

code is the way to improve the maintenance and evolution 

activities of software. The term of code-smell detection was 

proposed by Fowler [1]. They identified 22 code-smells, and 

they associated these code-smells with the refactoring 

transformations that have to be applied to improve the 

structure of software. Many approaches have been proposed 

for detection code-smells; they used different techniques and 

attempted with different code-smells. Several approaches 

[16][17][18] used the manual detection methods based on 

Fowler’s [1] identification of code-smells. On the other hand 

several approaches used the automatic detection techniques 

for example Metrics based code-smell detection [19] [20], 

Heuristic-based code-smell detection: [21] and Machine 

learning-based code-smell detection [2], [22]–[24].   

 

In the existing approaches, there are many limitations, 

including there no fair in the detection to detect all code-

smells and they focused on some smells and neglected the 

rest of the code-smells. Moreover, many approaches used the 

same software to experiment, but they generated different 

results. This difference in the result due to some reasons, 

including there, is no standard definition for code-smells or 

they used different threshold values for metrics that were 

used to decide if the instances are smell or no. 

 

In this paper, four code smells are selected to apply the 

experiments of our approach. The chosen code smells are 

God Class, Data Class, Feature Envy, and Long Method. 

This work aimed to increase the understanding of the 

relationship between software metrics and code smell 

prediction by defining the threshold values of software 

metrics produced by decision tree prediction rules. In this 

experiment, the decision tree algorithm is trained by tuning 

most of the parameters that may impact the accuracy by 

optimizing their values. 

 

The remainder of this paper is structured as follows. Section 

2 provides the related work. In section 3, we provide solution 

approach and research framework. Section 4 presents the 

results of the conducted experiments. Finally, in Section 5 

we present the conclusion of our work. 

 

II. RELATED WORK  

 

In the literature many approaches have been proposed for 

detecting code smells in software systems. 

Marinescu [25] proposed a smells detection approach based 

on software metrics. In this approach he defined detection 

strategy; it is a mechanism that combines software metrics 

using the logical operators (OR/AND). Abílio et al. [26] 

proposed a detection methodology based on software 

metrics. They investigated the software systems using their 

methodology and discussed the presence of Shotgun Surgery, 

God Class, and God Method smells in FOP language called 

AHEAD. Vidal et al. [19] proposed a smell detection 

approach to detect ten code smells including the popular 

smells, Feature Envy, God Method, and God Class. Based on 

their approach, they produced an Eclipse plugin for detecting 

code smells called JSpIRIT4. 

 

Moha et al. [21] introduced a method for specifying and 

detecting smells using DSL (a Domain-Specific Language ) 

called DÉCOR. DÉCOR track for smells by the sequence of 

steps starting with Description analysis, Specification, 

Processing, Detection, and Validation.  Suryanarayana et al. 

[27] proposed a rule-based approach for smells detection. 

The smells detected by defining a set of rules that check if 

the class is referring to its subclasses. Rules are combined 

with metrics to detect code smells. Baudry et al. [28]  

proposed an approach to detect anti-patterns at the design 

level rather than the implementation level by using UML 

extension method. Langelier et al. [29]  proposed 

visualization approach to detect code smells. Their 

visualization technique is combined with automatic analysis 

along with human expertise. They have introduced a 

framework that is specified for the quality analysis of large-

scale systems. They used 3D Box for classes representation. 

Murphy-Hill et al. [30] proposed code-smells detector called  

Stench Blossom. Their approach firstly gives an interactive 

ambient visualization designed to provide the user a quick 

high-level overview of the code smells in their system, and 

then the users can deeply investigate the characteristics of the 

source code items that are affected by smells through a list of 

details that justify and explain the code smell presence. 

Carneiro et al. [31] have proposed a compound apprehension 

from different views to detect the bad smells in the source 

code. The multiple perspectives approach improves four 

categories of source code views with concern features, 

namely: concern’s package class method structure, concern’s 

inheritance wise structure, concern dependency, and concern 

dependency weight. They conducted an exploratory study to 

evaluate the extent to which visual views support code smell 

detection. 

 

 Kreimer[32] proposed a detection approach to detect two 

code smells based on a decision tree model. The approach 

was tested on the two small-scale software (WEKA package 

and IYC system). They found that the use of prediction 

models in code smells detection is effective. 

