

 © 2018, IJCSE All Rights Reserved 424

International Journal of Computer Sciences and Engineering Open Access

 Review Paper Vol.-6, Issue-6, June 2018 E-ISSN: 2347-2693

A Review: Reliability Evaluation of Interlocking Software based on NHPP

model

Nishi
1
, Dinesh Kumar

2

1,2

Computer Science, Shri Ram Collage of Engineering and Management, MDU, FARIDABAD, INDIA

Available online at: www.ijcseonline.org

Accepted: 03/Jun/2018, Published: 30/Jun/2018

Abstract- Software reliability is one of the main factors to measure the quality of software. Since software errors cause

spectacular failures in some cases, we need to measure the reliability factor to determine the quality of software product,

predict reliability in the future, and use it for planning resources needed to fix failures. Software reliability models are

applicable tools to analyze software in order to evaluate the reliability of software. During the past twenty five years, more than

fifty different models have been proposed for estimating software reliability but many of software practitioners do not know

how to utilize these models to evaluate their products. In this paper we will present a survey on different models of software

reliability and their characteristics.

Keyword: Reliability Prediction, Non-Homogeneous Poisson Process, Failure Intensity

I. Introduction

Software reliability is defined as the probability of failure

free software operation for a specified period of time in a

specified environment (Musa 1980). Software reliability

modeling has gained a lot of importance in many critical and

daily life applications, which has led to a tremendous work

being carried out in the field of software reliability modeling.

Software reliability growth models (SRGMs) successfully

have been used for estimation and prediction of the number

of errors remaining in the software (Goel and Okumoto 1979;

Littlewood 1979; Musa 1980, 1998; Norman 1997; Lyu

2005; Kapur et al. 1999, 2010; Pham 2006). The software

practitioners and potential users can assess the current and

future reliability through software testing using these

SRGMs. In past four decades, the classical models have

remained one of the most attractive reliability growth models

in monitoring and tracking reliability improvements (Musa

2005, 2007; Pham 2006). Classical models are the NHPP

based models that have been widely applied successfully in

many real-life applications for estimation and prediction of

software reliability such as Musa-basic model, Musa–

Okumoto model, Littlewood– Verral model, Goel–Okumoto

model. Alternatively, some traditional statistical methods

such as maximum likelihood estimation (MLE), least square

estimation (LSE), analysis of variance (ANOVA), linear

regression analysis (LRA) and logistic regression have also

been applied for software reliability estimation and prediction

(Kohavi 1995; Phillip 2003). The major challenges of these

models do not lie in their technical soundness, but their

validity and applicability in real world projects particularly in

web-based systems. On the other hand, learning and

generalization capabilities of artificial neural networks

(ANNs), and its proven successes in complex problem

solutions has made it a viable alternative for predicting

software failures during the testing phase (Karunanithi et al.

1992). The main advantage of ANN and other machine

learning methods over NHPP based models is that it requires

only past failure data as inputs, and less assumption required

for modeling complex failure phenomena of software.

Machine learning is an approach concerned with the design

and development of algorithms that allow computers to

evolve the system behavior based on past and present failure

data of software. Thus machine learning techniques are

focused on learning automatically, recognizing complex

patterns and making intelligent decisions based on past data.

So that a machine is able to learn whenever it changes its

structure, program, or data based on its inputs or in response

to the external information in such a manner that it’s expected

future performance improves significantly (Kohavi 1995).

Thus it is quite natural for software practitioners and

researchers to know that which particular method tends to

work well for a given failure dataset and up to what extent

quantitatively (Aggarwal et al. 2006; Goel and Singh 2009;

Singh and Kumar 2010a, b, c).

 Here we conduct an empirical study of machine learning

methods such as ANNs, SVMs, CCNN, DTs and fuzzy

inference system (FIS) for the prediction of software

reliability in order to draw stronger conclusions leading to

widely accepted and well-formed theories. In this paper we

briefly investigate and focus on three main issues: (i) How

accurately and precisely do the machine learning based

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 425

models predict the reliability of software product at any point

of time during testing phase? (ii) Is the performance of SVMs

and DTs better than CCNN and ANNs using back

propagation network (BPN), radial basis function network

(RBFN) and Elman network models? (iii) Correlate between

SVMs and DTs for software reliability prediction since their

performance varies when applied to past failure data in a

realistic environment.

