

 © 2018, IJCSE All Rights Reserved 373

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-10, Oct 2018 E-ISSN: 2347-2693

Model-based Test Case Prioritization

S.S. Basa
1*

, S.K. Swain
2
, D.P. Mohapatra

3

1
Dept. of Computer Science, North Orissa University, Baripada, Odisha, India

2
School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, Odisha, India

3
Dept. of Computer Science & Engineering, NIT Rourkela, Rourkela, Odisha, India

*Corresponding Author: santiswarup.basa@gmail.com, Tel.: +91-94396-58795

Available online at: www.ijcseonline.org

Accepted: 16/Oct/2018, Published: 31/Oct/2018

Abstract- The efficiency of Software testing can be improved by scheduling the test cases using test case

prioritization technique (TCP). A novel test case prioritization approach is proposed to schedule the execution of test cases in

testing process of software development. Our approach prioritizes the test cases generated from UML Sequence diagram. The

major objective of our TCP approach is to achieve high rate of fault detection and test coverage. In this paper, an intermediate

graph is created form UML sequence diagram to generate the message sequence paths. We calculate the weights of each node

of the graph according to the affecting nodes using forward slice and edge using information flow model. Then the weights of

test paths which are generated from sequence diagram are calculated by adding the weights of associated nodes and edges.

According to the weights of corresponding test paths the test cases are prioritized. The obtained results indicate that the

proposed technique is effective in prioritizing the test cases by the Average Percentage of Fault Detection (APFD) metric to

estimate the performance of our proposed approach. The result of our proposed approach is compared with the result of

traditional approach using APFD for some selected software. Finally, our proposed prioritization approach is also compared

with some available related work.

Keywords-Test case prioritization, sequence diagram, message sequence path, forward slicing, information flow model

I. Introduction

Software has become an important item used in our daily

life, starting from the small mobile applications to home

applications, banks, medical, education, business etc. In

every step of our life it is an indispensable requirement for

each one of us. Testing of the present day software is a big

challenge due to the complexity of present need. In the

software development process software testing is an

expensive phase as it takes longer time to produce a good

quality and reliable software [2]. More than 50% of the

produced software could not able to launch to the market due

to lack of its proper testing [1].

Testing using code based design is a traditional approach

from which the test cases will be generated after coding [3].

This method is very difficult and tedious. At the earlier

stages of software development, testing can be done by using

design documents such as Unified Modeling Language

(UML). The test need not have to wait till the end of the

product development. From the design document, testing can

be done, so that early detection of the faults can be achieved.

For this purpose, the diagram can be converted to an

intermediate graph to generate and prioritize the test cases.

It is a challenge to achieve maximum throughput in software

testing by uncovering the flaws from complex software. The

quality of the software is measured as per the versatility of its

use and the rigorous testing processes it goes across.

Software testers continuously test the product by executing

the test cases to find the bugs during software development.

It is required by the testers to detect the faults as early as

possible. Further, in the evolution process of software

development, it is difficult to test all the test cases in a test

suite as its size grows in subsequent evolutions. So to meet

the goal like detecting faults early and to meet the resource

constraints, the TCP (TCP) schedules the test cases in a

suitable order for execution in testing or retesting. It

increases chances of early finding of errors and improves

efficiency of testing particularly in regression testing. Several

traditional prioritization techniques focuses on rate of early

requirement coverage criterion exercised by the test cases. In

TCP, the major objective is to achieve high rate of fault

detection and test coverage.

The rest parts of the paper are scheduled as: Some related

basic concepts are presented in Section 2. The review of

literatures is discussed in Section 3. Prioritization of test

cases based on our approach is presented in Section 4. In

section 5, the case study with result and analysis is

elaborated. In section 6, we compare the results of our

proposed approach with regard to traditional approach.

Finally, Conclusion and future directions of our work are

presented in Section 7.

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 374

II. Basic Concepts

We discuss UML sequence diagram and the different testing

concepts used to understand our approach in this section.

Then the basic concept of slicing is described which is used

for prioritization of test cases.

A. Sequence Diagram

A sequence diagram SD = < OBJ, MSG > models the

interaction of a set of objects. It consists of a set of objects

OBJ and a sequence of messages MSG. Each message msg =

< OBJ1, OBJ2 , M >  MSG represents a sequential flow of

message from one object OBJ1 to another object OBJ2.

