

 © 2018, IJCSE All Rights Reserved 424

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-8, Aug 2018 E-ISSN: 2347-2693

Improvisation in Efficiency of Apriori Algorithm for Mining Frequent

Itemsets

D. Datta
1*

, M.P. Dutta
1
, R. Mukherjee

2

1
Department of Computer Science, St. Xavier’s College (Autonomous), Kolkata, India

2
 A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata, India

*Corresponding Author: debabrata.datta@sxccal.edu

Available online at: www.ijcseonline.org

Accepted: 13/Aug/2018, Published: 31/Aug/2018

Abstract— Association rule mining is a procedure which is meant to find frequent patterns from data sets found in various

kinds of databases such as relational databases, transactional databases, etc. It has a great importance in data mining. Extracting

relevant information from a huge collection of data by exploitation of data is called data mining. There is an increasing need of

data mining by business people to extract valid and useful information from large datasets. Thus, data mining has its

importance to discover hidden patterns from huge data stored in databases as well as data warehouse. Apriori algorithm has

been one of the key algorithms in association rule mining. Classical Apriori algorithm is inefficient as it takes considerable

amount of time to generate the desired output for mining the frequent itemsets owing to multiple scans on the database. In this

research paper, a method has been proposed to improve the efficiency of Apriori algorithm by reducing the size of the database

as well as reducing the time complexity for scanning the transactions.

Keywords—Itemsets, Apriori algorithm, Association rule mining, Minimum support

I. INTRODUCTION

Apriori

algorithm proceeds by identifying the frequent

individual items in the database and extending them to larger

and larger item sets as long as those item sets appear

sufficiently often in the database [2]. The frequent item sets

determined by Apriori can be used to determine association

rules which highlight general trends in the database [12].

This algorithm has applications in domains related to market

basket analysis. Data volumes are dramatically increasing by

day-to-day activities, especially in the areas involving e-

commerce [7]. Therefore, mining the association rules from

massive data is in the interest for many industries as these

rules help in decision-making processes, market basket

analysis and cross marketing etc.

The algorithm proposed in this research paper in order to

improve the efficiency of existing Apriori algorithm would

be of considerable help in applications which require mining

of huge datasets. It aims to overcome the following

limitations of the traditional Apriori algorithm:

 Handling of large number of candidate and frequent

itemsets resulting in increased cost and wastage of time

 Inefficiency in terms of memory requirement when large

numbers of transactions are in consideration

The main objectives are to obtain quick outputs by

optimizing the execution time, to reduce the search time, that

is, the time taken to search for a data item by scanning the

transactions and to reduce the time taken for generating the

frequent itemsets. The improved algorithm would find its

applications in various fields which involve dealing with

huge collection of data like searching contents from the web

etc. Second section discusses about some relevant work done

in the concerned field. The proposed method has been put

forward in the third section and the subsequent section has

discussed about the results obtained. Finally, a concluding

section has been added to make a point on the limitation of

the proposed method and the corresponding scope of

improvement.

II. RELATED WORK

Association rule problems have been in discussion from

1993 and many researchers have worked on it to optimize the

original algorithm [1]. Many approaches have been proposed

in past to improve Apriori algorithm but the core concept of

the algorithm remained the same [3]. All the algorithms or

methods used to improve the original Apriori algorithm have

aimed at producing the same results which the original

algorithm had produced but in an efficient and less

cumbersome manner, consuming much less time. Another

method which has been proposed for optimizing the

algorithm was by designing a matrix based algorithm which

had involved a bottom up approach and had improved the

performance of the existing algorithm by reducing the

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 425

execution time but had involved an overhead to manage the

new database after every matrix generation [8]. Another

approach might be division of large database among

processors [9]. A fourth technique called Double Pruning

method had pruned Lk-1 before Ck came out, where Lk-1 was

the large itemset containing (k-1) items and Ck was the

candidate set having k items. For large datasets this method

could save time and cost and also could increase the

efficiency [14]. Yet another approach of improving the

algorithm was by using temporary tables for scanning the

transactions in the database. This methodology had involved

logarithmic decoding, low system overhead and good

operating performance and had efficiency higher than the

existing Apriori algorithm [6]. Likewise there have been

several other approaches which have been proposed to

improve classical Apriori algorithm. In this paper, one

method of improving the algorithm has been proposed and

generating the candidate itemset in each iteration. The

method has been discussed in the following section. The

main focus on the newly proposed method has been on a

reduced time for generation of the itemset. The fourth section

has demonstrated the results obtained after applying the new

method on a dataset.

