

 © 2019, IJCSE All Rights Reserved 390

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

A Survey of Backfilling Algorithms in Cloud Resource Allocation

V. Nisha

1*
, S. Vimala

2

1,2

Department of Computer Science, Mother Teresa Women’s University, Kodaikanal, India

Corresponding Author: nishavarnam@yahoo.co.in

DOI: https://doi.org/10.26438/ijcse/v7i6.390394 | Available online at: www.ijcseonline.org

Accepted: 14/Jun/2019, Published: 30/Jun/2019

Abstract— Cloud computing is an information technology (IT) paradigm that enables ubiquitous access to shared pools of

configurable system resources and higher-level services that has provisioned with minimal management effort over the

Internet. The main enabling technology for cloud computing is Virtualization, which is essentially creating scalable system of

multiple independent computing devices. With virtualization, idle computing resources have allocated to user more effectively.

Allocation of idle computing resource is one of the major problem faced today in cloud computing. Adopting to right resource

allocation algorithms can resolve the problem of resource allocation. Backfilling algorithms are better than the existing First

Come First Serve algorithms (FCFS) used for resource allocation. In this paper, various 'Backfilling' algorithms are surveyed.

Further analysis on the performance of each algorithm in terms of response time, throughput, waiting time, turn-around time,

job migration between queues are measured.

Keywords—Cloud Computing, Virtualization, First Come First Serve, Backfilling, Job Migration

I. INTRODUCTION

In cloud computing, virtualization separates a physical

computing device into one or more "virtual" devices, each of

which can be used and managed for performing task. FCFS

algorithm is the default algorithm used by computing devices

(parallel and super computers) for allocating resources.

 FCFS uses parallel processing where multiple

requests are executed simultaneously. The computing

resources are allocated to the incoming request based on the

order of arrival rather than the resource required which

results in poor allocation and utilization of resource leading

to fragmentation. Fragmentation is the major drawback in

FCFS where request are kept in queue due to insufficient

computing resources and the unallocated resource are kept

idle.

Fig 1.

First Come First Serve Resource Allocation

In the above figure, there are 4 incoming request and 3

computing devices available. FCFS allocates the available

computing devices in the order of arrival. Incoming Request

#1 & #2 are served and Request #3 is not served due to the

insufficient computing devices. In the above, Fragmentation

is created because the computing devices #1 & #2 are kept

idle (no immediate request matching with available

computing devices) and Incoming Request #3 is kept in

queue (inadequate computing device).

Backfilling algorithm overcomes the drawback of FCFS by

allocating the available computing devices to the incoming

request based on required number of computing devices

irrespective of their incoming order. By doing so, Backfilling

manages to allocate the computing devices better and reduces

the wait time of incoming request.

3

2

1

Nodes
Time

1 2 3 4 5

Fig 2. Backfilling Resource Allocation

3

2

1

nodes
time 1 2 3 4 5 6 7

1

4

3

2

1

2

4

3

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 391

In figure 2, there are 4 incoming request and 3 computing

devices available. Backfilling allocates the available

computing devices based on the required number of

computing device. Incoming Request #1 & #2 are served,

Computing device # 1 & #2 become available after serving

Request #1. Backfilling algorithm allocates the available

computing devices to next incoming with matching required

computing device. So the incoming request #4 is picked and

incoming request #3 is kept in queue. Backfilling manages to

allocate computing devices to incoming request and avoids

fragmentation.

 By allocating the available CPU's to the incoming

job irrespective of their incoming order, backfilling

algorithm improves the resource utilization, waiting period

and response time of the system.

There are various backfilling algorithms such as

• Extensible Argonne Scheduling System (EASY)

• Gang Scheduling

• Conservative Migration supported Backfilling

(CMBF)

• Aggressive Migration Supported Backfilling

(AMBF)

• Aggressive Migration and Consolidation supported

Backfilling (AMCBF)

• Conservative Migration and Consolidation

supported Backfilling (CMCBF).

In this paper, section 2 discusses related work & experiment

results and we explain results and discussion in section 3. At

last in the in section 4 is conclusion.