Sequential flow of control can be activated via several

means. Figure 1 is an example of sequence diagram for an

Account Checking use case.

Figure 1. Example of UML Sequence diagram

B. Testing Concepts

Test Case: It is represented through [I, O, C] where I

represents input and O represents expected output under a set

of pre-conditions C. A tester determines whether a system

under test executes as per the requirement specification or

not using test cases. The process of generating test cases also

helps in finding problems in the requirements or design

specification.

Test Scenario: Test scenario represents the end to end

functioning to check the process flow of the system under

test. Test cases can be generated from test scenarios. One test

scenario can have one or more test cases [4].

Message Flow graph: It is a directed graph, MFG= {N, D}

where N is the set of nodes and D is the set of directed edges.

Here N is the set of messages passed in sequence diagram

and D denotes the edge. Edges of MFG called as dependency

edges represent dependencies among nodes.

Message Flow Dependency Graph (MFDG): MFDG is

constructed from MFG by adding parameter dependency

edges among nodes representing the messages of sequence

diagram.

Message sequence path coverage : Suppose a set of test cases

TC is generated from MFG of a sequence diagram SD. Then

the test cases achieve the message sequence path coverage if

TC follows at least one message path in MFG.

C. Test Case Prioritization

Test case prioritization technique finds order of the test cases

for the test execution with higher priority. So prioritized test

cases detect the faults rapidly. This to show how rapidly a

test suite detects faults. Prioritized test suites for regression

testing saves time and cost of retesting. With the intention

that more error prone parts of software are executed and

detect faults with prioritized test cases [6]. During test

execution, prioritized test cases will detect more errors if

executed early. Rothermel presented a metric named APFD

metric (Average Percentage of Faults Detected) to measure

the performance of prioritization [7].APFD is used to

calculate the weighted average percentage of errors

uncovered during the running of the test suite [5]. Let TS be

a test suite which contains q test cases, and let F represents p

faults detected by TS. Let FSi be the number of first test case

in ordering TS′ of TS which detects fault i.

According to rothermel [7], the APFD for test suite TS′ is

computed as follows :

qqp

TFTFTF
APFD

m

2

1...
1

21





(1)

where p represents the number of faults and q represents the

total number of test cases.

D. Slicing

Originally, Weiser[8] has introduced the concept of program

slicing technique to analyze the program by flow of data and

controls for debugging purpose [9]. Program slicing

technique separates out the set of statements which are

affected portion of a program with concerning to a specific

parameter [10-13]. Slicing criterion for program slice refers

to a point of interest for which the slicing will be carried out.

Slicing criterion is represented as (l,r), where l is the

location number of statement point and r is the parameter that

is being used or defined at l. A program slice contains the set

of statements which are affected by the values defined at

slicing criterion. There are different types of program slices

for use in various applications.

Forward Slicing: A forward slice gives the information of

statements affected by the parameter r defined at l [14]. A

forward slice represent a slicing criterion <l,r>, search the

statements those are affected by the parameter r computed at

l.

Backward Slicing : Backward slicing finds the subset of

statements those are affected by the value of a parameter at

the statement defined in slicing criterion [15]. This can be

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 375

computed by moving backward from bottom to top over the

program. It finds all the statements that have an effect on the

value of a parameter at the point of interest. Hence, a static

backward slice finds which statements are affected by the

slicing criterion.

III. Related Work

In this Section, we present some of the existing prioritization

approaches proposed by different researchers.

Kundu et al. [16] proposed a prioritization technique suitable

for project planning using use case scenarios. They have

considered cohesion and coupling to enhance the software

quality and reliability. They have used single use case

without considering the use case relationships. Scenario cost

metric is calculated using scenario path of use case diagram.

In their technique, they detected and compared the

overlapping scenario sub path from other scenario path to get

the analytical solution to be used in project management

activities. They showed efficiency of their approach by an

experiment.

