

© 2018, IJCSE All Rights Reserved 383

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693

A Systematic Literature Survey for Detecting Ambiguity in SRS Using

Artificial Intelligence

Shruti Mishra

1*
, Vijay Birchha

2
, Bhawna Nigam

3

1
Department of Computer Science & Engineering, Swami Vivekananda College of Engineering, Indore, India

2
Department of Computer Science & Engineering, Swami Vivekananda College of Engineering, Indore, India

3
Department of Information Technology, IET DAVV, Indore, India

*Corresponding Author: sm.mishra103@gmail.com, Tel.: +917000399236

Available online at: www.ijcseonline.org

Accepted: 12/Dec/2018, Published: 31/Dec/2018

Abstract—Research in recent years has shown integration amongst the significant and dynamic areas of software engineering

and semantic web engineering. The success of any software system is depending on how well it meets the requirements of the

stakeholders. A software requirement specification written in natural languages, are basically ambiguous, which makes the

documentation unclear. Due to unclear requirements, software developers develop software, which is different from the

expected software based on the customer needs. Therefore, well documented requirements should be unambiguous and it is

possible only when it has only one meaning.The main purpose of this research is to propose a technique that is able to detect

ambiguity in software requirements specification document automatically using artificial intelligence. To validate the outcome

of the proposed work, generated result of the proposed work will be evaluated and validated by making the comparison

between the proposed prototype results, previous ambiguity detection framework and human-generated results to decide how

the proposed work is more efficient and reliable for ambiguity detection.

Keywords—Software Requirements Specification, Artificial Intelligence, Deep Learning, Ambiguity Detection.

I. INTRODUCTION

Technology is becoming more important in our daily routine

life. Probably the most evident examples are computers (e.g.

laptops, smartphones, tablets, smart watches, and many other

gadgets) and the internet, which are essential in many (if not

every) activities we do. All of these devices need software

(programs) that tells these devices what to do, when to do it,

how to work, etc. Software development is a multifarious

and sophisticated task that involves enormous efforts from

numerous participants and produces a large amount of

information [1]. By reuse of already available knowledge,

can save efforts in the development and maintenance of

software systems [2].Also, when software development

teams are present at different geographical and virtual

locations, it may lead to the generation of inconsistent

information due to lack of proper knowledge sharing

mechanism. Thus, for large software system development,

reusing and sharing software engineering knowledge turns

out to be a major operative challenge, which motivates

researchers to explore possible supporting

technologies[3][4]. Integration among research fields of

Semantic Web Engineering & Software Engineering (SE)

has been shown by recent studies, illustrating the advantages

of collaborating semantic techniques with Software

Engineering. A rising trend to utilize ontology to exchange

and interconnect Software Engineering knowledge across the

Web has been identified by the Software Engineering

community [5][6]. “However, this integration still possesses

various issues and challenges that ought to be addressed.

Issues and challenges, which will keep this integrated field

dynamic and lively for years to come” [7][8][9][10]. Among

such issues, one is to detect ambiguities in Software

Requirements Specification (SRS). SRS is always the first

deliverable aspect for any software product. It plays as the

"parent" document because all successive project

management documents, such as Software Design Document

(SDD), software architecture specifications, testing &

validation plans, and documentation manual, are related to it

[11]. A good SRS has some desirable characteristics, i.e., it is

expected to be correct, complete, verifiable, unambiguous,

consistent, ranked for importance and stability. Usually, SRS

is written in general purpose natural language which is

inherently ambiguous. The literal meaning of the word

unambiguous is: "not having multiple possible meanings".

This implies that each requirement is expected to have one

and only one interpretation. One way to get rid of

ambiguities is also to use formal language, but it is very

complex, time-consuming and expensive [12]. We proposed

International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 384

a technique that uses SRS (written in the natural language) as

input and detects possible ambiguity automatically using

Artificial Intelligence (deep learning) process.

Deep Learning is one of the hottest trends in Artificial

Intelligence approached as Deep Learning approaches

produced results superior to the state-of-the-art in

problematic areas such as natural language processing

(NLP), image processing and simulation. To support the

growth of the Deep Learning community, several open

source projects appeared providing implementations of the

most common Deep Learning algorithms. These projects

vary in the algorithms they support and in the quality of their

implementations [13].

Natural language processing is much easier and efficient

when using deep learning. Therefore, we are using deep

learning techniques to create a framework that detects

ambiguity in given SRS. This study is focused to answer

these research questions:

How well Deep Learning techniques can extract relevant

knowledge from software requirements specification written

in natural language?

How the Deep Learning deal with unstructured data present

in SRS.