II. RELATED WORK & EXPERIMENT RESULTS

For implementation, Consider six processors and ten jobs are

waiting in the queue and it is mentioned in following format,

Job name (number of processors, execution time).

Jobs are J1(1,10) J2(2,5) J3(2,10) J4(3,10) J5(1,25) J6(1,15)

J7(2,10) J8(5,5) J9(4,5) J10(1,15).

A. First-Come-First-Serve(FCFS)

First Come First Serve is the fundamental parallel scheduling

algorithm where request are executed in the order of arrival.

The immediate available computing device is allocated to the

incoming request, in case of inadequate computing device,

the incoming requests are kept on hold irrespective of their

priority. The incoming request has to be in queue until the

availability of next matching computing devices. The result

shows increase of wait time of the request and accumulation

of un-served request [1].

The implementation result for First-Come-First-Serve

(FCFS) is shown in Table 1.

Table 1. First Come First Serve

FCFS algorithm is easy to implement and has an advantage

of no migration of request and disadvantage is many times

CPU are idle due to the lack of availability of processor.

Request with least required resource in queue are not served

on time.

B. EASY

Extensible Argonne Scheduling System (EASY) is the

default backfilling algorithm, which allows the shortest

request to utilize the available computing device when the

request at the head of waiting queue does not have enough

number of computing devices to execute [2].

The implementation result for Extensible Argonne

Scheduling System is shown in Table 2.

Table 2. Extensible Argonne Scheduling System (EASY)

EASY is better than FCFS as there is no fragmentation but

holds a drawback of request in queue suffer from unbounded

delay.

PROCESSOR

TIME

P1 P2 P3 P4 P5 QUEUE

T=0
J1 J2 J2 J3 J3 J4(3,10) J5(1,25) J6(1,15)

J7(2,10) J8(5,5) J9(4,5) J10(1,15)

T=5
J1 J3 J3 J4(3,10) J5(1,25) J6(1,15)

J7(2,10) J8(5,5) J9(4,5) J10(1,15)

T=10

J4 J4 J4 J5 J6 J7(2,10) J8(5,5) J9(4,5) J10(1,15)

T=20

 J5 J6

J7 J7 J5 J6 J8(5,5) J9(4,5) J10(1,15)

T=25 J7 J7 J5 J8(5,5) J9(4,5) J10(1,15)

T=30 J5 J8(5,5) J9(4,5) J10(1,15)

T=-35

J8 J8 J8 J8 J8 J9(4,5) J10(1,15)

T=40

J9 J9 J9 J9 J9 J10(1,15)

T=45

J10

PROCESSOR

TIME
P1 P2 P3 P4 P

5

QUEUE

T=0 J1 J2 J2 J3 J3 J4(3,10) J5(1,25) J6(1,15) J7(2,10)

J8(5,5) J9(4,5) J10(1,15)

T=5 J1 J3 J3

J1 J5 J6 J3 J3 J4(3,10) J7(2,10) J8(5,5) J9(4,5)

J10(1,15)

T=10 J5 J6

J4 J5 J6 J4 J4 J7(2,10) J8(5,5) J9(4,5) J10(1,15)

T=20 J5

 J7 J5 J7 J10 J8(5,5) J9(4,5)

T=30 J10

 J9 J9 J9 J10 J9 J8(5,5)

T=35

 J8 J8 J8 J8 J8

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 392

C. Gang-scheduling

Incoming request are split in to threads of same size. These

threads are executed based on the number of processor

required for the execution of the request and executed

simultaneously across all the processors. When the time slice

is over, the threads are pre-empted and sent to waiting queue.

By the pre-emption mechanism, the shortest jobs are

addressed quicker since the long waiting time is avoided [1]

[3].

The implementation result for Gang scheduling is shown in

Table 3

Time Slice: 2

Table 3. Gang Scheduling

Gang scheduling algorithm has advantages over EASY,

Computing devices are maximum utilized, No idle time for

computing device, quick response time. At the same time, it

has a disadvantage of migration where the requests are

shuffled in queue.

