
 © 2018, IJCSE All Rights Reserved 409

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693

A CSA based Source Code Plagiarism Detection Approach using Sparse

Principle Component Analysis

M. Bhavani
1*

, K. Thammi Reddy
2
, P. Suresh Varma

3

1
Dept. of IT, GITAM institute of Technology, GITAM, India

2
 Dept. of CSE, GITAM institute of Technology, GITAM, India

3
 Dept. of CSE, Adhikavi Nannayya University, Rajamahendravaram, India

*Corresponding Author: bhavani.mm@gmail.com

Available online at: www.ijcseonline.org

Accepted: 07/Dec/2018, Published: 31/Dec/2018

Abstract-Detection of source code plagiarism is valuable for both the academia and industry. Plagiarism is an approach of

unlawfully stealing other person source code or program code which is a serious issue for common open source programming

and other software companies. Numerous techniques have been introduced priori for automatic detection of source code

plagiarism using Evolutionary Intelligent algorithm like Genetic Algorithm (GA), Particle Swarm Optimization (PSO) etc.

These techniques are more susceptible to premature convergence and more time consuming. In this paper, considering the

benefits of artificial immune system, source code plagiarism approach is proposed that overcomes the drawbacks of previous

genetic algorithm and particle swarm optimization algorithms. The sparse PCA is employed for dimensionality reduction prior

to detection approach for obtained sparse matrix. Using CSA, the detection between source codes is computed and fitness

evaluation is measured using Normalized Euclidean distance (NED) and Normalized Cumulative Reciprocal Rank

(NCRR).The performance analysis of the suggested approach showed that it has better precision and recall values when

compared with existing Meta heuristic based Source code plagiarism detection algorithms.

Keywords-Source Code detection, Plagiarism approach, Artificial Immune System, Clonal Selection Algorithm, Sparse PCA.

I. INTRODUCTION

Source Code plagiarism is well-defined as the process of

stealing others source code through unlawfully photocopying

their information, using code obfuscation approaches for the

code to observe diverse and further demanding that it is

individual program in a manner that violates the conditions of

original authorization. In current years, source code

plagiarism has been a severe concern for authentic

academician and students and open source societies. It

interrupts the intelligent things of software developers and is

an austere issue, varying from open source code recycle,

product theft to various applications and repackaging. The

stolen code could be employed through plagiarists to

diminish the price of its software development.

Rendering to a current survey [1], it was discovered that 1083

i.e. 86% of 1260 malevolent app instances were repackaged

varieties of genuine apps having malevolent contents.

Furthermore, the growing of software provides plagiarists

further chances to steal others’ code. The surge of open

source tasks gives lot of simple objectives for source code

robs, as source code is flexible to know and alter compared to

working binaries.

Source code plagiarism is a key problem that rises in most of

the programming course [3]. Huge quantity of data accessible

online causes plagiarism highly flexible to obligate, and this

is specifically correct in case of source code. The

conventional technique of recognizing copied information in

a course is physical examination. This is not merely the

tiresome job but characteristically omits code plagiarized

from exterior sources or from prior courses provided.

Nevertheless, identifying plagiarism manually is fairly time

taking. Although mechanically identifying source code

plagiarism persists, these incline to concentrate on smaller

suggestion sets. Whenever identifying plagiarism in source

codes, linguistic precise characteristics are frequently

required, particularly to identify progressive plagiarism

attack. To overwhelm this issue, numerous spontaneous

approaches for identifying source code plagiarism are

introduced.

Numerous techniques have been introduced priori for

automatic identifying source code plagiarism. In the similar

lines, the author has also present two different intelligent

source code plagiarism detection approaches using Genetic

Algorithm, Particle Swarm Optimization on sparse data

matrix. Though GA and PSO are evolutionary intelligent

approach, these are more susceptible to premature

convergence and more time consuming. In PSO, whenever no

superior global best is discovered through another particle for

certain time period, entire particles tends towards persisting

global best, hypothetically eradicating even the nearby local

minimize and find no guarantee in obtaining the global

minima. Thus, a clonal selection approach, in this paper is

used for detection of Plagiarized codes employing the

similarity measures.

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 410

The Dimensionality reduction (DR) approach depending on

sparse representation considered to be the fieriest

investigating themes have attained amazing efficiency in

numerous applications in current years. Nevertheless, it’s a

challenge for prevailing sparse representation aided

approaches to resolve non-linear issues pertaining to the

restriction of in search of sparse representation of information

in original domain. Hence, a sparse PCA technique is

employed for the reduction of features in the preprocessed

sparse matrix prior to detection phase.

