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Abstract— Variational inequalities are studied  in various models for a large number of mathematical, physical, economics, 

finance, optimization, game theory, engineering and other problems(see[1],[2],[12], [14],[15], [21]). The fixed point 

formulation of any variational inequality problem is not only useful for existence of solution of the variational inequality 

problem, but it also provides the facility to develop algorithms for approximation of solution of variational inequality problem. 

A lot of research has been carried out to develop various iterative algorithms to find solution of a variational inequality 

problem. In this paper, we have studied various algorithms or methods used for solving Variational inequality problems and 

studied the developments of such methods and compared their convergence rate . Our result helps in understanding the 

development in iterative algorithms for VI. 
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I. INTRODUCTION  

 

The variational inequality problem has emerged as an 

important tool to study a variety of problems in economics, 

optimization, operations research, structural analysis and 

many engineering sciences. The variational inequality 

problem was first introduced and studied by Stampacchia 

(see [5]), since then it has been studied by various authors 

and efforts have been made to find suitable methods for 

solving variational inequality problem 

 

The algorithms for solving VI(K, F) can be classified into 

several categories depending upon which formulation a 

method exploits. There are methods based on KKT 

conditions ,  gap/merit functions, interior and smoothing 

methods, and projection based methods. 

 

Rest of the paper is organized as follows, Section I contains 

the introduction of Variational Inequality and the various 

algorithms used for solving VI  , Section II contains the 

related developments in algorithms, Section II,III IV ,V and 

VI contains the major developments in different algorithm 

for VI viz. Linear Approximation, KKT based, Proximal 

Point and Projection based algorithms and compared their 

convergence rate and conditions for convergence. Section VI 

describes results and discussions of our study. Section VII 

contain concludes research work with future directions.  

 

II. ALGORITHMS FOR VI 

 

The algorithms for solving variational inequalities can also 

be categorized based on the subproblems that are solved in 

each iteration. A general approach to solving VI(K, F) 

consists of 

creating a sequence {xk}  K such that each x
k+1 

 solves 

VI(K, F 
k
), 

K, y allfor   0),( 11   kkk xyxF     (2.1) 

where F
k
(.) is some approximation to F(x). F

k 
can be linear or 

nonlinear. 

 

III. LINEAR APPROXIMATION BASED METHODS 

 

A linear F
k
 is of the form 

.),()()( kkkk xxxAxFxF           (3.1) 

As described by Harker and Pang[3], different choices of 

A(x
k
) lead to different methods. 

1. Newton’s method: A(x
k
) = F(x

k
). 

2. Quasi Newton method: A(x
k
) F(x

k
). 
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3. Linearized Jacobi method: A(x
k
) = D(x

k
), where D(x

k
) is 

the diagonal part of F(x
k
). 

4. Successive over relaxation: A(x
k
) = T(x

k
) + D(x

k
) / 

*
 , 

where T(x
k
) is the upper or lower triangular part of F(x

k
) 

and 
* 
 is a parameter in (0, 2). 

5. Symmetrized Newton: A(x
k
) = ½{F(x

k
) + F(x

k
)

T
 }. 

6. Projection method: A(x
k
) = G, a symmetric positive 

definite matrix. 

The convergence of these methods depends on x
* 

 being a 

regular solution to VI(K, F). 

 

Definition 3.1. (Robinson[4)] Let x
*
 be a solution to VI(K, 

F), and F be differentiable at x
*
. 

Then x
* 

 is called a regular solution if there exists a 

neighborhood N of x
*
 and a scalar   > 0 such that for every 

y with ||y||2 < , there is a unique vector x(y)  N, Lispchitz 

continuous with respect to y, that solves the perturbed 

linearized VI(K, F
y
) with F

y
 : R

n
  R

n
 defined as 

.),()()( *** xxxFyxFxF y 
  

 

Let the set K be defined as in (2.1) with gi, hj being twice 

continuously differentaible for each i and j, and F being once 

continuously differentiable. Let x
*
  SOL(K, F). Suppose 

that the following conditions hold. 

1. There exist vectors 
*
 R

l
, and 

*
 R

m
, such that 

(x
*
,

*
,

*
) satisfy the KKT conditions for VI(K, F). 

2. Linear independence constraint qualification (LICQ) holds 

at x
*
. That is, the vectors {gi(x

*
) : 

i  I+  I0; hj(x
*
)} are linearly independent, where I+ = {i 

:
*
i > 0} and       I0 = {i :gi(x

*
)= 0,

*
i= 0}  

3. The second order condition 

                             

0)]()()([,
1

*2*

1

*2**  


m

i

ii

l

i

ii zxgxhxFz                      

                                                        (2.4) 

holds for all z 0 such that, 

 

.,....,2,1   0)(,

,Ii   0)(,

*

*

ljxhz

xgz

i

i



 

 

 

Then x
*
 is a regular solution to VI(K, F) (Robinson[4]). If x

*
 

is a regular solution to VI(K,F), then there exists a 

neighborhood N of x
*
 such that Newton’s method converges 

to x
*
 as long as it starts from an initial point x

0
  N 

(Josephy[7]). Furthermore, if F(x
*
) is Lipschitz continuous 

around x
*
, then the convergence rate is quadratic. But 

Newton’s method for solving VI(K, F) suffers from the 

following drawbacks. 