A. Software Reliability Definition

Musa and Okumoto in 1984 defined software reliability as

the “probability of failure free operation of a computer

program in a specified environment for a specified period of

time.” NASA Software Assurance Standard, NASA-STD-

8739.8 [7], defines software reliability as a discipline of

software assurance that (Fig.1):

1. Defines the requirements for software controlled system

fault/failure detection, isolation, and recovery;

2. Reviews the software development processes and products

for software error prevention and/or reduced functionality

states; and,

3. Defines the process for measuring and analyzing defects

and defines/derives the reliability and maintainability factors.

Figure (1) Software reliability definition from

NASA Software Assurance Standard view as mentioned in

NASA Software Assurance Standard, software reliability

process consists of three main phases which are extended

through the whole software life-cycle process. Define reliable

requirements in initial phases of software lifecycle, review

whole software process to prevent potential errors, and

present some techniques to measure and analyze defects in

software. In this paper we suppose that software process

already supports the first and second phases and we try to

study and categorize the techniques in the third section. In

this research work, everywhere we talk about software

reliability models we mean the models which can measure

and analyze the defects in software to achieve two goals:

representation of software reliability situation at present and

estimation of software reliability condition in future.

Modeling the failure process in a piece of software is a very

challenging exercise partially because of the diverse and

interlocking nature of faults that may exist and the methods

that may be used to detect or discover them [1]. Software

reliability models are used to achieve the quality of software

and also to plan for resources needed to fix the problems in

the maintenance phase. They have been used as the most

important and successful predictor of software quality when it

hits the market. In general, most of these reliability models

use independent variables and show their modeling results in

two-dimensional diagrams based on these independent

variables.

 Typical scopes of measurement (X axis) in reliability

model diagrams include: 1- Calendar time (days of testing),

2- Cumulative testing effort (hours of testing); 3- Computer

execution time (e.g. number of CPU hours). And typical

dependent variables (Y) include: 1- Number of defects found

per life cycle phase or total number ever, 2- Failure rate over

time, 3- Cumulative number of failures over time, 4- Time

between failures.

B. NHPP MODEL (Non Homogeneous Poisson

Processes)

Software reliability is one of the important metrics for

software quality assessment. The most commonly used

models in the reliability analysis of software are the Non

Homogeneous Poisson Processes (NHPPs) which are based

on the assumption that the errors or bugs which have been

incorporated in the software during the development phase,

are removed during the testing phase. A great deal of research

efforts in the past has been focused on modeling the software

reliability growth during the testing phase. These reliability

models which are referred to as black box models, treat the

software as a whole; considering its interactions only with the

external environment, without regarding the internal structure

of the software. These models are based on the stochastic

modeling of the failure process, assuming a parametric model

of cumulative number of failures over a finite time interval.

II. Litrature Survey

Several authors have studied various software release

problems in different scenarios. Chin-Yu et al studied optimal

allocation of testing resource considering cost, reliability and

testing effort [18]. Dai et al studied optimal testing resource

allocation with generic algorithm for modular software

systems [19]. Gokhale et al studied incorporating fault

debugging activities into software reliability models [20].

Jain et al discussed optimal release policies for software

reliability growth model (SRGM) with maintenance costs

[21]. Jain and Priya proposed the optimal policies for

software release time by employing a Delayed S-shaped

model for software reliability growth [22]. They followed the

white-box approach for analyzing. Kimura et al. analyzed the

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 426

software release problems with warranty cost and reliability

requirement [23]. Prasad et al studied measurement of

software reliability using Sequential Bayesian technique [24].

Quadri et al studied software optimal release policy and

reliability growth modeling [25]. Quadri and Ahmad studied

software reliability growth modeling with new modified

weibull testing the software reliability. [26]. Worwa et al

studied a discrete-time software reliability growth model and

its applications for predicting the number of errors encounter

during program testing [27]. Yamada and Osaki determined

an optimal software release policy for a non-homogeneous

software error detection rate model [28].