Panigrahi et al. [17] presented their work for prioritization of

test cases using a model-based TCP approach. The forward

as well as backward slicing techniques are used to find the

affected program elements using data and control

dependencies. The affected elements of the used model are

identified with test cases using forward slicing. Backward

slicing is used to mark the model elements those are affected

by test cases. Their approach is suitable specifically for

object-oriented programs.

Sapna et al. [18] proposed a black-box testing technique

using Steiner Tree algorithm to generate minimal test cases.

They divided the nodes into terminal and non terminal nodes.

The terminal nodes were the input to the Steiner Tree

algorithm. Minimal paths were only found considering the

edge weight. Then the test cases were generated from the

generated test paths.

Panda et al. [19] focussed on schduling of test cases for

execution on the basis of higher priority for regression

testing. They presented a code based static technique by

converting a program into Affected Slice Graph (ASG).

Then, the coupling values of affected nodes are calculated.

By adding those coupling values of nodes of a test path are

used to order the test cases. The approach was experimented

with mutation faults to show the fault-proneness of test

cases. According to fault-proneness of test case, they

prioritize the test cases. Lastly, they have compared their

approach with other existing techniques for prioritization of

test cases for the input program.

Gupta et al.[20] discussed a prioritization approach which

improve the efficiency of regression testing by scheduling

the test cases. They multiplied statement coverage with

function calls which is used for ordering of test cases. Lastly,

they analysed the efficiency of ordering of test cases using

APFD metric.

Jeffrey Dennis et al.[21] Proposed a slice and requirement

coverage based method to prioritize the test cases. To show

the effectiveness of their approach, they compared the

experimental results with traditional techniques. They

showed how the outcomes of test cases are influenced by

statement and branches using the relevant slices. The

prioritized test cases detect early faults.

IV. Proposed test case prioritization technique

We first design a UML sequence diagram for particular use

case of a specific system. Then we generate XMI code of the

model. By analysing XMI code, the corresponding message

flow graph (MFG) is constructed using the approach which is

described in our previous paper [22]. Next, we add the

parameter dependency edges in MFG to get message flow

dependency graph (MFDG). From MFG, we can get the test

paths and test cases using the methodology given in [31]

which are to be prioritized using our proposed prioritization

approach. Our proposed approach consists following steps.

1. Compute the costs to each nodes of MFDG representing

its impact using forward slicing.

2. Compute the costs to the edges of MFDG as per the

criticality of message.

3. Calculate the costs of the paths generated from MFG.

4. Prioritize the order of test cases to be generated from test

paths.

Computing the costs to the nodes of MFDG

In our prioritization technique, we apply forward slice to

provide the weight to each of the nodes of MFDG. This

weight represents the number of nodes affected by making

modification at that node. Node weight of a node (Ni) in

MFDG is denoted as the number nodes affected by Ni in the

MFDG. Forward Slice (NFS) of a node of MDG is applied

to calculate this. The calculation of weight of node Ni using

forward Slice FS of node Ni is given in Equ.2.

Weight (Ni) = FS (Ni) (2)

Algorithm for forward slicing: In ForwardSlice algorithm,

mark the node as visited by traversing each edge at most

once. than. Initially no nodes are marked as visited.

Whenever a node is passed as an argument to ForwardSlice()

checked the received node whether it is marked or not

previously. ForwardSlice() marked the node if it is not

visited previously. Then it traverses all the outgoing edges

from the marked node. The function is executed recursively.

The function ForwardSlice is terminated if the node is

marked. The total number of affected nodes found for the

node Ni is computed using ForwardSlice algorithm (i.e. FS

(Ni)) will be considered as effect of that node Ni (i.e

Weight(Ni)) in a particular scenario.

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 376

Algorithm1

Algorithm: ForwardSlice

Input: A MFDG

Output: Forward slice of each node

Initialize Sj = Φ and NSj = 0; // Sj represents slice and NSj

represents visiting status of j-th node

Call FowardSlice (N);

ForwardSlice (Nodei)

begin

 if NSj=1

return (0);

else

 begin

NSj =1 /* Nodei is marked as visited */

Search for Ψj = { Nodej Nodej are the

dependency node on Nodei }

Set Sj = Sj ᴗ Ψj

 for (each node Nodej Є Ψj)

 ForwardSlice (Nodej); /*Recursively

called*/

 end

 end

Computing the costs edges to nodes of MFDG

The weight (cost) of edges is assigned using information

flow model. This weight represents the strength of message

along the path. The cost of each edge is computed using the

information flow index of connecting node. So the cost of

an edge ei  E connecting two consecutive nodes Ni and

Ni+1of MFG is computed using Equ. 3.