 

 Amorin et al. [33] confirmed Kreimer’s finding by testing 

his decision tree model over medium -scale system. Khomh 

et al.[34], [35] proposed an approach using Bayesian Belief 
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Networks to detect three code smells from open-source 

software. 

 

Fontana et al. [22] [2][24] [23]  proposed several effective 

approaches in code smells detection. They built four datasets 

for four code smells by analyzing 74 software [36]. They 

conducted their experiments using 16 machine learning 

models. In [24], they proposed work on the classification of 

the severity of code smells. The degree of severity provided 

an assessment for refactoring by categorizing the code smells 

as harmfully degree, from the perspective that the high 

severity needs more efforts to maintainability.  

 

We observed that the conventional code smells detection 

techniques have a limitation due to the ambiguity in the code 

smells definition and the selection of software metrics that 

indicate the occurrence of smells in the source code. 

Moreover, the quality of the rules that are used as an 

indication of the existence of smells might be non-exhaustive 

and inaccurate and is the main reason for the false positive 

result.  In the metrics-based approaches, we observed that the 

difference of software metrics used and the selection 

threshold values of these metrics may cause a variation on 

the results because there is no standard benchmark for 

threshold values for metrics used due to the difference in the 

software domain and size. In machine learning based 

approaches, we recognized that the accuracy of these 

techniques relies on the training dataset quality. It may not 

enough build big size datasets that include all size and 

domain of the software, but should be taken into account 

many factors including, the manner of the dataset is built 

with balancing examples and preprocessing classification 

steps. 

 

III. SOLUTION APPROACH 

 

In this approach, we build code-smells prediction approach 

to generate the code smells prediction rules based on 

software metrics and decision tree algorithm. Software 

metrics have played a key role in measuring software quality 

by understanding the characteristics of the source code in 

software systems. Metrics capture the static information of 

source code such as the number of classes, methods, and 

parameters, and measure the coupling, and Cohesion 

between objects in the system. The list of steps we followed 

to build the code smells prediction model is as follows: 

 Initially, we prepared datasets by creating a new form of 

datasets — further, we are applying feature selection 

techniques to reduce the dimension of the dataset and select 

the most impact metrics. Next, we are training the decision 

tree algorithm by applying parameter optimization 

techniques. Finally, we evaluate the performance metrics and 

generating the prediction rules for each code smell. 

 

A. Datasets And Dataset Representation 

In this paper, four code smells were selected to apply the 

experiments of our approach. We created our datasets based 

on datasets that were published by Arcelli Fontana et al. [2]. 

We have adapted the original datasets to increase the realism 

factors of existence of the code smells side to side with other 

code-smells in the source code. 

 

The selected code smells belong to class level (God Class, 

Data Class ) and method level(Feature Envy, Long Method) 

[37][1]. Each instance in dataset represented by a software 

metrics vector, the instance consists of 61 software metrics in 

the class-level code smells, and 82 software metrics in the 

method-level code smells. 

 

B. Feature Selection 

Feature selection is a technique aimed to find the most 

influence features in the dataset by removing the redundant 

features to increase the performance and to increase the 

knowledge of the software metrics that play a significant role 

in code smell prediction. 

 

In this paper, we applied two feature selection methods based 

on the Genetic algorithm. The first feature selection method 

is genetic algorithm based on Naïve Bayes as a fitness 

function, and the second method is genetic algorithm based 

on CFS (correlated features to the target class) [38] as a 

fitness function as shown in figure 1. 

For both feature selection methods, we set the Genetic 

algorithm operators and parameters as a following: 

 

 population size: 20 individuals 

 maximum number of generations: 100 iterations 

 selection method: tournament selection method 

 cross-over method: one-point crossover 

 cross over probability: 0.95 

 mutation probability: 0.1 

 

 

 
Figure 1 proposed feature selection method 
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C. Decision Tree Algorithm 

Tree-based algorithm considered one of the most accurate 

and commonly used supervised learning methods. Tree-

based algorithms map the nonlinear relationships among the 

instance features and the target classes in the dataset, 

moreover, the algorithms provide classification rules that can 

ease the interpretation of the classification models[39]. 