III. Fault Prediction Techniques

1). Decision Tree: Decision trees are great and standard tools

for classification and prediction. It produces classifiers in a

form of structure of tree where each leaf node represents

decision node. In this technique, classification starts from

root of the tree and continues to move down until leaf node is

reached. Classification helps in classifying faulty and non-

faulty modules. Prediction helps in predicting faulty and non-

faulty modules. Decision tress helps in developing fault

prediction models that predicts faults.

2). Neural Network: Neural Network helps in recognizing

patterns from the data set. An artificial neural network is

composed of many artificial neurons that are interconnected

together according to specific network architecture. The goal

of the neural network is to transform the inputs into

meaningful outputs. Adaptive Resonance Neural Network is

generally used for defect prediction in software systems. It

helps in identifying faulty modules very excellently. The

benefit of using this technique is that it assists in decreasing

effort and cost of developing software.

3). Density based clustering approach: Density Based

Clustering is a clustering algorithm. It can be used to estimate

the number of faulty and non-fault modules in software

system. Clusters are defined as areas of higher density.

Following are the parameters used in this: Eps: supreme

radius of the nighbourhood MinPts: least possible number of

points in an Eps-neighbourhood of that point.

4). Bagging method: It creates base learners on many data

subsets that are uniformly sampled from the original data, and

then uses a linear combination to aggregate them. It is also

referred as Bootstrap Aggregating. Combination technique

can be majority voting. It also helps in identifying faulty and

non-faulty modules with data sets that suffers from imbalance

problem. This method can increase the performance of the

defect data predictions.

5). Naïve Bayes: It is a classifier based on Bayes theorem

used in software fault prediction. It resolves the several

difficulties like spam classification (to predict whether email

is spam or not), medical diagnosis (given list of symptoms,

predict whether patient has cancer or not) and so on. This

method can be used to predict faulty and non-faulty modules.

IV. Challenges In Software Reliability

The evolution of computer technology is creating for safety-

critical systems new challenges and different types of failure

modes. Modern computer processors are often delivered with

errors, while intelligent hardware subsystems may exhibit

nondeterministic behaviour. Operating systems and

programming languages are becoming increasingly

complicated and their implementations less trustworthy. In

addition, component-based multi-tier software system

architectures exponentially increase the number of failure

modes, while Internet connectivity exposes systems to

malicious attacks. Finally, IT outsourcing and blind reliance

on standards can provide developers with a false sense of

security. Planning in advance for the new challenges is as

important as embracing the new technology. Although there

have been a lot of researches on software reliability growth

models, the problem that limited considerations of imperfect

debugging phenomenon in the existing models is still not

solved.

Despite the important advances made over the last decades in

the area of software engineering and the successful realisation

of many safety-critical software systems, the evolution of

computer technology is creating new challenges and different

types of failure modes.

Modelling the failure process in a piece of software is a very

challenging exercise (partially because of the diverse and

interlocking nature of faults that may exist and the methods

that may be used to detect or discover them).

V. Application of software reliability model

Software reliability is one of the most important

characteristics of software quality. Its measurement and

management technologies during the software life-cycle are

essential to produce and maintain quality/reliable software

systems. In this paper, we discuss software reliability

modeling and its applications. As to software reliability

modeling, hazard rate and NHPP models are investigated

particularly for quantitative software reliability assessment.

Software reliability is an important component in critical

business applications. Developing reliable software is very

difficult because there is interdependence among all the

software modules as of existing software. This is also very

difficult to find out whether the software being delivered is

reliable or not. The users or customer feedback i.e. problem

reports, system outages, complaints or compliments indicate

the reliability of any software product.

VI. Conclusion

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 427

In this paper, we studied various techniques (like decision

tree, neural network, naïve Bayes and so on) to predict faults

in software systems. The main aim is to review the

performance of different techniques in software fault

prediction. Fault prediction using these techniques helps in

improving the quality of the software. The fault prediction in

software is significant because it can help in directing test

effort, reducing cost, and increasing quality of software and

its reliability.

References

[1] Musa JD (1980) Software life cycle empirical/experience data, data

& analysis center for software. Available at http://www.dacs.org.