III. PROPOSED METHOD

To improve Apriori algorithm efficiency, the proposed

research work has given the main focus on reducing the time

consumed for generating a candidate set, i.e., candidate-k

(Ck) generation. In the process to find frequent itemsets, at

first the size of a transaction (ST) has been found for each

transaction in the database and has been maintained. Now,

frequent-1 itemset (L1) has been found and this set contains a

of items, support value for each item and transaction ids

containing the item. L1 has been used to generate frequent-2

itemset (L2), frequent-3 itemset (L3) and so on along with

decreasing the database size so that the time can reduce to

scan the transaction from the database. To generate Ck(x, y)

(items in Ck are x and y), Lk-1 has been joined with itself. To

find L2 from C2 (candidate-2 itemset), instead of scanning

complete database and all transactions, transactions with ST

< k (where k is 2, 3,…) have been removed and also the

deleted transactions from L1 have been removed as well. This

has helped in reducing the time to scan the infrequent

transactions from the database. The minimum support from x

and y has been found and the transaction ids of minimum

support count item have been obtained from L1. After that,

Ck was scanned for specific transactions as mentioned and

from the decreased database size. Then, L2 has been

generated by C2 where support of Ck >= min_supp.

Similarly, C3(x, y, z), L3 and the subsequent sets have been

generated repeating above steps until no frequent items sets

can be discovered.

The process mentioned in the previous paragraph is depicted

through a flowchart as given next:

Scan the transaction database to get the size of each transaction (ST)

Find frequent-1 itemset (L1)

Scan the transaction database to get transaction ids containing item

for each item in L1

Do Lk-1 * Lk-1 to generate Ck

Find all transactions (txn_set) for ST=k-1

Delete txn_set from database

Delete txn_set from L1

For each itemset in Ck, find item (I) having minimum support using L1.

For each T, scan database for T, support=support+1

Get transaction (T) using item (I) from L1

Add to frequent-k itemset

For each frequent set L, generate all non-empty subsets of L

For each frequent subset s of L, find confidence c of S

Scan Ck

Is ST=k-1?

For each itemset, does T

exist?

Itemset exists?

Is S>=min_sup?

Generated set=null?

c>=min. confidence?

Stop

Yes

No

Yes

Figure 1: Steps of Proposed Apriori Algorithm

No

Yes

No

No

Yes

Yes

No

Yes No

Start

Add to strong rules

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 426

Accordingly, the improved Apriori algorithm has been

designed and is stated below in the form of a pseudocode:

Algorithm Improved_Apriori

Input: transactions database, D

 minimum support, min_sup

Output Lk: frequent k-itemsets in D

To find ST //for each transaction in database (DB)

L1←find frequent_1_itemset (D)

L1+=get_txn_ids(D)

for (k=2; Lk-1≠Φ; k++){

Ck=generate_candidate (Lk-1)

x= item_min_sup(Ck, L1) //find item from Ck(a, b) which has

minimum support using L1

target =get_txn_ids(x) //get transactions for each item

for each (txn t in tgt) do{

Increment Ck.count by 1

Lk=items in Ck which are greater than min_sup

} //end of for each

for each(txn in D){

if(ST=(k-1))

txn_set+=txn

 //end of for

delete_txn_DB(txn_set) //reduce DB size

delete_txn_L1(txn_set, L1) //reduce transaction size in L1

} //end for

A comparative analysis between the traditional Apriori

algorithm and the one proposed in this paper shows that for

generating frequent-1 itemsets, i.e., when k=1, both the

algorithms scan equal number of transactions. However, as

the value of k increases, the number of transactions scanned

decreases in the case of the improved algorithm. In other

words, for generating frequent-k itemsets (where k>=2) there

occurs a significant difference in the number of transactions

scanned by the two algorithms thus concluding that the

proposed method is better than the existing one in terms of

efficiency as it requires to scan much lesser transactions.

IV. RESULTS AND DISCUSSION

The proposed method has been implemented on a 32-bit

machine having 4 GB RAM and Intel(R) Core(TM) i5-

3210M as its processor with the processor speed being 2.50

GHz. The operating system used was Windows 7 Ultimate.

The software tool used was Java using jdk 1.8.0_121.

To test the algorithm, a transaction table (D) having 10

transactions was used. Table 1 shows the transaction table.

The minimum support value, min_sup was 3. The size of the

transaction (ST) was calculated for each transaction and was

shown in the table.