1. F(x
*
) needs to be evaluated at every step. 

2.Each iteration requires solving a variational inequality 

subproblem. 

3. The method converges only if the initial iterate is close 

enough to a solution. 

 

Quasi Newton methods overcome the first drawback of 

Newton’s method. For instance, secant methods (Josephy[6]) 

update the matrix A(x
k
) in each iteration by a simple small 

rank matrix. Although this reduces the work of finding 

F(x
k
) at each iteration, it does not make solving the 

subproblems any easier. Those methods can achieve a 

superlinear convergence rate at best. 

 

Other linear approximation methods, including the linearized 

Jacobi method, symmetrized Newton method and projection 

algorithms, use a symmetric matrix A(x
k
) at each step. In 

these methods,the subproblem can be formulated as an 

optimization problem, thereby making it amenable to various 

optimization algorithms. On the downside, those methods 

require stronger restrictions on the problem, and do not have 

quadratic rate of convergence. The linearized successive over 

relaxation method solves an LCP with a triangular matrix at 

each step. The following theorem summarizes the 

performance of the linearized Jacobi method and the 

symmetrized Newton’s method. 

 

Theorem 3.1. (Chan and Pang[8]) Let K be a nonempty, 

closed and convex subset of R
n
 and let F be a function from 

R
n
 to R

n
. 

1. Suppose that F is once continuously differentiable, x
*
 

solves VI(K, F) and F(x
*
) has positive diagonal elements. 

Let D(x
*
) and B(x

*
) be the diagonal and off diagonal parts of 

F(x
*
)  respectively. If 

                  1)(
2

2/1* xD ;              (3.5) 

 

then there exists a neighborhood of x
*
 such that the sequence 

generated by linearized Jacobi method is well defined and 

converges to x
*
 if it starts with an initial point within that  

neighborhood. 

2. Suppose that F is once continuously differentiable, 

x
*
solves VI(K, F), and that F(x

*
) is positive definite. Let 

A(x
*
) and C(x

*
) be the symmetric and skew symmetric parts 

of F(x
*
) respectively. If 

                  )),(()( *

min
2

* xAxC      (3.6) 

 

where min(A(x*)) denotes the least eigenvalue of A(x
*
), then 

there exists a neighbourhood of x
*
 such that the sequence 

generated by the symmetrized Newton method is well 

defined and converges to x
*
 if it starts with an initial point 

within that neighborhood. 

 

Moreover, the convergence rate of each of these methods is 

geometric, that is, there exists a constant r  (0; 1) such that 

for a certain vector norm and for all k, 
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         ||x
k+1

 – x
*
 ||  r||x

k
 – x

*
 || holds. 

 

A class of methods applicable to VI(K, F) when K is a 

compact polyhedral set are the simplicial decomposition 

methods. Since K is a compact polyhedron, it can be 

expressed as the convex hull of its extreme points. At 

iteration k, a VI(K
k
, F

k
) is solved, where K

k
 denotes the 

convex hull of a subset of extreme points of K. A merit 

function is used to decide upon the addition or deletion of 

extreme points from K
k
 to obtain K

k+1
. The effectiveness of 

the method depends on how many extreme points K has, and 

on the merit function used to guide the choice of extreme 

points at each iteration (Lawphongpanich and Hearn[9]) 

shows that if the gap function minyK <F(x), y – x> is used to 

control K
k
, and F

k
 = F for all iterations, then the method 

terminates in a finite number of major iterations if F is 

strongly monotone. 

 

In what follows, we briefly describe methods based on the 

KKT formulations of variational inequalities, and proximal 

point methods. 

 

IV. KKT BASED METHODS 

 

Methods based on the KKT formulation of VI(K, F) try to 

solve systems of nonsmooth constrained equations or 

minimize a merit function derived from (2.1). Using the 

min(.,.) and the Fischer-Burmeister (FB) C-function, 

     ,),(),(),( 222 RbabababaFB   

we can obtain two different equation reformulations for 

VI(K, F). Let 
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A natural merit function for the KKT formulation is 

,),,(),,,(
2

1
),,(  xxx   

where (x,,) can be either FB(x,,) or min_(x,,). One 

can then try to solve the equation (x,,)= 0, or to minimize  

(x,,). Algorithms based on the merit function   

(x,,)can be regarded as special cases of interior point 

methods which use a more generic potential function 

p((x,,))to measure the improvement in each iteration. 