The decision tree algorithm is a supervised learning 

algorithm that consists of nodes that are splitting based on 

splitting rules for each specific feature[40]. In the decision 

tree, the data is passed from root to leaves, and the feature 

value is separated based on splitting rules in each node 

according to predictor class until it reaches the stopping 

criteria. The hyperparameters of the decision tree algorithm, 

maximal depth and split criterion are optimized using 

parameter optimization techniques[41]. 

 

D. Parameter Optimization 

In the machine learning algorithms, some hyper-parameters 

need to be tuned to ensure the improvement of the 

performance accuracy of the algorithms. In this paper, we 

used a grid-search algorithm based on parameter 

optimization technique. In this paper, the Grid search 

algorithm is used to find the combination of the optimal 

values for parameters of the decision tree algorithm in order 

to optimize parameters on each dataset. The grid search 

algorithm is an optimization method, aims to find the optimal 

values for a set of parameters in a machine learning 

algorithm. It is based on exhaustively searches for the 

combination of parameters that returned the best 

performance value in the prediction model[42].  

To performed the optimization, we identified a set of values 

that have to test for each parameter. For nominal parameters, 

we have defined the set nominal value, and for continuous 

parameters, we discretized the parameter values by setting 

the value range and number of steps for each parameter. The 

tested values are assigned within upper and lower bounds of 

range based on the specified steps assigned for each 

parameter as shown in Table 1. 

 

Table 1 Tuning parameters and the specified steps 

assigned for each parameter 
Parameter From To Step 

maximal depth 1 20 5 

Apply pre-pruning True or False 

Apply pruning True or False   

Minimal size for 
split 

1 10 10 

Minimal gain 0 1 10 

Criterion gain ratio, information gain, Gini index, or 

accuracy 

 

E. Validation Methodology  

For measuring the effectiveness of each experiment, we 

considered four performance parameters such as precision, 

recall, f-measure, and accuracy. 

 

F-measure is defined as the harmonic mean of precision and 

recall, while the Precision is the positive-classified instances 

which are positive. The recall is the real-positive instances 

classified as positive. F-measure is a way of having a single 

number combining the two measures calculated using the 

following formulas.  

 

           
   

     
 

 

        
   

     
 

 

                
                 

                
   

 

 

Accuracy is one of the performance measures for 

classification. It is the percentage of correctly classified 

instances in the positive and negative class and is calculated 

as follows: 

 

 

               
      

            
 

 

 

IV. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 

 

This study aimed to select the most relevant features that is 

not only for examining the impact of feature selection in 

improving the accuracy of the model, but also for 

comprehending the software metrics that play a significant 

role in the code-smells prediction process and producing the 

decision rules regarding to identify the code smells form 

software systems using software metrics. Also, this 

experiment aimed to increase the understanding of the 

relationship between software metrics and code smell 

prediction by defining the threshold values of software 

metrics produced by decision tree prediction rules. 

 

Tables 2 and 3 showed the sets of features selected by feature 

selection methods for code-smell datasets. In the God class 

and Data class smell datasets, the GA -Naïve Bayes and GA- 

CFS methods selected 9 and 7 features respectively.  In the 

long method dataset, both feature selection methods selected 

8 features. Also, in feature envy dataset, 11and 7 features are 

selected by GA -Naïve Bayes and GA- CFS methods 

respectively.  
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Table 2  GA -Naïve Bayes feature selection methods 

results 

Dataset GA -
Naïve 
Bayes 

Selected metrics by GA -Naïve Bayes 

Data class 9 AMW, CFNAMM, DIT, LCOM5, LOC_project, 

TCC, WOC, num_not_final_not_static_attributes, 

number_constructor_DefaultConstructor_methods  

God class 9 CFNAMM, FANOUT, LOC, NMO, 

NOCS_project, NOII, NOM_project, WMC, 

number_constructor_DefaultConstructor_methods  

long 
method 

8 AMW, ATFD_method, CDISP_method, 

LOC_method, MAXNESTING_method, NIM, 

NOAV_method, NOCS_project 

Feature 
envy 

11 ATFD_method, CFNAMM, FANOUT, 

FDP_method, LAA_method, NMO, NOI_project 

NOII, NOM_project, NOPK_project, TCC 

 