A brief introduction to source code detection and its

importance along with the motivation for the suggested

methodology is given in this section. The section 2 briefly

discusses the existing methodologies in source code detection

techniques. The proposed CSA-based detection approach is

briefly illuminated in the section 3. The experimental

outcomes and its analysis for the proposed approach is given

in section 4 followed by conclusion and references given in

section 5 and section 6 correspondingly.

II. LITERATURE SURVEY

Source code plagiarism in an action of employing function

deprived of appropriately quoting the original author [4]. It is

an evolving problem in Computer Science (CS) foremost

owing to higher submission incidence [5] and recognition

complexity [6]. Therefore, to handle this problem, numerous

source code plagiarism detection methods are suggested [7].

In [8], exploits implementation traces of Java byte codes are

exploited to identify plagiarism with a hypothesis that

resemblance could be measured using dynamic behavior. This

methodology is not real as both byte codes could be

implemented that is not effective with time, particularly on

NP-complexity byte codes. However, in the programming

course, maximum programs continuously have identical

dynamic behavior pertaining to task constraint. In [9], Java

byte codes are explored for identifying plagiarism through

employing official approach to define byte code similarity.

However, using official technique might produce time-

efficacy, disadvantage that is not appropriate for

distinguishing a heaps of plagiarism circumstances.

 In plagiarism detection [10], the other methodology was

suggested that are accurately fascinated in stop words in texts.

Specified an article and a list of stop words, the text would be

lessened to appearance of stop words in the document. The

interest of this illustration is the existences of the stop words

reveal indices of the syntactic structure of the document,

which is probable to remain stable during the procedure of

plagiarism of a passage, i.e., when one tries to plagiarize a

passage of the text, the most common act is to replace words

and expressions by synonyms. Whereas remaining in the

scope of plagiarism detection, [11] are concerned in the study

of intrinsic plagiarism that aims to recognize potential

plagiarism by investigating undeclared changes in the writing

style of a document.

The method of semantic plagiarism detection [12]

uses the similarity of the chains of characters depending on

the fuzzy semantics. The strategy was produced through four

principle steps. The initial step is pre-processing comprises of

tokenization, deletion of stop words. The second step is to

recover a list of candidate documents for each suspect

document using the Jaccard algorithm and the shingle

algorithm [13]. Another methodology [14] that associates the

semantic similarity model with one of the vector models with

the Vector Regression (SVR) regression to differentiate the

semantic similarity score from the given sentence pairs. This

method starts by pre-processing the suspect document,

removing hyphens, punctuations etc., the remaining words

have been tokenized, lemmatized, labeled according to the

Parts of Speech and annotated with labels, constructing

pieces.

Additionally, [15] distinguished the way that

scholastics frequently have their very own customized

impression of plagiarism definitions and policies which may

not be consistent with their University’s plagiarism policy.

Additionally, [16] initiate that scholastics did not often pursue

the University’s policy by dealing with plagiarism due to

concerns about confronting students and not feeling protected

by University procedures and discovered that scholastics felt

sensitivity for the effect that formal strategies would have on

understudies.

III. PROPOSED CLONAL SELECTION BASED

PLAGIARISM DETECTION APPROACH

In this section, a novel approach is introduced for the source

code plagiarism detection using intelligent heuristic

approaches and sparse based dimensionality reduction. Two

different similarity measures such as normalized Euclidean

distance and normalized cumulative reciprocal rank are used

in the detection phase to detect many to many related source

code documents. Most of the large scale higher dimensional

source code data available now a day are sparse. For this

purpose, a sparse PCA based dimensionality reduction is

employed. The intelligent detection is accomplished using

CSA which has higher benefits compared to GA and PSO.

The diagrammatic representation of the proposed approach

is specified in Fig 2. This approach is segregated into three

phases. They are:

 Source Code Pre-processing

 Dimensionality reduction on sparse matrix

 Intelligent Detection approach

A Source Code Pre-processing

This phase is particularly employed to pre-process

the source code document as to improve the retrieval of

semantic information for code recognition where the

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 411

irrelevant and unwanted information such as meaningless

terms and characters, symbols or words etc. are removed.