D. Aggressive Migration Supported Backfilling (AMBF)

In AMBF, when a job is done and the processor is

available to pick up the next job from the queue, the pre-

emption is done. Pre-emption is done by the first job in the

queue. No other job in the queue is authorized to do the pre-

emption.

The implementation result for AMBF is shown in

Table 4.

Table 4. Aggressive Migration Supported Backfilling
PROCESSOR

TIME

P1 P2 P3 P4 P5 QUEUE

T=0 J1 J2 J2 J3 J3 J4(3,10) J5(1,25) J6(1,15) J7(2,10)

J8(5,5) J9(4,5) J10(1,15)

T=5

J1 J3 J3

J1 J5 J6 J3 J3 J4(3,10) J7(2,10) J8(5,5) J9(4,5)

J10(1,15)

T=10
 J5 J6

J4 J5 J6 J4 J4 J7(2,10) J8(5,5) J9(4,5) J10(1,15)

T=15 J4 J5 J6 J4 J4 J7(2,10) J8(5,5) J9(4,5) J10(1,15)

T=20
 J5

J7 J5 J7 J10 J8(5,5) J9(4,5)

T=25 J7 J5 J7 J10 J8(5,5) J9(4,5)

T=30
 J10

J8 J8 J8 J8 J8 J9(4,10) J10(1,15)

T=35

J9 J9 J9 J9 10

AMBF overcomes the drawback of gang

scheduling, it limits the number of request migration in

queue since no time slice is being used. Computing device

might be idle sometime which is the drawback of AMBF [4].

E. Conservative Migration supported Back Filling (CMBF)

 In AMBF, as the first job in the queue is authorized

to do pre-emption resulting in poor utilization of resource. To

overcome the same, CMBF allocates the available resource

to the next job in the queue with suitable number of required

resource. No restriction to the jobs in queue for pre-emption

but preference is given based on the arrival order of the job

[4].

The implementation result for CMBF is shown in

Table 5.

Table 5. Conservative Migration supported Backfilling
PROCESSOR

TIME

P1 P2 P3 P4 P5 QUEUE

T=0
J1 J2 J2 J3 J3 J4(3,10) J5(1,25)

J6(1,15) J7(2,10) J8(5,5)

J9(4,5) J10(1,15)

T=5
J1 J3 J3

J1 J5 J6 J3 J3 J4(3,10) J7(2,10) J8(5,5)

J9(4,5) J10(1,15)

T=10
 J5 J6

J4 J5 J6 J4 J4 J7(2,10) J8(5,5) J9(4,5)

J10(1,15)

T=15 J4 J5 J6 J4 J4 J7(2,10) J8(5,5) J9(4,5)

J10(1,15)

T=20
 J5

J7 J5 J7 J10 J8(5,5) J9(4,5)

T=25 J7 J5 J7 J10 J8(5,5) J9(4,5)

T=30
 J10

J9 J9 J9 J10 J9 J8(5,5)

T=35

J8 J8 J8 J8 J8

CMBF is better than FCFS, EASY and GANG, it has lower

request migration compared to them. But when compared

with AMBF, CMBF have more request migration in queues.

F. Conservative Migration and Consolidation supported

Backfilling (CMCBF)

PROCESSOR

TIME
P1 P2 P3 P4 P5 QUEUE

T=0 J1 J1 J1 J1 J1 J2(2,5) J3(2,10) J4(3,10) J5(1,25) J6(1,15)

J7(2,10) J8(5,5) J9(4,5) J10(1,15)

T=2 J2 J2 J2 J2 J2 J3(2,10) J4(3,10) J5(1,25) J6(1,15)

J7(2,10) J8(5,5) J9(4,5) J10(1,15)

T=4 J3 J3 J3 J3 J3 J4(3,10) J5(1,25) J6(1,15) J7(2,10) J8(5,5)

J9(4,5) J10(1,15)

T=6 J4 J4 J4 J4 J4 J3(2,10) J5(1,25) J6(1,15) J7(2,10) J8(5,5)

J9(4,5) J10(1,15)

T=8 J5 J5 J5 J5 J5 J3(2,10) J4(3,10) J6(1,15) J7(2,10) J8(5,5)

J9(4,5) J10(1,15)