Weight(ei)=FAN IN(Ni)FAN OUT(Nj+1) (3)

Where FAN IN(Ni) is the number of incoming edges of node

Ni

and FAN OUT (Ni+1) is the number of outgoing edges of

node Ni+1.

To determine the Weight of an edge in an MFG, depth first

search (DFS) traversal algorithm is used starting from start

node of the MFG. When traversing the MFG, loops are

executed at most once to stay away from path explosion

[23,24]. We determine the incoming and outgoing control

flow edges using information flow model. Then, we compute

the Weight of each edge of the MFG. Each path from the

root node to the end node of MFG corresponds to a scenario

of the use case.

Calculating the costs of the message sequence paths

Message sequence Path weight: Message Sequence Path of

MFG is a basic path MPk ={N1,--e1--N2--e2--N3, . . .,em---

Nm+1}, where e1, e2, . . .,em are edges and N1,N2,…,Nm+1 are

nodes on path MPk in an MSG,. The Path Weight of MPk is

represented as PW (Pk) and is defined as

 


 


1

1 1

)()()(
m

i

m

i

k eiWeightNiWeightPPW (4)

Given the message flow graph (MFG), the work of

prioritization technique is to determine the values of

criWeight for each edge and impWeight for every node, and

pscWeight for each path in the TFG.

Prioritize the test cases : Message sequence path weight is

used to prioritized the corresponding test cases. Equ. 4 is

used to calculate message path weight. Let TPi is a message

sequence path in a MFG and tci is a test case subsequent to

message sequence path TPi. For message sequence path TPi

the values of Weights (TPi) are computed. Then the

computed value will be assigned to the subsequent test case.

Then, the prioritizations of test cases are to be made on the

decreasing order of message sequence path weight value.

V. Case study

We have taken a case study of Issue book use case of Library

information system to explain the working of our proposed

method for prioritizing the test cases generated from

sequence diagram. The UML Sequence Diagram model is

designed using StarUML which is shown in Figure 2. First,

the user login to the system. If the user is a registered

member having correct user-id and password then the book

name will be entered by the user. Otherwise, it will display

error message. Then the book is searched by the system.

Now if the searched book is available and the user has not

exceed the maximum number of books he/she is entitled for

and still book is not issued to the user then consequently an

error message will be displayed. If the book is issued to the

user, the book status will be updated. After the transaction is

over, system will be logged out.

Figure 2. Sequence diagram for issue book use case of

Library Information System

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 377

Label Message

C1 Login

C2 Authentication

C3 Wrong password

C4 Enter book name

C5 Book search

C6 Acknowledgment

C7 Book search result

C8 Request issue

C9 Status checking

C10 Book issued

C11 Acknowledge(limit exceed)

C12 Book status updated

C13 Book not found

C14 Log out

C15 Log out successfully

Figure 3. Message Flow Graph (MFG) with node label for

Issue Book

Fig. 3 shows the MFG of the sequence diagram given in Fig

2. which is designed using control flow among the messages

of sequence diagram.