This phase is necessary to minimize the dimension of the

information to further effectively seize the semantic

depiction of every source-code file. The goal of this module

is to accumulate the large number of source code into a

processed format to detect the plagiarized source code

relevantly.

Pre-Processing the source code can be of two forms such as

pre-processing constraints that explicit to source code

sources and parameters that are not specific to source code

files. Pre-processing constraints that specific to source code

involves:

 Eliminating commentaries

 Merging or separating terms comprising of

compound words

 Eliminating source code identifiers containing

complex parameters that joined two words together

found within terms and treated it as single term

such as ‘student name’ to ‘studentname’.

 Plotting alternative words to a single form like

function being plotted to procedure

 Reorganization the procedure according to the

order of its function calling

 Eliminating entire tokens that does not have the

lexicon of the target language such as eliminating

entire words which are not language reserved

words

Certain conceivable pre-processing constraints not specific

to source-code achieves involves:

 Eliminating words present in single document or

entire document as these words preserves no

additional knowledge regarding the association

among the documents.

 Eliminating words merely comprising of numerical

symbols,

 Eliminating syntactical tokens like semi-colons,

colons, comma etc.

 Eliminating words comprising of a one alphabets

 Translating upper case alphabets to lower case.

After the pre-processing is performed, the Source Code

Pre-processing phase forms the Vector Space Model (VSM)

that represents the source code data samples. In the VSM, a

term-by-file matrix is represented as where

every row have the rate of processed terms such as terms

obtained in source-code document next to pre-processing,

and every column signifies the source-code document.

Therefore, every element of A comprises of the rate at

which the vocabulary term occurs in a source-code file .

From the term-by-file matrix, the normalized term frequency

is obtained by applying probability inverse global weighting

method (IDFP) [17] to modify the rate of terms relating to

the whole group of source-code archives. Similarly,

document length normalization is performed to adjust the

frequencies depending on the dimension of every document

file. The two estimations are given below:

 (1)

 (2)

Here is the probability inverse global weighting method,

N is number of source code files in the group, is the

number of source code files where the word occurs.

represents document length normalization. After the

evaluation, every entry of the matrix A is updated as:

 (3)

B Dimensionality Reduction

In this section, the higher dimensional sparse matrix

is reduced to lower dimensional sparse matrix employing

sparse PCA algorithm using Iterative elimination approach.

A prominent limitation of PCA is the deficiency of sparsity.

Classically, entire loadings of principal components are

nonzero. From modeling view point, even though the

interpretability of linear amalgamations is typically flexible

for lower dimensional information, it could become further

complex whenever number of variables becomes large.

Thus, sparse PCA based approach is employed in this paper

which also known as Iterative Elimination (IE) algorithm.

This methodology is inspiring through famous Recursive

Feature Elimination (RFE) approach in learning philosophy

and feeble thresholding technique. In this procedure

variables are repetitively eradicated using a ranking strategy

that could either be the minimum absolute value strategy or

the much-cultured approximated minimal variance loss

(AMVL) standard.

Based on this hypothesis, the iterative elimination

approach for sparse PCA eradicates smaller part of variables

at single time and re-iterates this approach till the preferred

sparsity is achieved. The notion of iterative elimination is

inspired through RFE approach.RFE is a backward FE

approach which is presented to the support vector machines

in [18]. The rudimentary notion of this approach is, direct

variable position (rendering to certain assessed strategy)

might be uneven. Nevertheless, variable graded as minimum

significant is infrequently amongst the higher significant

ones. Thus, this could be eradicated it initially and re-rank

the continuing variables. Owing to the decrease in the size,

the ranking improves.

In sparse PCA, it is time taking to evaluate the

precise variance loss for entire variables. The assessed

quantities are adopted as ranking strategy employing the

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 412

absolute values of loadings or higher restrictions of variance

losses. Beneath this strategy, if a variable graded to be the

smallest significant one, it does not essentially use the

smallest variance. Nevertheless, its support is comparatively

smaller and eliminating it would not consequence in huge

variance loss. Thus, it is possibly not amongst the preferred

top k key variables. This is the location where RFE could

perform better. The iterative elimination approach for sparse

PCA is given as:

1. Initialize

2. In step ,evaluate the highest eigenvalue and

consistent Eigen vector . Discover the smallest vital

variable : if MAV strategy is employed,

 (4)

or, if AMVL strategy is employed

(5)

Update

and ;

3. Stop until and output with and

Iterative elimination is feasible for issues

comprising of high size. Higher p, smaller n issue denotes to

an issue with higher dimensional information however

restricted with interpretations. In every generation, it is

essential to evaluate its highest singular value and consistent

singular vectors.