Methods based on the natural gap function  for the VI are a 

special case of Zhu and Marcotte’s general framework for 

solving VIs. The methods mentioned here find a descent 

direction for the merit or potential function at each iteration, 

and perform a line search routine in that direction to find the 

next iterate. One can refer to the book (Facchinei and 

Pang[10]) for details on these 

algorithms. 

 

V. PROXIMAL POINT METHOD 

 

The proximal point method is another class of solution 

methods for VIs. This method solves VI(K, F + kI) at 

iteration k. Here {k} is a sequence of positive scalars going 

to zero, and I is the identity map. If F is monotone, then F + 

I is strongly monotone. Thus each subproblem has a unique 

solution. (Rockafellar [11]) showed that if k are chosen 

according to an appropriate inexact rule, then the sequence 

{x
k
} is bounded if and only if SOL(K, F)  . Moreover, if 

the sequence {x
k
}  is bounded, then it converges to a solution 

of VI(K, F). 

 

In the following generic proximal point scheme, VI(K, Fc,x), 

where  

Fc,x(y) = y - x + cF (y) is solved inexactly at each iteration. 

The algorithm uses the fact that if F is monotone then the set 

valued map F + N(K,.) is maximal monotone. A set valued 

map : R
n
  R

n
 is (strongly) 

monotone if there exists a constant c (>)  0 such that 

                             

(y).v(x),u and

 )(,,
2







 domyxyxcvuyx

   

                                                             
(2.7)

                                 
 

A monotone map  is maximal monotone if no monotone 

map   exists such that graph  graph. The properties of 

maximal monotone maps ((Facchinei and Pang[10]) play an 

important role in the development of the algorithm being 

described  here. 

 

Algorithm 5.1 : Proximal point method for VIs 

 

Initialization: Choose x
0
  R

n
, c0 > 0, sequences {k}, {k}, 

and {ck} as required by the 

previous theorem. Set k = 1, loop = 0. 

while loop = 0 do 

if xk  SOL(K, F) then 

Set loop = 1. 

else 

Find wk such that ||w
k
 -JckT (x

k
)||  k. 

Set x
k+1

 = x
k
 + k(w

k 
- x

k
), 
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Set k = k + 1. 

Select ck,k, and k. 

end if 

end while 

 

If the VI has a solution, the algorithm converges to it. 

Otherwise the sequence generated by thelgorithm is 

unbounded. 

 

VI. PROJECTION BASED METHODS 

 

We observed that x solves VI(K, F) if and only if 

             ))(( 1

, xFDxx DK

          (6.1) 

where   K,D is the skewed projector onto K defined by a n 

n positive definite matrix D.  

 

If the projection map defined in (6.1) is a contraction[5], the 

sequence {x
k
},k=0 to  defined as    

))(( 1

, kkDK xFDxx   converges to its fixed point 

irrespective of the choice of x0. 

Theorem 6.1. ((Facchinei and Pang, [10]) Let K be a closed 

and convex subset of Rn and F :K  Rn be   monotone and 

Lipschitz continuous with constant L. If 

      L
2
max(D) < 2 

2
 min(D);            (6.2) 

 

then the mapping ))(( 1

, xFDxDK

 is a contraction 

from K to K with respect to the norm||.||. Moreover, the 

sequence {x
k
} generated by the iterations 

     
))(( 1

,

1 kk

DK

k xFDxx         (6.3) 

starting from any x
0
  K, converges to the solution of the 

VI(K, F) with a linear rate of convergence. 

One issue with the standard projection method is that it 

requires knowledge of constants characterizing Lipschitz 

continuity and strong monotonicity. The extragradient 

method requires a slightly weaker assumption on F, that is, F 

needs to be pseudomonotone. It requires two pojection 

calculations in each iteration: 

                 

))((

)),((

2
1

1

2
1










k
k

K

k

kk

K

k

xFxx

xFxx




 

 

The extragradient method still requires knowledge of the 

Lipschitz constant, L, of F, since it converges only if  < L.  

Many recent developments have taken place in projection 

based methods[1],[14] 

 

VII. RESULTS AND DISCUSSIONS 

 

In this pap er, we have studied various algorithms for solving 

Variational Inequality Problem and analysed various 

constraints for convergence of the solution. The convergence 

of various models based on Linear Approximation, KKT, 

Proximal Point and Projection are foused and analysed. 

Recent results and advancements in this regard is important 

and thus stimulates the strong convergence of VI problems.   

 

VIII.CONCLUSION 

 

Through the study on various methods or algorithms 

developed so far for solving variational inequality problem 

we establish that various constraints exists for finding the 

solution of VI and still the developments in this direction are 

going on ([15], [16], [17], [18], [19],[20]) as variational 

inequality is emerging as one of the most important field of 

study due to its applications in all emerging fields. 
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