Possible Test Paths generated from MFG shown in Fig. 3,

using our approach [22] are shown below

TP1: C1-C2-C4-C5-C6-C7-C13-C14-C15

TP2: C1-C2-C3-C1-C2-C4-C5-C6-C7-C13-C14-C15

TP3: C1-C2-C4-C5-C6-C7-C8-C9-C11-C14-C15

TP4: C1-C2-C3-C1-C2-C4-C5-C6-C7-C8-C9-C11-C14-C15

TP5: C1-C2-C4-C5-C6-C7-C8-C9-C10-C12-C14-C15

TP6: C1-C2-C3-C1-C2-C4-C5-C6-C7-C8-C9-C10-C12-

C14-C15

Figure 4. Message Flow Dependency Graph (MFDG) for

Issue Book

Table 1 (a) Node Weights of MFDG

Node Nodes affected Node weight

S1 C1, C14,C15 3

S2 C2,C3,C14 3

S3 C3,C1 2

S4 C4,C5,C6,C7,C10,C12,C13 7

S5 C5,C6,C8 3

S6 C6,C7,C8 3

S7 C7,C8,C13 3

S8 C8 1

S9 C9,C10,C11,C12 4

S10 C10,C12 2

C1

C14

C5

C7

C2

C4

C8

C11

C3

C13

C10

C6

C9

C15

C12

C5

C7

C14

C4

C8

C11

C13

C10

C6

C9

C15

C12

C1

C2

C3

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 378

S11 C11 1

S12 C12 1

S13 C13 1

S14 C14,C15 2

S15 C15 1

Table 1 (b) Edge Weights of MFDG

Edge weight

C1-C2(e1) 2

C2-C3(e2) 1

C2-C4(e3) 1

C3-C1(e4) 1

C4-C5(e5) 1

C5-C6(e6) 1

C6-C7(e7) 2

C7-C8(e8) 1

C7-C13(e9) 1

C8-C9(e10) 2

C9-C10(e11) 1

C9-C11(e12) 1

C10-C12(e13) 1

C11-C14(e14) 1

C12-C14(e15) 1

C13-C14(e16) 1

C14-C15(e17) 3

A. Test case Prioritization and Analysis

We compute the forward slice of each node using the

algorithm "Forward Slice" given in the Algorithm 1.Using

Equ.2 the node weights are calculated. The edge weights are

calculated using information flow model given in Equ.3.

Lastly, the overall weight is calculated for each test sequence

path using the proposed metric presented in Equ.4. The

calculated weights for Fig.4 are presented in Table 2.

We can prioritize the test cases of corresponding message

paths in order of decreasing weights. Hence, the prioritized

test case order is either tc6, tc4, tc2, tc5, tc3, tc1 to detect as

faults earlier.

Table 2 Basic path sequence -wise weight calculation

Pat

h

Corres

pondin

g test

cases

Path

Sequence

Nod

e

Wei

ght

Edge

Weig

h

t

Weig

ht

Prior

ity

orde

r

TP

1
tc1

C1-C2-C4-

C5-C6-C7-

C13-C14-

C15

26 12 38 VI

TP

2
tc2

C1-C2-C3-

C1-C2-C4-

C5-C6-C7-

C13-C14-

C15

34 16 50 III

TP

3
tc3

C1-C2-C4-

C5-C6-C7-

C8-C9-C11-

C14-C15

31 15 46 V

TP

4
tc4

C1-C2-C3-

C1-C2-C4-

C5-C6-C7-

C8-C9-C11-

C14-C15

39 19 58 II

TP

5
tc5

C1-C2-C4-

C5-C6-C7-

C8-C9-C10-

C12-C14-

C15

33 16 49 IV

TP

6
tc6

C1-C2-C3-

C1-C2-C4-

C5-C6-C7-

C8-C9-C10-

C12-C14-

C15

41 20 61 I

B. Complexity Analysis

Let n be the number of nodes in the MFDG for representing

the model. So the number of edges is n-1. Thus the worst

case time complexity to calculate the cost of node can be

O(n
2
) (i.e. n  (n-1)). For the computation of weight of edge,

any edge of MFDG is visited at most once. So if E is the total

number of edges, then the time complexity will be O(E).

C. Efficiency Measures

We have used APFD metric to show the increased rate of

fault detection of a test suite quantitatively. It measures the

percentage of faults detected using weighted average. The

APFD is calculated using Equ.1 and represented by values

from 0 to 100. The rate of fault detection is faster if the value

of APFD is higher.

Table 3 Fault detection using Non-Prioritized Test cases

Test Cases
Faults

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12 Total

tc1     4

tc2   

   6

tc3 

  

   6

tc4 

       8

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 379

tc5       6

tc6    

    8

Table 4 Fault detection using Prioritized Test cases

Test Cases
Faults

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12 Total

tc6         8

tc4    

     8

tc2   

    6

tc5 

     6

tc3 

 

    6

tc1  

   4

Table 3 shows fault detection by using Non-Prioritized test

cases in test suite TS that detects fault FSi, for issue book of

library information system given in Fig.1.There are twelve

numbers of faults taken for this given example and six

numbers of test cases are selected for fault detection.