Fig 1: Block Diagram Traditional CSA

C Intelligent Detection Phase

In this section, pair of source codes are detected that are

accurately like one another. This detection is achieved using

robust meta-heuristic algorithm known as Clonal Selection

Approach. This is an exceptional group of AIS that employs

the clonal selection portion to be the key technique. This

procedure was primarily suggested to resolve non-linear

functions through [19, 20]. The sparse matrix

Initialization

Evaluation

Execute Algorithm

Derive Solution
Death

Update parameters

Selection

Cloning

Mutation

Diversity

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 413

obtained from the Sparse PCA is employed for the detection

of pair of source code.AIS is an evolving domain of study in

computational intelligence. Most of the previous effort in the

development of AIS was employed through genetic and

evolutionary evaluating approaches [21]. GA and AIS are

the variants of evolutionary approach however the vital

difference amongst them is the way the population emerges.

In GA, the population is obtained employing crossover and

mutation. Nevertheless, in AIS, regeneration is asexual

where every child generated through a cell is the precise

copy of its parent. Both approaches employ mutation to

modify the offspring of cells to preserve diversity in the

population [22]. The following offers a comprehensive

approach of CSA for detection:

1. Initialization: This comprises of inhabiting the antibody

group i.e. the minimized sparse matrix with S arbitrarily

nominated antigens (deprived of replacement in the

course of initialization) i.e. the elements within the sparse

matrix. The Initial dimension of population (S) describes

the count of antigens using which to obtain the antibody

population, here and is the complete

partition dimension.

2. Loop: This includes executing the key stages of approach

for iterations that expresses the complete count

approach generation to accomplish, where a unique

generation observes that system is visible to entire

identified antigens. The factor regulates the quantity of

learning the system would function on the domain

specific. The iterations varying to higher might

consequent in system over-learning the issue or in getting

jammed on a locally optimum result.

3. Selection and Pruning: This comprises of exhibiting the

complete population to the group of antigen and

computing fitness values for every antibody. A group of

n antibodies are picked from complete pool having high

affinity or having antigen. Those antibodies having a

fitness value less than threshold are pruned from picked

selected group and base antibody population. The affinity

evaluation is made as below:

Affinity Evaluation: The evaluation of each particle i.e. the

source code file in the search space is evaluated with the

fitness evaluation functions such as Normalized

Euclidean Distance between the pair of selected

individual’s source code documents as to obtain the value

of similarity between them. The Normalized Euclidean

Distance is given as:

(6)

The Similarity Measure that is employed for the proposed

approach is Normalized Cumulative Reciprocal Rank

which is evaluated as:

(7)

Here D is the group of obtained document pairs, R is pair of

acknowledged plagiarized document pairs and

returns 1 for a plagiarized document pair and 0 for a non-

plagiarized pair. The fitness values range from 0.0 to 1.0.

NCRR similarity measures shows the proportion of the

retrieved documents with respect to the relevant

documents.

4. Cloning and Mutation: The chosen group is further

cloned and mutated employing fitness proportional

processes. The number of clones made from every n

picked antibodies is proportionate to its fitness using a

rank aided measure. Through first sorting the set of

selected antibodies is achieved in ascending order by

their affinity to the antigen. The ordered list is then

iterated, and the number of clones formed from each

antibody is considered as follows:

 (8)

Where is a clonal factor, N is the dimension of antibody

pool, and is antibody present rank where .

The complete count of clones obtained for every antigen

exhibited to system is consequently evaluated as:

 (9)

Where is the complete count of clones, n is the count of

picked antibodies. The Clonal factor () agrees a scaling

factor for the number of clones created for selected

antibodies. Assuming an value of 100, and a value

of 0.5, then using Equation 8, the number of clones

created for the for the most stimulated antibody would be

200. Common values are . The lower the

value, the more search in the local area (in relation to

current antibodies) is performed by the algorithm.

5. Insertion: The produced clones are injected within the

central antibody population. n is the arbitrarily preferred

antigens from set are injected into population, where n is

the count of antibodies in the chosen group from step 3.

6. Final Pruning: This refers to the organizing antibody

population for production application. The population is

proposed to antigen population an ending time, fitness

scores are ready, and pruning is according to the

threshold value.