Table 1. Transaction table

Transaction Items ST

T1 A, C, G 3

T2 B, C, G 3

T3 A, B, C 3

T4 B, C 2

T5 B, C, D, E 4

T6 B, C 2

T7 A, B, C,

D, F
5

T8 B, C, D, F 4

T9 A 1

T10 A, C 2

All the transactions were scanned to get frequent 1-itemset,

L1 which contained items, respective support count and

transactions from D. Infrequent candidates, that is, the

itemsets whose support count values were less than the

minimum support count value, min_sup were removed for

further processing. These results are shown in the following

two tables, table 2 and table 3.

Table 2. Candidate 1-itemset (C1)

Item Support

A 5

B 7

C 9

D 3

E 1

F 2

G 2

From table 2, it is observed that the last three rows contain

items having support count value less than the required

minimum supper value and hence they are not considered for

any further processing.

Table 3. Frequent 1-itemset (L1)

Item Support Transactions

A 5 T1, T3, T7, T9, T10

B 7 T2, T3, T4, T5, T6, T7, T8

C 9 T1, T2, T3, T4, T5, T6, T7, T8,

T10 D 3 T5, T7, T8

E 1 T5

F 2 T7, T8

G 2 T1, T2

Accordingly, table 3 stores the frequent 1-itemset with the

last three rows not considered for the next iteration.

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 427

From L1, frequent-2-itemset (L2) has been generated. The

following example depicts the process. Considering itemset

{A, B}, in classical Apriori algorithm, all the transactions are

to be scanned to find {A, B} in D but in this proposed idea,

at first, transaction T9 is deleted from D as well as from L1 as

ST for T9 is less than k (k=2). New D and L1 are shown in

table 4 and table 5 respectively. Secondly, {A, B} is split

into {A} and {B} and item with minimum support, that is,

{A} is selected using L1 and its transactions will be used in

L2. So, {A, B} will be searched only in transactions which

contain {A} i.e. T1, T3, T7, T10. Hence, the searching time is

reduced in twofold way:

a) by reducing the database size

b) by cutting down the number of transactions to be scanned

Table 4. Updated transaction table

Transaction Items ST

T1 A, C, G 3

T2 B, C, G 3

T3 A, B, C 3

T4 B, C 2

T5 B, C, D, E 4

T6 B, C 2

T7 A, B, C,

D, F
5

T8 B, C, D, F 4

T9 A 1

T10 A, C 2

As stated before, from table 4, it is observed that T9 would

not be considered for further processing.

Table 5. Frequent 1-itemset

c Support Transactions

A 5 T1, T3, T7, T9, T10

B 7 T2, T3, T4, T5, T6, T7, T8

C 9 T1, T2, T3, T4, T5, T6, T7, T8,

T10 D 3 T5, T7, T8

For item A, T9 is removed for the reason stated above.

From table 6, it is clear that the first row and the third row

should be deleted as they don’t satisfy the minimum support

value condition.

Table 6. Updated Frequent 2-itemset

Item Support Min Transactions

A, B 2 A T1, T3, T7,

T10 A, C 4 A T1, T3, T7,

T10 A, D 1 D T5, T7, T8

B, C 7 B
T2, T3, T4,

T5, T6, T7,

T8 B, D 3 D T5, T7, T8

C, D 3 D T5, T7, T8

To generate frequent-3-itemset (L3), D is updated by deleting

transactions T6 and T10 from table 4 as ST values for these

transactions are less than k (k=3). L1 is also updated

accordingly by deleting transactions T6 and T10. Then,

repeating above process, L3 is generated and infrequent

itemsets are deleted. Table 7, table 8 and table 9 show the

updated database, L1 and L3 respectively.

Table 7. Updated transaction table

Transaction Items ST

T1 A, C, G 3

T2 B, C, G 3

T3 A, B, C 3

T4 B, C 2

T5 B, C, D, E 4

T7 A, B, C,

D, F
5

T8 B, C, D, F 4

Table 8. Updated Frequent 1-itemset

Item Support Transactions

A 5 T1, T3, T7

B 7 T2, T3, T4, T5, T7, T8

C 9 T1, T2, T3, T4, T5, T7, T8

D 3 T5, T7, T8

Table 9. Frequent 3-itemset

Item Support Min Transactions

A, B, C 2 A T1, T3, T7

A, C, D 1 D T5, T7, T8

B, C, D 3 D T5, T7, T8

As described above, from table 9, the first two rows would

be deleted and accordingly the final L3 would contain only

itemset {B, C, D}.

In this way, the above method is followed to find a frequent

k-itemset from any transaction list.

V. CONCLUSION AND FUTURE SCOPE

In this paper, the original or classical Apriori algorithm

which has been used for mining frequent itemsets in a

database has been modified to improve its performance

efficiency. The modified version of the algorithm has given

output at a faster rate and has involved less searching time

and less number of scanning of the database.