Here, we have considered p=12 and q=6. Now, APFD value

for a non-prioritized test suite TS (i.e. tc1, tc2, tc3, tc4, tc5,

tc6) is

66.0
6*2

1

12*6

233511533211
1 


APFD

Using our methodology, the order of prioritized test cases

TS′ can be found as : tc6, tc4, tc2, tc5, tc3, tc1. For p = 12 and q

= 6 shown in Table 3 we found the following APFD value

from Table 4. for the prioritized test cases are as follows.

83.0
6*2

1

12*6

121113112131
1 


APFD

So, after comparing the APFD values of the prioritized and

non-prioritized test cases. It is observed that the APFD value

of prioritized test suite of is increased by 15% than the non-

prioritized test suite.

VI. Results & Comparison with related work

Test Case Prioritization (TCP) techniques plan the ordering

of execution of test cases in a test suite which increases the

performance of testing or retesting by increasing the rate of

fault detection. The test cases of higher priority in a test suite

can enhance the goal than a random ordered test suite. Here,

the complexity and necessity of test paths are of major

concerns. The summary of comparison of results of our

proposed approach with traditional approach using APFD for

different selected software is given in Table 5. From Table 5,

it is observed that our model-based prioritization approach

helps to increase performance of testing by percentage of

fault detection for all considered software as compared to the

traditional approach [7]. The graph representation of Fault

detection percentage using Traditional vrs proposed approach

is shown in Fig. 5. Hence, our proposed approach is

generates effective prioritized test suites.

Various Test Case Prioritization approaches describes in the

literature [17,28,7,5] select regression based test cases by

analyzing the source code. Other approaches [5,21,25,26]

considered only data or control dependencies of program

parameters. They [17] considered the test case dependencies

for test case prioritization. We have proposed a UML based

prioritization of test case approach using forward slice and

information flow model in addition to dependencies. Further,

it was presume by some existing methods that each one of

the test cases are independent.. The forward slice helps to

find elements having some dependencies on parameters of

message. We have also considered the complexity and

criticality of the test path for TCP purpose.

Kundu et al. [16] reported the overlapping scenario sub path

from other scenario path to get the analytical solution to be

used in project management activities. They showed

efficiency of their approach by an experiment. In comparison

to their approach, we have used data and control dependency

Table 5 Summary of comparison between Traditional vrs proposed approach

Experimental

Case Studies

TTC TFI Fault detection % for

using traditional method

Fault detection % using

our proposed approach

Fault detection %

increased using APFD

Online Hotel Management

System 45 39 63.81 76.45 12.64

Vending Machine System 36 42 71.56 82.32 10.76

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 380

University Library

Information System 63 58 69.40 81.27 11.87

Online Bus ticket Booking

System 59 62 65.76 81.89 16.13

Online Biometric System 48 45 66.58 79.91 13.33

Organisational workflow

automatic System 37 28 71.14 82.38 11.24

TTC: Total number of Test Cases taken

TFI: Total number of faults identified

Figure5. Fault detection percentage using Traditional vrs Proposed approach

and forward slice to calculate the complexity and criticality

of the path. For specific set of test cases, our approach also

detects the redundant test cases.

Further some approaches [25,5], where coverage criterion

based prioritization is used by identifying untested affected

statements. We have observed in our case study, nearly 12

percent more regression fault detection ability as compared

to Rothermel’s [7] approach, which is shown in Table 5.

VII. Conclusion and Future Work

In order to achieve better performance in software testing, we

presented a TCP (Test Case Prioritization) technique to

schedule the order of test cases generated from UML

sequence diagrams. Our proposed approach is essentially

suitable for cluster level testing. The proposed model based

TCP approach is systematic, logical and easy to implement.

The APFD metric is easy to compute for knowing the

performance of testing. With the proposed approach, some

performance goals are achieved which includes faster rate of

coverage of code, higher rate of detecting faults, and faster

rate in increasing the confidence in reliability of the system.

The results obtained from our approach are compared with

the approaches of some other researches. It is observed that,

our approach performs better then the randomized approach

& some existing approaches [7,19,18]. In future work, we

would like to optimize the test cases using some soft

computing techniques like deep learning and artificial neural

network etc.