7. Classification: The antibody population is the group of

examples. For the defined unclassified data example, it is

exhibited to population. The k finest matches (high

affinity) are preferred, and the major vote for class of

antigens is applied to unclassified example.

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 414

Fig 2: Block Diagram of the Proposed Source Code Plagiarism Detection approach

IV. EXPERIMENTAL RESULTS AND ITS

ANALYSIS

The Experimental Results for the proposed CSA based

Source Code Detection System is carried out using

different kinds of datasets one in Java language and the

other in C language. Specifically, the source codes with

different sizes are considered and the proposed

methodology irrespective to the size of the source code.

The proposed approach is compared with the existing

detection systems such as detection system using

incremental genetic algorithm by means of sub graphs [23]

and An Iterative Genetic Algorithm Based Source Code

Plagiarism Detection Approach Using NCRR Similarity

Measure [24] and Particle Swarm Optimization based

Source Code Plagiarism system.

Performance Evaluation Measures:

Recall and Precision are two benchmarked and utmost

recurrently employed metric in information retrieval

system to estimate. These measures are exploited to

estimate the efficiency of plagiarism detection. For the

reason of estimation, the terms are specified below:

i. Suspicious pairs: Every suspicious pair, , comprises of

documents that are being refereed through human

graders as suspicious. A class of suspicious pairs is

given as where the complete

amount of known suspicious pairs in a class (i.e., data

sample) is .

ii. Innocent pairs: These are the pairs that does not segment

any suspicious identity type however is identified as

suspicious by proposed and existing detection systems.

iii. Detected pairs: These pairs are obtained by means of the

proposed Detection approaches. A class of identified

pairs is referred as

.

Here . The complete count of detected file pairs

is . The complete count of suspicious pairs

identified is given by , and the total amount of

innocent file pairs identified is referred as .

Recall is given as R, where , is the percentage of

suspicious pairs that are recognized depending on limit

value, . Recall is 1.00 whenever entire doubtful pairs are

recognized.

Precision is given as P, where , is the percentage

of suspicious pairs that are recognized in the group of

document pairs identified. Precision is 1.00 whenever each

document pair identified is doubtful.

The complete performance of every device is estimated

through merging precision and recall metrics. Considering,

it to be a unique measurement for estimating the efficiency

Source Code

Datasets

Source Code

Tokenization

Removing Unnecessary

Terms and Syntactical
Tokens

Source Code Pre-

Processing Phase

Sparse PCA

 Dimensionality

Reduction

Intelligent

Detection Phase

Clonal Selection

Algorithm

Fitness Evaluation:

Normalized

Euclidean Distance

Fitness Evaluation:

Normalized

Cumulative Reciprocal

rank

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 415

of device for plagiarism detection, weighted total of

precision and recall would be evaluated as

The coefficient obtains a way to bias in

direction of Precision or Recall. Specifically, the value

=0.5 biases it in the direction of precision, value =

1.0evaluates precision and recall similarly and value =

2.0 biases in the direction of recall. In the

experimentations, entire three conditions are verified to

define the comparative efficiency of several algorithms

while highlighting recall or precision, and both.

Henceforth, to penalize false negatives further powerfully

compared to false positives through picking a value > 1,

therefore provides higher weight age to Recall.

Experimental Results

The precision, recall and with different are

evaluated for the proposed CSA based Source Code

Detection System against the existing approaches given in

[23, 24] for two different sets of data samples separately.

Table 2 represents the performance measures of the

proposed approach that are matched with the existing

detection system using the java programming source code

data samples.

Table 2: Comparison of Performance Measures on Java Source Code Data Samples

Performance

Measures

Proposed Clonal

Selection

Approach

Particle Swarm

Optimization

Approach

Iterative Genetic

Algorithm based

Approach

Incremental Genetic

Algorithm based

Detection System

Precision 0.99 0.98 0.97 0.96

Recall 0.01 0.02 0.03 0.04

1.00 1.00 1.00 0.96

1.00 0.99 0.98 0.96

0.99 1.00 0.99 0.95

Table 3 represents the performance measures of the

suggested method that are matched with the existing

detection system using the C programming source code data

samples. From table 2 and table 3, it is obviously witnessed

the performance measure of suggested methodology is

higher when matched with the other two techniques. It can

also be inferred that the computational complexity of the

proposed approach is also less compared to the other two

approaches.