T=10 J6 J6 J6 J6 J6 J3(2,10) J4(3,10) J5(1,25) J7(2,10) J8(5,5)

J9(4,5) J10(1,15)

T=12 J7 J7 J7 J7 J7 J3(2,10) J4(3,10) J5(1,25) J6(1,15) J8(5,5)

J9(4,5) J10(1,15)

T=14 J8 J8 J8 J8 J8 J3(2,10) J4(3,10) J5(1,25) J6(1,15)

J7(2,10) J9(4,5) J10(1,15)

T=16 J9 J9 J9 J9 J9 J3(2,10) J4(3,10) J5(1,25) J6(1,15)

J7(2,10) J8(5,5) J10(1,15)

T=18 J10 J10 J10 J10 J10 J3(2,10) J4(3,10) J5(1,25) J6(1,15)

J7(2,10) J8(5,5)) J9(4,5)

T=20 J3 J3 J3 J3 J3 J4(3,10) J5(1,25) J6(1,15) J7(2,10)

J8(5,5)) J9(4,5) J10(1,15)

T=22 J4 J4 J4 J4 J4 J5(1,25) J6(1,15) J7(2,10) J8(5,5) J9(4,5)

J10(1,15)

T=24 J5 J5 J5 J5 J5 J4(3,10) J6(1,15) J7(2,10) J8(5,5) J9(4,5)

J10(1,15)

T=26 J6 J6 J6 J7 J7 J4(3,10) J5(1,25) J8(5,5) J9(4,5)

J10(1,15)

T=28 J8 J8 J8 J8 J8 J4(3,10) J5(1,25) J7(2,10) J9(4,5)

J10(1,15)

T=30 J9 J9 J9 J9 J9 J4(3,10) J5(1,25) J7(2,10) J8(5,5)

J10(1,15)

T=32 J10 J10 J10 J4 J4 J5(1,25) J7(2,10) J8(5,5)

T=34 J5 J5 J5 J7 J7 J4(3,10) J8(5,5)

T=36 J8 J8 J8 J4 J4 J7(2,10)

T=38 J7 J4

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 393

In CMCBF [5], each node has two virtual machines, one is

allocated for fore-ground and the other is allocated to

background of the environment. CMCBF treats both the

foreground and background jobs simultaneously to achieve

better node utilisation. When a fore-ground VM is idle or

available, the job in background VM is migrated to

foreground VM. When background job departs, the scheduler

scans the queue based on the arrival time of the job and

places the matching job in to the available background VM.

All the jobs in queue are authorised to do pre-emption [5].

The implementation result for CMCBF is shown in Table 6.

Table 6. Conservative Migration and Consolidation

supported Backfilling (CMCBF)
VM P1 P2 P3 P4 P5 TIME QUEUE

FG J1 J2 J2 J3 J3
T=0

J6(1,15) J7(2,10) J8(5,5)

J9(4,5) J10(1,15) BG N J4 J4 J4 J5

VM P1 P2 P3 P4 P5 TIME QUEUE

FG J1 J3 J3

T=5

J6(1,15) J7(2,10) J8(5,5)

J9(4,5) J10(1,15) BG N J4 J4 J4 J5

VM P1 P2 P3 P4 P5 QUEUE

FG J1 J5 J3 J3 J6(1,15) J7(2,10) J8(5,5)

J9(4,5) J10(1,15) J4(3,5) BG N N

VM P1 P2 P3 P4 P5 QUEUE

FG J1 J5 J6 J3 J3 J7(2,10) J8(5,5) J9(4,5)

J10(1,15) J4(3,5) BG N N N

VM P1 P2 P3 P4 P5 QUEUE

FG J1 J5 J6 J3 J3 J8(5,5) J9(4,5) J10(1,15)

J4(3,5) BG N N N J7 J7

VM P1 P2 P3 P4 P5 TIME QUEUE

FG J5 J6

T=10

J8(5,5) J9(4,5) J10(1,15)

J4(3,5) BG N N J7 J7

VM P1 P2 P3 P4 P5 QUEUE

FG J4 J5 J6 J4 J4
J8(5,5) J9(4,5) J10(1,15)