References

[1]. R. Mall, “Fundamentals of Software Engineering”, Prentice-Hall,

Springer-Verlag GmbH, 3rd Edition 2009.

[2]. M. Khatibsyarbini, M.A. Isa, Dayang N.A, Jawawi, R. Tumeng,

“Test case prioritization approaches in regression testing: A

systematic literature review” Information and Software

Technology, Vol.93, pp. 74-93, January 2018.

[3]. H. Srikanth, L. Williams. “On the economics of requirements-

based test case prioritization”, In Proceedings of the Seventh

International Workshop on Economics-Driven Software

Engineering Research, 2005.

[4]. C. E.Williams, “Software testing and the UML” In Proceedings of

the International Symposium on Software Reliability Engineering,

(ISSRE ’99), Boca Raton, FL, November 1999.

0

20

40

60

80

100

Online Hotel

Management

System

Vending

Machine

System

University

Library

Information

System

Online Bus

ticket

Booking

System

Online

Biometric

System

Organisational

workflow

automatic

System

63.81
71.56 69.4 65.76 66.58 71.14 76.45

82.32 81.27 81.89 79.91 82.38

Fault detection % using traditional approach
Fault detection % using proposed approach

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 381

[5]. S. Elbaum, A.G.Malishevsky, G.Rothermel, “Test case

prioritization: A family of empirical studies”, IEEE Transactions

on Software Engineering, Vol. 28,Issue.2, pp. 159-182, 2002.

[6]. J. Chen , L. Zhu , T. Y. Chen , D. Towey, Fei-Ching Kuo , R.

Huang , Y. Guo, “Test case prioritization for object-oriented

software: An adaptive random sequence approach based on

clustering”, The Journal of Systems and Software, Vol. 135, pp.

107–125, 2018.

[7]. G. Rothermel, R. H.Untch, C.Chu, M. J.Harrold, “Prioritizing test

cases for regression testing”, Software Engineering, Vol.

27,Issue.10, pp. 929-948, 2001.

[8]. M.Weiser, “Program slicing”, In Proceedings of the 5th

International Conference on Software, San Diego, Calif, USA, pp.

439–449, 1981.

[9]. M. Weiser, “Programmers Use Slices when Debugging”,

Communications of the ACM 25, vol.7, pp.446-452, 1982.

[10]. A. Besz´edes, “Global dynamic slicing for the C language,” Acta

Polytechnica Hungarica, vol. 12, no. 1, pp. 117–136, 2015.

[11]. X. B. Li, C. X. Fan, J. Pang, and J. J. Zhao, “A model for slicing

JAVA programs hierarchically,” Journal of Computer Science and

Technology, vol. 19, no. 6, pp. 848–858, 2004.

[12]. H. W. Alomari, M. L. Collard, J. I. Maletic, N. Alhindawi, and O.

Meqdadi, “srcSlice: very efficient and scalable forward static

slicing,” Journal of Software: Evolution and Process, vol. 26,

no.11, pp. 931–961, 2014.

[13]. J. Silva, “A vocabulary of program slicing-based techniques”,

ACM Computing Surveys, vol. 44, no. 3, article 12, 2012.

[14]. Z. Awedikian, K. Ayari, G . Antoniol, “MC/DC Automatic Test

Input Data Generation”, In Proceedings of the 11th Annual

conference on Genetic and evolutionary computation, ACM, pp.

1657-1664, 2009.

[15]. M. Weiser, “Program slicing”, IEEE Transactions on Software

Engineering, Vol. 10, No. 4,pp.352–357, 1984.

[16]. D. Kundu, D.Samanta, “A novel approach of prioritizing use case

scenarios”, Asia–Pacific Software Engineering Conference

(APSEC), IEEE Computer Society, Washington, DC, pp. 542-549,

2007.

[17]. C. R.Panigrahi, R. Mall, “Model-based regression test case

prioritization”, ACM SIGSOFT Software Engineering Notes, Vol.

35,No.6, pp. 1-7, November 2010.