Accessed 17 Sep 2010

[2] Goel AL, Okumoto K (1979) Time-dependent fault detection rate

model for software and other performance measures. IEEE Trans

Reliab 28(3):206–211

[3] Littlewood B (1979) Software reliability model for modular

structure. IEEE Trans Reliab 28(3):241–246

[4] Musa JD (1998) More reliable, faster, cheaper testing with software

reliability engineering. Softw Qual Prof 1(1):27–37

[5] Norman F (1997) Application of software reliability engineering for

NASA space shuttle. International Symposium on Software

Reliability Engineering (ISSRE) 1:71–82

[6] Kapur PK, Garg RB, Kumar S (1999) Contributions to hardware &

software reliability. World Scientific, Singapore

[7] Kapur PK, Gupta A, Jha PC, Goyal SK (2010) Software quality

assurance using software reliability growth modelling: state of the

art. Int J Bus Inf Syst 6(4):463–496

[8] Musa JD (2005) Software reliability engineering: making solid

progress. Softw Qual Prof 7(4):5–16

[9] Pham H (2006) System software reliability. Springer, London

[10] Kohavi R (1995) The power of decision tables. In: The eighth

european conference on machine learning (ECML-95), Heraklion,

Greece, pp 174–189

[11] Phillip S (2003) DTReg predictive modeling software available at

http://www.dtreg.com. Accessed 8 Jan 2011

[12] Karunanithi N, Whitley D, Malaiya Y (1992) Prediction of software

reliability using connectionist models. IEEE Trans Softw Eng

18(7):563–574

[13] Aggarwal KK, Singh Y, Kaur A, Malhotra R (2006) Investigating

the effect of coupling metrics on fault proneness in object-oriented

systems. Softw Qual Prof 8(4):4–16

[14] Goel B, Singh Y (2009) An empirical analysis of metrics. Softw

Qual Prof 11(3):35–45

[15] Singh Y, Kumar P (2010a) A software reliability growth model for

three-tier client–server system. Int J Comp Appl 1(13):9–16. doi:

10.5120/289-451

[16] Singh Y, Kumar P (2010b) Determination of software release

instant of three-tier client server software system. Int J Softw Eng

1(3):51–62

[17] Singh Y, Kumar P (2010c) Application of feed-forward networks

for software reliability prediction. ACM SIGSOFT Softw Eng

Notes 35(5):1–6

[18] Chin-Yu Huang, Sy-yen Kuo, Lyu, M.R., 2004, Optimal allocation

of testing resource considering cost, reliability and testing effort.

10th Pacific Rim International Symposium on Dependable

Computing, 2004, 103-112.

[19] Dai Y., Xie M., Poh K. and Yang B., 2003, Optimal testing

resource allocation with generic algorithm for modular software

systems, Journal of Systems and software, 66, 1, 47-55.

[20] Gokhale S.S., Lyu N. and Trivedi K., 2006, Incorporating fault

debugging activities into software reliability models: A simulation

approach, IEEE transactions on reliability, 55, 2, 281-292.

[21] Jain M. Maheshwari S. and Priya K., 2005, Optimal release policies

for software reliability growth model (SRGM) with maintenance

costs, Journal of ICT, l4, 99-115.

[22] Jain, M. and Priya, K., 2002, Optimal policies for software testing

time, Computer Society of India, 32,3, 25-30.

[23] Kimura, M., Toyota, T. and Yamada, S.,1999, Economic analysis

of software release problems with warranty cost and reliability

requirement, Reliability Engineering and System Safety, 66, 49-55.

[24] Prasad L., Gupta A. and Badoria S., 2009, Measurement of

Software reliability using Sequential Bayesian Technique,

Proceedings of the world congress on Engineering and Computer

Science, 11, 242-246.

[25] Quadri S., Ahmad N. and Peer M., 2008, Software optimal policy

and reliability growth modeling, Computation for national

development, 2008, 247-256.

[26] Quadri S.M.K. and Ahmad N., 2010, Software Reliability Growth

Modeling with new modified Weibull testing effort and optimal

release policy, International Journal of Computer Applications, 6

,12

[27] Worwa K., 2005, A discrete-time software reliability growth model

and its applications for predicting the number of errors encountered

during program testing, Control and Cybernetics, 34, 2, 589-606.

[28] Yamada, S. and Osaki, S., 1986, Optimal software release policy

for a nonhomogeneous software error detection rate model,

Microelectronics and Reliability, 26, 691-702.

http://www.dacs.org/