BG N N J7 J7

VM P1 P2 P3 P4 P5 QUEUE

FG J4 J5 J6 J4 J4
J8(5,5) J9(4,5)

BG J10 N N J7 J7

VM P1 P2 P3 P4 P5 TIME QUEUE

FG J5 J6

T=15

J8(5,5) J9(4,5)
BG J10 N N

VM P1 P2 P3 P4 P5 QUEUE

FG J10 J5 J6
J8(5,5) J9(4,5)

BG N N N

VM P1 P2 P3 P4 P5 TIME QUEUE

FG J10 J5

T=20

J8(5,5) J9(4,5)
BG N N

VM P1 P2 P3 P4 P5 QUEUE

FG J9 J5 J9 J9 J9
J8(5,5) J10(1,5)

BG N

VM P1 P2 P3 P4 P5 QUEUE

FG J9 J5 J9 J9 J9
J8(5,5)

BG J10 N

VM P1 P2 P3 P4 P5 TIME QUEUE

FG

T=25

J8(5,5)
BG

VM P1 P2 P3 P4 P5 QUEUE

FG J8 J8 J8 J8 J8

BG

CMCBF is better than AMBF, CMBF, FCFS, EASY and

GANG since it has less waiting time and response time. But

migration cost is more when compared with AMCBF due to

movement of request from background VM to foreground

VM.

G. Aggressive Migration and Consolidation supported

Backfilling (AMCBF)

AMCBF is also similar to CMCBF, it has two virtual

machines and jobs are run in foreground and background

VM's simultaneously. The Pre-emption in AMCBF is done

for the first job in the queue which makes it different from

CMCBF [5].

The implementation result for AMCBF is shown in Table 7.

Table 7. Aggressive Migration and Consolidation supported

Backfilling (AMCBF)
VM P1 P2 P3 P4 P5 TIME QUEUE

FG J1 J2 J2 J3 J3

T=0

J6(1,15) J7(2,10)

J8(5,5) J9(4,5)

J10(1,15)
BG N J4 J4 J4 J5

VM P1 P2 P3 P4 P5 TIME QUEUE

FG J1 J3 J3

T=5

J6(1,15) J7(2,10)

J8(5,5) J9(4,5)

J10(1,15)
BG N J4 J4 J4 J5

VM P1 P2 P3 P4 P5 QUEUE

FG J1 J5 J3 J3 J6(1,15) J7(2,10)

J8(5,5) J9(4,5)

J10(1,15) J4(3,5)
BG N N

VM P1 P2 P3 P4 P5 QUEUE

FG J1 J5 J6 J3 J3 J7(2,10) J8(5,5)

J9(4,5) J10(1,15)

J4(3,5)
BG N N N

VM P1 P2 P3 P4 P5 QUEUE

FG J1 J5 J6 J3 J3 J8(5,5) J9(4,5)

J10(1,15) J4(3,5) BG N N N J7 J7

VM P1 P2 P3 P4 P5 TIME QUEUE

FG J5 J6

T=10

J8(5,5) J9(4,5)

J10(1,15) J4(3,5) BG N N J7 J7

VM P1 P2 P3 P4 P5 QUEUE

FG J4 J5 J6 J4 J4 J8(5,5) J9(4,5)

J10(1,15) BG N N J7 J7

VM P1 P2 P3 P4 P5 QUEUE

FG J4 J5 J6 J4 J4
J8(5,5) J9(4,5)

BG J10 N N J7 J7

VM P1 P2 P3 P4 P5 TIME QUEUE

FG J5 J6

T=15

J8(5,5) J9(4,5)
BG J10 N N

VM P1 P2 P3 P4 P5 QUEUE

FG J10 J5 J6
J8(5,5) J9(4,5)

BG N N N

VM P1 P2 P3 P4 P5 TIME QUEUE

FG J10 J5
T=20 J8(5,5) J9(4,5)

BG N N

VM P1 P2 P3 P4 P5 TIME QUEUE

FG

T=25

J8(5,5) J9(4,5)
BG

VM P1 P2 P3 P4 P5 QUEUE

FG J8 J8 J8 J8 J8
J9(4,5)

BG

VM P1 P2 P3 P4 P5 QUEUE

FG J8 J8 J8 J8 J8

BG J9 J9 J9 J9

AMCBF is better than AMBF, CMBF, FCFS, EASY, GANG

and CMCBF as response time, waiting time, turn-around

time and migration cost are less. But computing devices may

remain idle when compared to the CMCBF.