Table 3 GA- CFS feature selection methods results 

Dataset GA- 
CFS 

Selected metrics by GA - CFS 

Data class 7 AMW, NIM, RFC, NOAM, WMC, 

WOC, 

number_private_visibility_methods 

God class 7 ATFD, CFNAMM, LOC, LOCNAMM, 

WMC, WMCNAMM 

long 
method 

8 CDISP_method, CYCLO_method, 

LOC_method, MAXNESTING_method, 

NOAV_method, NOLV_method, 

num_final_not_static_attributes, WMC 

Feature 
envy 

7 ATFD_method, ATFD, CDISP_method, 

FDP_method, LAA_method, 

LOC_method, NOMNAMM_package 

 

 

As shown in table 4 The GA_CFS method scored the best 

accuracy in predicting the Data class smells by 98.05% and 

98.54% F-measure. The parameters of the decision tree 

algorithm are tuned using the grid search algorithm and the 

best accuracy is achieved by setting the following parameter 

values: 

 

 maximal depth = 5 

 criterion = gain ratio 

 apply pruning = true 

 minimal size for split = 8 

 minimal gain = 0.0 

 apply pre-pruning = true 

 

 

Table 4 Performance accuracy evaluation results 

 

The prediction rules that are extracted from the decision tree 

model to predict Data class is as follows: 

 
WOC > 0.356 

|   AMW > 1.310: no smell  

|   AMW ≤ 1.310 

|   |   NOAM > 3.500 

|   |   |   NIM > 19.698: no smell  

|   |   |   NIM ≤ 19.698: DATA class  

|   |   NOAM ≤ 3.500: no smell  

WOC ≤ 0.356 

|   NOAM > 2.500 

|   |   RFC > 43: no smell  

|   |   RFC ≤ 43: DATA class  

|   NOAM ≤ 2.500: no smell  

 

The rules detected the data code smells when achieved the 

following conditions: 
When WOC ≤ 0.356 && NOAM > 2.500 && RFC ≤ 

43 

These conditions predicted 129 out of 140 data class smells, 

almost 92% of the number of data class smells in the dataset. 

These combinations of rules detect the data class if the 

weight of the class metric is less or equal 0.356 and the class 

has more than two accessor methods (getter and setter) with 

the response of the class metric value less than 43. On the 

other hand, when the class has less than two accessor 

methods, 44 no-smell classes were detected by these rules. 

Also, if the first and second rules are satisfied and the 

response of the class metric was more than 43, then no-smell 

classes are detected. 

 
WOC > 0.356 && AMW ≤ 1.310 && NOAM > 

3.500 && NIM ≤ 19.698  

The second combination of rules that detected the data class 

is if the weight of the class metric is greater than 0.356 and 

the class have more than three accessor methods (getter and 

setter) with a number of inherited methods less than 19. That 

combination of rules detected 10 out of 140 data class smells. 

 

In the God class smell, the GA-CSF feature selection method 

scored the best accuracy of 97.56% and with F-measure 

value 98.08%. The parameters of the decision tree algorithm 

that achieved this accuracy are tuned as follows:  
 

 maximal depth = 5 

 

Code 

smell 

GA -Naïve Bayes GA- CFS 

Accuracy F-score  Accuracy F-score 

Data class 96.83%  97.00% 98.05% 98.54% 

God class 97.32% 97.97% 97.56% 98.08% 

Long 

method 

92.96% 93.96% 94.31% 95.16% 

Feature 

envy 

98.38% 98.69% 98.11% 98.43% 
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 criterion = accuracy 

 apply pruning = true 

 minimal size for split = 1 

 minimal gain = 0.2 

 apply pre-pruning = true 
 

The prediction rules that are extracted from the decision tree 

model to predict God class are as follows: 

 
WMCNAMM > 47.500: GOD class  

WMCNAMM ≤ 47.500 

|   LOCNAMM > 415: GOD class  

|   LOCNAMM ≤ 415: no smell  

 

From the prediction rules, it is shown that only one condition 

is applied to detect the god class: WMCNAMM > 47.500. 

This condition detected 137 out of 140 God class smells in 

the dataset. The "Weighted methods count of not accessor or 

mutator methods" metric (WMCNAMM) considers the 

measure of the complexity of the method defined in the class 

excludes the accessor and mutator methods. On the other 

hand, the combination of rules to detect the no-smell classes 

is when WMCNAMM ≤ 47.500 and if the number of lines of 

code excluding accessor or mutator methods is 

(LOCNAMM) ≤ 415. 