Is word embedding vector representations enough robust to

capture features to classify the requirements?

Rest of the paper is organized as follows, Section I contains

the introduction of software engineering, ambiguity in SRS,

and deep learning, Section II contains the current approaches

for ambiguity detection on the basis of their types, Section III

contain the related research work in the area of SRS and

ambiguity detection, Section IV explains ambiguity detection

and deep learning methodology with appropriate figure,

Section V describes results and discussion, Section VI

concludes research work with future directions

II. CURRENT APPROACH

Ambiguity detection is a popular research area in software

engineering there are many proposed works have already

been used in detecting and correcting incomplete and

inconsistent requirements specification [14]. However, we

have not seen any work for detecting ambiguities in SRS

using deep learning approach. There are several types of

ambiguities that can be present in SRS such as lexical

ambiguity, syntactic ambiguity, semantic ambiguity,

pragmatic ambiguity, vagueness and generality, and language

error [15]. A short description of these ambiguities is

illustrated below

A. Lexical ambiguity

Lexical ambiguity occurs due to homonymy and polysemy.

“Homonymy occurs when two different words have the same

written and phonetic representation, but unrelated meanings

and different etymologies, i.e., different histories of

development”. Examples of Homonyms are bad or bade,

accept or except, brake or break, week or weak, etc.

“Polysemy occurs when a word has several related meanings

but one etymology” [15]. Example of polysemy can be the

word ‘green’, which has several different meanings with a

common etymology, such as colour green or not ripened or

mature.

B. Syntactic ambiguity:

“Syntactic ambiguity, also called structural ambiguity, occurs

when a given sequence of words can be given more than one

grammatical structure, and each has a different

meaning”[15]. An example of syntactic ambiguity is the

following sentence:

 “I met Bhatia and Kumar and Roy met me.”

The above sentence can be either read as I met (Bhatia and

Kumar) and Roy met me or as I met Bhatia and (Kumar and

Roy) met me. Each sentence is leading to a different

meaning.

C. Semantic ambiguity:

“Semantic ambiguity occurs when a sentence has more than

one way of reading it within its context although it contains

no lexical or structural ambiguity” [15]. An example of

semantic ambiguity is the following sentence:

“The truck hits the pole while it was moving.”

Though it is obvious from the above sentence that the

moving truck hits the standing pole as the phenomena is very

close to real-world situation, but if the same logical form of

the sentences needed to be learnt by the computer, it is not an

easy task to supply a real-world model to a computer system.

D. Pragmatics ambiguity:

“Pragmatics is the study of the relations between language

and context” [16]. Pragmatic ambiguity occurs when a

sentence leads to numerous implications in the context in

which it is articulated. An example of pragmatic ambiguity is

the following sentence:

“Is the program running?”

The above sentence can be understood in many ways as if

someone asked, Is the program being executed in a computer

or Is the program being aired on TV? The implication

depends upon in what situation one is asking and to whom he

is asking.

E. Vagueness and generality:

Vagueness and generality occur when words or phrases are

open to more than one interpretation. A word may have

International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 385

either general or ambiguous meaning. An example of

vagueness or generality is the following sentence:

“I am coming to the bank.”

The word ‘bank’ can have more than one interpretation, as in

river bank or in a money bank.

F. Language error ambiguity:

“A language error ambiguity occurs when a grammatical,

punctuation, word choice, or other mistakes in using the

language of discourse leads to text that is interpreted by a

receiver as having a meaning other than that intended by the

sender” [15]. Here the sender is not aware of the fact that the

error has been committed, and the receiver may or may not

be aware of the fact that error has been executed. Among all

the ambiguities defined above, lexical and syntactic

ambiguities have already been detected using NLP

techniques [17]. We intend to automate and improve lexical

and syntactic ambiguity detection and examine the remaining

significant ambiguities for improving requirements that assist

in quality software development.

III. RELATED WORK

Many researchers tried to solve the ambiguity problem in NL

SRS using different methods and techniques. These

techniques can be summarized into three main categories:

Unified Modeling Language (UML) based, Ontology-based

and Natural Language Processing (NLP) based techniques

[18].

UML based technique was used as a method to protect

against the ambiguity and its impact in the software

development lifecycle. This approach based on developing

UML activity diagram and its equivalent model in a window

navigation format for mapping initial task to workflow

document based on the relationship between them. In

addition to that, there is a table called traceability table that

contains the candidate requirement names. In this table, the

stakeholder view will be built before the activity diagram. In

a summary, this method stresses keeping the requirements as

the expected outcome. The researchers of this method clearly

stated that lack of evaluation can become one of the

limitations of their research [19].