Table 3: Comparison of Performance Measures on C Programming Source Code Data Samples

Performance

Measures

Proposed Clonal

Selection

Approach

Proposed Particle

Swarm Optimization

Approach

Proposed Iterative

Genetic Algorithm

based Approach

Incremental Genetic

Algorithm based

Detection System

Precision 0.99 0.97 0.96 0.96

Recall 0.01 0.03 0.04 0.04

1.00 1.00 1.00 0.97

0.99 1.00 0.99 0.98

1.00 0.99 0.99 0.98

The Analysis of the proposed approach is also

performed by means of the Fitness Functions or the

similarity measures that employed in the proposed approach.

The average Normalized Euclidean Distance (NED) and

Normalized Cumulative Reciprocal Rank (NCRR) measures

is used to analyze the proposed approach specifically the

CSA with Pre-processing against Simple CSA without any

kind of Pre-processing. The comparison is accomplished

against the number of generation or iterations employed in

the proposed Particle Swarm Optimization and Iterative

Genetic Algorithm. Fig 3 and Fig 4 refers to the Average

NED for Java and C source code data samples respectively.

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 416

Figure 3: Average NED for Java Source Code Data Samples Figure 4: Average NED for C Source Code

 Data Samples

Figure 5: NCRR for Java Source Code Data Samples Figure 6: NCRR for C Source Code Data Samples

V. CONCLUSIONS

In this paper, an AIS based source code detection

methodology is introduced to detect the plagiarized pair of

source code. CSA is an exceptional group of AIS that

employs the Clonal selection portion of the AIS as a

foremost technique. Clonal selection approach regeneration

is asexual where every child generated through a cell is the

precise copy of its parent. For the purpose of reducing the

sparse matrix obtained from preprocessing phase, sparse

PCA algorithm is employed prior to detection phase. The

higher dimensional sparse matrix is reduced to lower

dimensional sparse matrix employing sparse PCA algorithm

using Iterative elimination approach. The performance

analysis of the suggested approach showed that it has better

precision and recall values when compared with existing

Meta heuristic based Source code plagiarism detection

algorithms.

 REFERENCES

[1] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged

smartphone applications in third-party android marketplaces,” in

Proc. 2nd ACM Conf. Data Appl. Security Privacy, 2012, pp. 317–

326.

[2] S. Burrows, S. M. M. Tahaghoghi and J. Zobel, “Efficient

plagiarism detection for large code repositories”, Software Practice

and Experience, vol.37, pp. 151-175, 2006.

[3] G. Cosma and M. Joy, "Towards a Definition of Source-Code

Plagiarism," IEEE Transactions on Education, vol. 51, no. 2, pp.

195 - 200, 2008.

 [4] Cosma, G., Joy, M., 2008. Towards a definition of source-code

plagiarism. IEEE Trans. Edu. 51 (2), 195–200.

[5] Kustanto, C., Liem, I., 2009. Automatic source code plagiarism

detection. In: 2009 10th ACIS International Conference on

Software Engineering, Artificial Intelligences, Networking and

Parallel/Distributed Computing. IEEE, pp. 481–486.

[6] Rabbani, F.S., Karnalim, O., 2017. Detecting source code

plagiarism on .NET programming languages using low-level

representation and adaptive local alignment. J. Inf. Org. Sci. 41 (1),

105–123.

[7]nLancaster, T., Culwin, F., 2004. A comparison of source code

plagiarism detection engines. Comput. Sci. Edu. 14 (2), 101–112.

[8] V. Anjali, T. R. Swapna and B. Jayaraman, "Plagiarism Detection

for Java Programs without Source Codes," in The International

Conference on Information and Communication Technologies,

Kochi, 2014.

[9] A. Cuomo, A. Santone and U. Vilano, "A novel approach based on

formal methods for clone detection," in The 6th International

Workshop on Software Clones, 2012.

[10] Stamatatos, E. (2011). Plagiarism detection using stop word

n_grams. Journal of the American Society for Information Science

and Technology, 62(12), 2512-2527.

[11] Stein, B., Lipka, N., &Prettenhofer, P. (2011). Intrinsic plagiarism

analysis. Language Resources and Evaluation, 45(1), 63-82.

[12] Alzahrani, S., &Salim, N. (2010). Fuzzy semantic-based string

similarity for extrinsic plagiarism detection. Braschlerand Harman.