 

In the long method smell, the GA-CSF feature selection 

method scored the best accuracy of 94.31% and with F-

measure value 95.16%. The parameters of the decision tree 

algorithm that achieved this accuracy are tuned as follows:  

 maximal depth = 20 

 criterion = accuracy 

 apply pruning = false 

 minimal size for split = 1 

 minimal gain = 0.0 

 apply pre-pruning = false 
 

Prediction rules that are extracted from the decision tree 

model to predict long method smell as follows: 

 
LOC_method > 79.500 

|   CYCLO_method > 7.500: long method  

|   CYCLO_method ≤ 7.500: no smell  

LOC_method ≤ 79.500: no smell  

 

The rules detected the long method smells when achieved the 

following conditions: 

 
LOC_method > 79.500 && CYCLO_method > 

7.500 

These conditions predicted 140 out of 140 long method 

smells, that means 100% of the number of Long Method 

code smells in the dataset. The rules detect the smells if the 

number of lines of code for the method is greater than 79 and 

Cyclomatic Complexity for a method is greater than 7.5. The 

Cyclomatic Complexity is the maximum number of linearly 

independent paths in a method. 
In the feature envy smell, the GA -Naïve Bayes feature 

selection method scored the best accuracy of 98.38% and 

with F-measure value 98.69%. The parameters of the 

decision tree algorithm that achieved this accuracy are tuned 

as follows:  

 maximal depth = 9 

 criterion = information gain 

 apply pruning = false 

 minimal size for split = 1 

 minimal gain = 0.0 

 apply pre-pruning = true 
 

The prediction rules that are extracted from the decision tree 

model to predict feature envy smells as follows: 

 
ATFD_method > 4.500 

|   LAA_method > 0.323 

|   |   ATFD_method > 8.500: feature envy  

|   |   ATFD_method ≤ 8.500 

|   |   |   NOPK_project > 30: feature 

envy  

|   |   |   NOPK_project ≤ 30 

|   |   |   |   CFNAMM > 66: feature envy  

|   |   |   |   CFNAMM ≤ 66: no smell  

|   LAA_method ≤ 0.323: feature envy  

ATFD_method ≤ 4.500 

|   ATFD_method > 2.500 

|   |   LAA_method > 0.450: no smell  

|   |   LAA_method ≤ 0.450: feature envy  

|   ATFD_method ≤ 2.500: no smell  

 

The rules detected the long method smells when achieved the 

following conditions: 
 

ATFD_method > 4.500 && LAA_method ≤ 0.323    

 

ATFD_method > 4.500 && LAA_method > 0.323 

&& ATFD_method > 8.500  

 

ATFD_method > 4.500 && LAA_method > 0.323 

&& ATFD_method ≤ 8.500 && NOPK_project > 

30    

 

The first combination of rules shows that if the method 

accessed to foreign data is greater than 4.5 and the locality of 

attribute accesses is equal or less than 0.323, these conditions 

predicted 113 out of 140 feature envy code smells in the 

dataset. 

 

The second combination of rules that detects 16 out of 140 

feature envy code smells is when the method accessed to 
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foreign data is greater than 8.5, and the locality of attribute 

accesses is greater than 0.323. 

 

The third combination of rules is when the no of method 

accessed to foreign data is greater than 4.5 and equal or less 

than 8.5, if the locality of attribute accesses is greater than 

0.323 and the total number of packages in the system is more 

than 30. In this case, the rules detected 6 out of 140 smells in 

the dataset. 

 

V. CONCLUSION  

 

In this paper, we proposed an approach based on machine 

learning and software metrics to detect code smells from 

software systems and to find the metrics that play critical 

roles in the detection process. We have trained a decision 

tree model in binary-class datasets.  We used two feature 

selection methods to select the influenced metrics in each 

code smell dataset. We applied our experiments using four 

code smells. This work aimed to increase the understanding 

of the relationship between software metrics and code smell 

prediction by defining the threshold values of software 

metrics produced by decision tree prediction rules, and we 

presented a set of conditions to detect each smell. We 

showed in the result that GA_CFS method scored the best 

accuracy in predicting the Data Class, God Class, and Long 

Method smells by 98.05%, 97.56%, and 94.31% 

respectively, and in the long method smell the GA -Naïve 

Bayes feature selection method scored the best accuracy of 

98.38%. 
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