The major objectives of designing the modified algorithm are

to obtain quick outputs by minimizing the execution time, to

reduce the search time and to reduce the time taken to

generate the frequent itemsets.

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 428

The improved algorithm can be used in various technical

fields to process large quantities of data in a quick and

efficient manner. It can be used in internet search, digital

advertisements, recommender systems, image recognition

and various other fields.

 Some of the proposed ideas related to the improvement

of Apriori has been discussed in this research paper and the

working of the improved algorithm has been explained by

considering a randomly generated transaction database. The

overall applicability of the proposed method can be further

enforced if used with any real life transactions like in the

field of e-commerce applications.

REFERENCES

[1] J. Han, M. Kamber, “Conception and Technology of Data

Mining”, China Machine Press, China, 2007.

[2] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, “From data mining to

knowledge discovery in databases”, Vol 17, Issue 3, AI magazine,

pp. 37-54, 1996.

[3] S. Rao, R. Gupta, “Implementing Improved Algorithm over

APRIORI Data Mining Association Rule Algorithm”,

International Journal of Computer Science And Technology,Vol 3,

Issue 1, pp. 489-493, 2012.

[4] H. H. O. Nasereddin,“Stream data mining”, International Journal

of Web Applications, Vol 1, Issue 4, pp. 183–190, 2009.

[5] M. Halkidi, “Quality assessment and uncertainty handling in data

mining process”, In Proceedings of EDBT Ph.D. Workshop,

Germany, 2000.

[6] R. Agarwal, R. Srikant, “Fast Algorithm for mining association

rules”, In Proceedings of 20
th
 VLDB Conference, pp 487-499,

1994.

[7] Sakshi Aggarwal, Ritu Sindhu, “An Approach of Improvisation in

Efficiency of Apriori Algorithm”, In Proceedings of International

Journal of Computer and Communication System Engineering,

Vol 2, Issue 5, pp. 659-664, 2015.

[8] S. Kumar , S. Karanth , A. Prabhu, and B. Kumar , “Improved

Apriori Algorithm Based On Bottom Upapproach Using

Probability And Matrix”,IJCSI,2012.

[9] F. H. AL-Zawaidah, Y. H. Jbara, A. L. Marwan, “An Improved

Algorithm for Mining Association rules in Large

Databases”,World of Computer Science and Information

Technology, Vol 1, Issue 7, pp. 311-316, 2011.

[10] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H.

Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M.

Steinbach, D. J. Hand, D. Steinberg, “Top 10 algorithms in data

mining,”, Knowledge and Information Systems, Vol 14, Issue 1,

pp. 1–37, 2007.

[11] F. Crespo, R. Weber, “A methodology for dynamic data mining

based on fuzzy clustering”, Fuzzy Sets and Systems, Vol 150,

Issue 2, pp. 267–284, 2005.

[12] R. Agrawal, T. Imielinski, A. Swami, “Mining association rules

between sets of items in large database,”, In Proceedings of ACM

SIGMOD International Conference on Management of Data, Vol

22, Issue 2, pp. 207–216, 1993.

[13] R. Bhaskar, S. Laxman, A. Smith, A. Thakurta, “ Discovering

frequent patterns in sensitive data”, In Proceedings of ACM

SIGKDD International Conference on Knowledge Discovery and

Data Mining, , pp. 503-512, 2010.

[14] B. Vo, M. Chi, H. C. Minh, “Fast Algorithm for Mining

Generalized Association Rules”, International Journal of Database

Theory and Application, Vol 2, Issue 12, pp. 161–180, 1994.

Authors Profile

Mr. D Datta pursued Master of Technology

from University of Calcutta, India and he is

currently pursuing his Ph.D. in Technology

from the same university. He is an Assistant

Professor in the department of Computer

Science, St. Xavier’s College (Autonomous), Kolkata, India

He is a life member of IETE. He has published more than 20

research papers in reputed international journals and

conferences His main research work focuses on Data

Analysis. He has more than 10 years of teaching experience

and has more than 4 years of Research Experience.

Mr. M. P. Dutta pursued his B.Sc. in Computer

Science from St. Xavier’s College

(Autonomous), Kolkata, India and is currently

doing his Masters in Computer Science from the

same institute.

Miss R. Mukherjee pursued her B.Sc. in

Computer Science from St. Xavier’s College

(Autonomous), Kolkata, India and is currently

doing her Master in Computer Application from

University of Calcutta, Kolkata.