Ontology-based is a requirements analysis method using

domain ontology that allowed the software engineers to

detect ambiguity in SRS document. This method enables to

measure the document quality and able to predict the future

changes in the SRS documents. The ontology-based

technique is a lightweight semantic technique used to detect

and solve ambiguity exists in documents written in natural

language format. In this method, the ambiguity is detected by

mapping requirement to multiple unrelated elements. In this

method, Ambiguity is detected by mapping requirements into

several elements that are not related [20].

Many researchers tried to solve NL SRS ambiguity using

natural language processing. These techniques include a

Dowser prototype tool. The dowser prototype tool is

designed to identify ambiguities exist in the SRS document.

Initially, Dowser tool parses the requirements using

constraining grammar. In addition to that, the object-oriented

analysis model of the system will be developed by creating

its classes, methods, variables and associations. Lastly, the

model will be presented for the reviewers to detect the

ambiguity. In the literature, there is no much work done in

automatically detecting NL SRS ambiguity using parts of

speech tagging technique. The following section discusses

how the research is conducted.

IV. METHODOLOGY

To detect ambiguity existing in the software requirements

documents proposed methodology contains four main

phases: initial investigation and analysis, train the system,

feature extraction, implementation and conclusion.

Figure 1. Proposed Ambiguity Detection Life Cycle

First of all, we analyse the NL SRS by using existing

literature related to the study has been reviewed to get

enough idea about requirements engineering techniques used

to elicit the requirements, how the requirements can be

documented in natural language format. In this phase,

ambiguity problems in NL SRS are explained. Also, related

work used to solve ambiguity problems has been discussed.

The new proposed framework for automatically ambiguity

detection is being presented.

Second, based on the first phase we train the system with

collected information and data.

Third, based on training data proposed system generates

features related to inputs (NL SRS or Diagrams or Images)

and learn from related features and automate self to detect

ambiguity in SRS. Implemented system uses these features to

Data

Analysis

System

Training

Feature

Extraction

Ambiguity

Detection

International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 386

match the possible ambiguities and find the appropriate

ambiguity.

V. RESULTS AND DISCUSSION

The following steps are implemented to detect ambiguity in
NL SRS document. These steps classify the ambiguity into
syntactic and syntax ambiguities.

1) Retrieve the NL SRS document and related images
or diagrams.

2) Create sets of words and phrases, extract data from
images if any exists.

3) Train the system with related data.

4) Extract the features from the retrieved SRS.

5) Match the extracted features with the trained system.

6) Detect ambiguity and store in a data structure.

7) Check if any sentence is present in the matching list.

8) Calculate the total number of syntactic and syntax
ambiguities.

9) Calculate the percentage of ambiguities detected.

Figure 2: Proposed Architecture of Ambiguity Detection
System.

VI. CONCLUSION AND FUTURE SCOPE

A deep learning based framework, as well as an

implementation approach for detecting ambiguities in SRS, is

presented in this research paper. This research work will

facilitate eliminating significant ambiguities for improving

requirements that assist in quality software development. As

a potential direction of future work, we intend to compare and

evaluate our approach with the original SRS using a case

study.

REFERENCES

[1] R. Beniwal. "Analysis of Testing Metrics for Object Oriented

Applications." In Computational Intelligence & Communication

Technology (CICT), 2015 IEEE International Conference on, pp.

41-46. IEEE, 2015.

[2] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg. "Selection of

optimal software reliability growth models using a distance-based

approach." Reliability, IEEE Transactions on 59, no. 2, pp. 266-

276, 2010.

[3] K. S. Kaswan, S. Choudhary, and K. Sharma. "Software

Reliability Modeling using Soft Computing Techniques: Critical

Review." J Inform Tech SoftwEng 5, no. 144, 2015.

[4] R. Studer, R. Benjamins, and D. Fensel, “Knowledge engineering:

Principles and methods,” Data & Knowledge Engineering 25,

no.1, pp. 161–198, 1998.

[5] HJ Happel and S Seedorf. "Applications of ontologies in software

engineering." In Proc. of Workshop on Sematic Web Enabled

Software Engineering"(SWESE) on the ISWC, pp. 5-9. 2006.

[6] Y Zhao, J Dong and T Peng, “Ontology classification for

semantic-webbased software engineering,Services Computing,

IEEE Transactions on Services Computing”, Vol. 2, No. 4, pp.

303-317, 2009.

[7] D Gaševiü, N Kaviani and M Milanoviü. "Ontologies and software

engineering." In Handbook on Ontologies, pp. 593-615. Springer

Berlin Heidelberg, 2009.