III. RESULTS AND DISCUSSION

Execution results of the above inputs are depicted in Fig 3 in

terms of average waiting time, average response time,

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 394

average turnaround time and average waiting time for FCFS,

EASY, GANG, AMBF, CMBF, AMCBF, and CMCBF.

Fig 3: Execution graph for Backfilling algorithm

Average turn around time, Average waiting time and

migration time are very high in Gang scheduling. Average

response time is very high in FCFS algorithm. AMCBF

algorithm got less average turn around time. CMCBF and

AMCBF got more or less same result for Average response

time, average waiting time and average migration time.

IV. CONCLUSION

Allocation of idle computing resource is one of the major

problem faced today in cloud computing. Adopting to right

resource allocation algorithms can resolve the problem of

resource allocation. Backfilling algorithms are better than the

existing First Come First Serve algorithms (FCFS) used for

resource allocation. Various 'Backfilling' algorithms are

surveyed. AMCBF produce good results when compared to

other algorithms in the aspect of turn around time, response

time, waiting time and migration time.

REFERENCES

[1] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using

Runtime Predictions Rather than User Estimates,” School of

Computer Science and Engineering, Hebrew University of

Jerusalem, Tech. Rep. TR 2005-5, 2003.

[2] Bhupesh Kumar Dewangan, Amit Agarwal,Venkatadri M,

Ashutosh Pasricha,” Resource Scheduling in Cloud: A Comparative

Study”, International Journal of Computer Sciences and

Engineering, Vol.-6, Issue-8, pp. 168-173,Aug 2018.

[3] Rajnish Choubey et al., “A Survey on Cloud Computing Security,

Challenges and Threats”, International Journal of Computer

Sciences and Engineering, Vol. 3,No. 3 ,pp.1227-1231,Mar 2011.

[4] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job

scheduling strategies for parallel processing”, In Proceedings of

the 10th International Conference on Job Scheduling Strategies for

Parallel Processing, ser. JSSPP’04. Berlin, Heidelberg: Springer-

Verlag, pp. 1–16 , 2005.

[5] Dror G. Feitelson and Ahuva Mu’alem Weil., “Utilization and

predictability in scheduling the IBM SP2 with backfilling”, In

Proceeding of the 12th International Parallel and Distributed

Processing Symposium, pp. 542–546, 1998.

[6] U. Schwiegelshohn and R. Yahyapour., “Fairness in Parallel Job

Scheduling”, “Journal of Scheduling”, 3(5) pp:297-320. John

Wiley, 2000.

[7] Shahabanath K K, Sreekesh Namboodiri T, “K-Tier And Selective

Backfilling Approach for Parallel Workload Scheduling in Cloud”,

International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), Volume 3 Issue 9,

September 2014.

[8] Xiaocheng Liu, Chen Wang, Bing Bing Zhou, Junliang Chen,Ting

Yang, and Albert Y. Zomaya, “Priority-Based Consolidation Of

Parallel Workloads In The Cloud”, IEEE Transactions On Parallel

And Distributed Systems, Vol. 24, No. 9, September 2013.

 Authors Profile

Mrs. V.Nisha is currently pursuing Ph.D in

Mother Teresa Women’s University,

Kodaikanal and currently working as Assistant

Professor in Department of Computer

Sciences, Dhanraj Baid Jain College, Chennai

since 2011. She has published more than 5 research papers in

reputed journals. Her main research work focuses on Cloud

Computing.

Dr.S.Vimala is currently working as

Associate Professor in Department of

Computer Science, Mother Teresa Women’s

University,Kodaikanal since 1999. She has

published more than 40 research papers in

reputed international journals and she presented papers in

more than 40 national and international conferences. Her

main research work focuses on Cloud Computing and Digital

Image Compression.