[18]. P.G. Sapna , A. Balakrishnan”An Approach for Generating

Minimal Test Cases for Regression Testing”, Procedia Computer

Science, Vol. 47,pp. 188 – 196, 2015

[19]. S. Panda, D. Munjal, D. P. Mohapatra, ”A Slice-Based Change

Impact Analysis for Regression Test Case Prioritization of Object-

Oriented Programs”, Advances in Software Engineering, Volume

2016, pp.1-20, 2016.

[20]. S. Gupta , H. Raperia , E. Kapur , H. Singh, A. Kumar,”A Novel

Approach for test case Prioritization”, International Journal of

Computer Science, Engineering and Applications (IJCSEA) Vol.2,

No.3, 2012.

[21]. D. Jeffrey, N.Gupta, “Test case prioritization using relevant

slices”, International Computer Software and Applications

Conference (COMPSAC). IEEE Computer Society, Washington,

DC, pp. 411–420, 2006.

[22]. S.S.Basa, S.Swain, D.P.Mohapatra,”UML Activity Diagram-

Based Test Case Generation”, Journal of Emerging Technologies

and Innovative Research (JETIR), Volume 5, Issue 8, 2018.

[23]. C. Mingsong, Q. Xiaokang, L. Xuandong, ”Automatic test case

generation for UML activity diagrams”, In International workshop

on Automation of software test, pp. 2-8, 2006.

[24]. D. Kundu, D. Samanta,” A Novel Approach to Generate Test

Cases from UML Activity Diagrams”, Journal of Object

Technology, Vol. 8, No. 3, pp.65-83, 2009.

[25]. G.Rothermel., R. H.Untch, C.Chu, M. J.Harrold, “Prioritizing test

cases for regression testing”, Software Engineering, Vol.

27,Issue.10, pp. 929-948, 2001.

[26]. S. Elbaum, G. Rothermel, S. Kanduri, and A. Malishevsky,

“Selecting a cost-effective test case prioritization technique”,

Software Quality Control, Vol.12, Issue.3, pp.185–210, 2004.

Authors Profile

Santi Swarup Basa received his MCA degree

from BPUT,Rourkela, M.Tech (Comp.Sc.)

from F.M.University, Balasore and pursuing

his Ph.D at North Orissa University, Baripada

He is currently working as Assistant Professor

in Department of Computer Science, North Orissa

University, Baripada. His research interests include software

engineering and Soft Computing. He has published few

research papers in different International /National Journals

and conferences.

Santosh Kumar Swain received his Ph.D. from

KIIT University,India. His academic interests

lie in Software Engineering, Web Engineering,

Human-Computer Interaction, Cloud

Computing, Data Mining and Wireless Sensor

Network. He has published research papers in

25 international journals and 12 international conferences.

He is also the co-authored of three books in the area of

computer science. He is the member of LMISTE, MCSI.

Durga Prasad Mohapatra received his Ph.D.

from Indian Institute of Technology

Kharagpur and M. E. from Regional

Engineering College (now NIT), Rourkela. He

joined the faculty of the Department of

Computer Science and Engineering at the National Institute

of Technology, Rourkela in 1996, where he is now Professor.

His research interests include software engineering, real-time

systems, discrete mathematics and distributed computing. He

has published more than hundred research papers in these

fields in various international Journals and conferences. Dr.

Mohapatra has been teaching software engineering and

discrete mathematics to UG and PG students at NIT

Rourkela for the past twenty years. He has received Young

Scientist Award for the year 2006 by Orissa Bigyan

Academy. He has also received Prof. K. Arumugam National

Award and Maharashtra State National Award for

outstanding research work in Software Engineering for the

years 2009 and 2010 respectively by Indian Society for

Technical Education (ISTE), NewDelhi, Bharat Sikshya

Ratan Award by Global Society for Health and Educational

Growth, Delhi for the year 2011. He has received three

research projects amounting Rs. 36 Lakhs from DST and

UGC, Govt. of India. Currently, he is a senior member of

IEEE. Dr. Mohapatra has co-authored the book Elements of

Discrete Mathematics: A computer Oriented Approach

published by Mc-Graw Hill Education.

https://www.hindawi.com/54868942/
https://www.hindawi.com/13152508/
https://www.hindawi.com/19720512/