[8] M.P.S Bhatia, A Kumar, and R Beniwal, “Ontologies for Software

Engineering: Past, Present, and Future,”pp 232-238 IEEE , 2016.

[9] M.P.S. Bhatia, R. Beniwal and A. Kumar, "An ontology-based

framework for automatic detection and updation of requirement

specifications." In Contemporary Computing and Informatics

(IC3I), 2014 International Conference on, pp. 238-242. IEEE,

2014.

[10] M.P.S. Bhatia, A. Kumar, and R. Beniwal, "Ontology Based

Framework for Automatic Software’s Documentation." In

Computing for Sustainable Global Development, 2015 2nd

International Conference on, pp. 725-728. IEEE. 2015.

[11] B S. Dogra, K Kaur, and D Kaushi. Enterprise Information

Systems in 21st Century: Opportunities and Challenges. New

Delhi: Deep and Deep Publications, 2009.

[12] S Armitage, “Software Requirement Specification.” 1996.

http://www4.informatik.tu-muenchen.de/proj/va/SRS.pdf (Last

accessed date: October, 2015)

[13] Navarro-Almanza, Guillermo Licea "Towards Supporting

Software Engineering Using Deep Learning: A Case of Software

Requirements Classification" Software Engineering Research and

Innovation (CONISOFT), 2017 5th International Conference in,

IEEE 2017

[14] Yu Kai, Jia Lei, Chen Yuqiang et al., "Deep Learning: Yesterday

Today and Tomorrow[J]", Journal of Computer Research and

Development, vol. 50, no. 9, pp. 1799-1804, 2013.

[15] SC. Levinson, "Pragmatics (Cambridge textbooks in linguistics)."

1983.

[16] A Nigam, N Arya, B Nigam and D Jain. "Tool for Automatic

Discovery of Ambiguity in Requirements," IEEE 2012.

[17] Sandhu, G. and S. Sikka. State-of-art practices to detect

inconsistencies and ambiguities from software requirements. in

Computing, Communication & Automation (ICCCA),

International Conference in,IEEE 2015.

[18] A. Aamodt, E. Plaza, "Case-Based Reasoning: Foundational Issues

Methodological Variations and System Approaches", Artificial

Intelligence Comm., vol. 7, no. 1, pp. 39-59, 1994.

[19] Hagal, M.A. and S.F. Alshareef. A systematic approach to

generate and clarify consistent requirements. in IT Convergence

and Security (ICITCS), International Conference in,IEEE 2013.

User
Retrieve

NL SRS

Generate word

&phrases sets

System

Training

Feature

Extraction
Match

Feature

Ambiguity Detection

International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 387

[20] D.M. Berry, E. Kamsties and M.M. Krieger "From contract

drafting to software specification: Linguistic sources of ambiguity-

a handbook version 1.0."(2003).

http://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

Authors Profile

Miss Shruti Mishra pursued Bachelor of
Engineering from Shri Dadaji Institute of
Technology and Sciences, Khandwa.She is
pursuing Master of Engineering in Computer
Engineering from Swami Vivekananda College of
Engineering, Indore.She has a research interest in
Software Engineering; Internet of Things,
Computer Networking, Machine Learning and
Computer Vision.

Mr. Vijay Birchhais working as Assistant
Professor in Department of Computer Sciences
and Engineering at Swami Vivekananda College
of Engineering, Indore.He has completed Bachelor
of Engineering from Institute of Technology,
Guru Ghasidas University, Bilaspur (C.G) and
Master of Engineering in Computer Engineering
from Institute of Engineering & Technology,
DAVV, Indore. He is currently pursuing Ph.D. in
Computer Engineering from Institute of Engineering & Technology,
DAVV, Indore. He has various IBM profession certifications. He
has teaching experience more than fourteen years. He has research
interest in Software Engineering; Cloud Computing, Computer
Vision and Big Data Analytics.

Dr. Bhawna Nigam is working at the post of
assistant professor in Department of Information
Technology, Institute of Engineering &
Technology, Devi Ahilya University, Indore,
India. She has completed her PhD, Post-
graduation and graduation in Computer
Engineering from Institute of Engineering &
Technology, DAVV, Indore. She has certified by
NVIDIA DLI for Image Classification Using DIGITS. She has
awarded for bestwomen in research award by RSRI conference and
mentor awards by Edureka. She has delivered various expert
lectures on Artificial Intelligence and Data Science. She has
teaching experiencemore than fourteen years. She has research
interest in Data Mining, Machine Learning, Deep Learning and Big
Data Analytics.