[13] Gillium, J. (2015). Big data etbibliothèques: traitement

etanalyseinformatiques des collections numériques

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 417

[14] Banjade, R., Maharjan, N., Gautam, D., &Rus, V. (2016).DTSim

at SemEval-2016 Task 1: Semantic Similarity Model Including

Multi-Level Alignment and Vector-Based Compositional

Semantics. Proceedings of Sem Eval, 640-644.

[15] A. Flint, S. Clegg, and R. Macdonald. Exploring staff perceptions

of student plagiarism. Journal of Further and Higher Education,

30:145–156, 2006.

[16] P. Keith-Spiegel, B. G. Tabachnick, B. E. Whitley, and J.

Washburn. Why professors ignore cheating: Opinions of a national

sample of psychology instructors. Ethics and Behavior, 8(3):215–

227, 1998.

[17] W. B. Croft, and D. J. Harper. Using probabilistic models of

document retrieval without relevance information. J.

Documentation, 35(4): pp. 285-295, 1979

[18] Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for

cancer classification using support vector machines. Machine

Learning, 46(1-3):389–422, 2002.

[19] L. De Castro, F. J. Von Zuben, ‘The CSA with engineering

applications,’GECCO 2000, Workshop Proceedings, Workshop on

Artificial Immune Systems and Their Applications, Las Vegas,

USA, 2000, 36-37.

[20] L. N. De Castro, F. J. Von Zuben, ‘Learning and Optimization

Using the Clonal Selection Principle,’IEEE Transactions on

Evolutionary Computation, Vol. 6, No. 3, June 2002, pp. 239-251.

[21]. Forrest, S. et al.: Using genetic algorithms to explore pattern

recognition in the immune system. Evol. Compute. 1, 191–211

(1993).

[22]. Jennifer A. White, Simon M. Garrett: Improved Pattern

Recognition with Artificial Clonal Selection? ICARIS 2003, LNCS

2787, Springer-Verlag Berlin Heidelberg 2003. 181-193(2003).

[23] Jinhyun Kim, HyukGeun Choi, Hansang Yun, Byung-Ro Moon,

“Measuring Source Code Similarity by Finding Similar Sub graph

with an Incremental Genetic Algorithm”, In Proceeding of the

Genetic and Evolutionary Computation Conference, pp. 925-932,

ACM, 2016.

[24] M.Bhavani, Prof K.Thammi Reddy, Prof P.Suresh Varma, “An

Iterative Genetic Algorithm Based Source Code Plagiarism

Detection Approach Using NCRR Similarity Measure”, Journal of

Theoretical and Applied Information Technology, 2018.

[25] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component

analysis (gpca). IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 27, no. 12, pp. 1945-1959, 2005.

[26] Vanita Jain, Aarushi Jain, Achin Jain, Arun Kumar Dubey,

“Comparative Study between FA, ACO, and PSO Algorithms for

Optimizing Quadratic Assignment Problem”, International Journal

of Scientific Research in Computer Science and Engineering,

Vol.6, Issue.2, pp.76-81, 2018.

[27] S.Arora, P. Shukla, N. Karankar, "Community Structure Detection

in Social Networking Data Using Text Mining Approach",

International Journal of Scientific Research in Computer Science

and Engineering, Vol.5, Issue.4, pp.9-15, 2017

Author’s Profile

M.Bhavani pursuing her Ph.D in the area of

"Data mining" in the Dept. of CSE, JNTUK

.She is having teaching experience of 15

years.

Dr. K. Thammi Reddy, currently working as

the Head of the Department of CSE at Gandhi

Institute of Technology (GITAM) University,

Visakhapatnam. He is having vast experience

in teaching, Research, Curriculum Design

and consultancy. His research areas include

Data warehousing and Mining, Distributed computing, etc.

 Dr. P Suresh Varma Working as a Professor

of Computer Science and Engineering,

Faculty of Engineering and Technology,

Adikavi Nannaya University. He has

supervised the research work of a number of

Ph.D and M.Phil scholars and published and

lectured extensively on Communication Networks, Data

mining, Cloud Computing, Big Data and Image Processing. In

2010 Government of Andhra Pradesh honored with Best

Teacher Award in the occasion of Teacher Day. Domain of

Research: Technology Trends,Communication,Software

Engineering and Quality,3G/4G Network Evolutions, Big

Data, Big data analytics for security, Cloud Computing,

Communication Protocols, Computer Networks, Data

Science, Databases.

