

 © 2019, IJCSE All Rights Reserved 371

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

Test Case Reduction for Object Oriented Systems using Security Metrics

Sameeksha Khare

1*
, Rajvir Singh

2
, Ajmer Singh

3

1,2,3

 Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science and Technology, India

Corresponding Author: sameekshakhare65@gmail.com, Tel.: 9991603826

 DOI: https://doi.org/10.26438/ijcse/v7i6.371378 | Available online at: www.ijcseonline.org

Accepted: 12/Jun/2019, Published: 30/Jun/2019

Abstract— Test cases play crucial role in software testing. The exhaustive testing of large complex object oriented software

systems has been found to be impractical due to large number of test cases execution cost. Due to this reason the researchers in

the field of software testing reduce the number of test cases by selecting only effective and important test cases. This paper

presents an approach for test case reduction for object oriented systems considering the security as main aspect of software

system. Finding out less secure classes help software testers to remove redundant test cases at class level. Object oriented class

level security metrics have been considered to detect less secure classes. To evaluate proposed approach, jEdit 5.5.0 software

as a case study has been considered. Weka 3.8 was used to generate the proposed mathematical model in order to select

effective metrics to detect all the less secure classes. Using feature selection techniques in Weka, effective and ineffective

security metrics were categorized. Only effective metrics are taken into account for assigning weighs to each test paths. The

results showed the significant improvement in results.

Keywords— jEdit5.5.0, Test Case, Test Cases Reduction

I. INTRODUCTION

The definition of Test suite reduction is given as: “Given a

test suite TS represents a set of test cases {t1, t2, t3… tn}, a

set of test requirements R = {R1, R2 . . . Rn} to be covered,

and subsets of TS, S = {S1, S2 . . . Sn}, where each test set is

associated with Ri. The objective is to find the representative

subset of S that satisfies all of requirements”, according to

[1].Due to constraints of time and resources, it is essential to

make an approach to minimize available test suites. This

paper proposes an approach for test case reduction

considering the object oriented (OO) security metrics at

design level. Due to addition of new test cases to the test

suite, size of test suit increases which in turn increases the

cost of testing. The overall goal is to reduce the time and cost

of testing while maintaining the system secure. To make the

system secure, it is very important to find vulnerabilities as

early as possible. The less secure classes are identified by

finding out the effective OO security metrics. Furthermore,

this paper categorizes OO metrics, namely effective and

ineffective, linear regression method and feature selection

technique. The feature selection technique used is

CfsSubsetEval (attribute evaluator) with best first search

method. This paper presents a mathematical model used to

show the impact of security metrics on OO designs so as to

minimize the errors. For the generation of mathematical

model, WEKA tool is used.

WEKA stands for “Waikato Environment for knowledge

Analysis”. It is an open source software which was developed

at university of Waikato, New Zealand and is written in Java.

It comprises of machine learning approaches for clustering,

regression, data classification, rules mining for visualization

and association of data (WEKA, 2018).

For analyzing class dependencies of source code of system

under test (SUT), Code Pro Analytix version7.1.0 ,a plug-in is

used for java eclipse for testers. Various features of this tool

include code analysis, JUnit Test Generation, compute

metrics, code coverage, dependency analysis and JUnit Test

Editor. In this paper, this tool is used for dependency analysis.

Once this tool is installed, then for generating class

dependency graph (CDG), Right click on the

project>CodePro Tools> Dependency Analysis. From this

CDG, all the test paths are generated using Breadth First

Search (BFS) which is a graph traversal algorithm. BFS

visits all the nodes level-wise and generates test paths taking

on account source node and destination node. After

generating test paths, test cases are selected on the basis of

assigned weight to every test path. Then, finally reduced test

cases are obtained.

A. Organization of this paper

The organization of paper is as follows. Section I presents the

introduction of the field of research, importance of security

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 372

in object oriented system and tools used in the research.

Section II comprises of existing work on Test Case

Reduction in OO systems and few papers on security metrics

are also discussed. Section III consists of the proposed

methodology used in this research. In Section IV, steps of

implementation of used in the approach are presented.

Section V comprises of the results and analysis of the

research work. Section VI presents conclusion and future

work.

 II. Related Work

In this section, existing work that is related to Test Case

Reduction for Object Oriented systems has been discussed

and a brief review of security metrics has been provided.

(DM Thakore and S.J Sarde, 2012) introduced an approach

“source code analysis for software quality metrics” to find

out code complexity and security of large software and

discussed limitations of various tools.

(Soham H Gandhi et al.,2013) developed a new set of OO

metrics (CIDA,COA,CMW) to predict vulnerabilities at the

design phase taking security metrics based on interaction and

accessibility in order to reduce cost of project.

(Nicholas Frechette et al.2013) suggested a control call

graph(CCG) technique for regression test case reduction and

developed the tool to support the approach used.

(Naresh Chauhan, 2015) presented an approach (OPDP and

slicing technique) to reduce number of test cases considering

modified object oriented programs.

(Sudhir Kumar Mohapatra and Srinivas Prasad, 2015)

presented an ACO Reduce algorithm for test case reduction

in Object oriented programs and comparison is done with

various other reduction algorithms.

(Bandar M.Alshammari, 2016) introduced a generic model to

evaluate the security of object oriented designs by using

multilevel classification of its security critical data.

(B.Geetha and D. Jeya Mala, 2016) proposed a novel strategy

for Test Case Reduction in Object Oriented Systems using

Clustering and Fuzzy Logic.It is a three phase process in

which Reflexive technique is used.

(Dr. Sandeep Dalal and Susheela Hooda, 2017) presented

combined heuristic approach using Genetic and Fuzzy

Clustering Algorithm to test OO Software Systems and to

reduce or minimize test cases considering branch coverage

criteria.

(Abdullah Al Hussein, 2017) presented OO quality metrics

tool for software assessment.

(Allesandro et al., 2017) introduced a multi-objective

approach for Test Case Reduction (MORE+) which maximize

fault detection. It is implemented for 20 Java applications but

the approach was costly.

(Shweta Dwivedi and Santosh Kumar, 2018) proposed an

approach of reduction or optimization of test suite for Fuzzy

Object Oriented Database (FOOD) taking on account a case

study on Hospital Based PDS in which conditions or states of

patients is shown using SCD, whole process of Heart Disease

is represented using CFG and test cases are reduced using C-

Means Clustering Algorithms.

 From the above discussion, it is concluded that more work

can be done using OO metrics to reduce test cases. In this

paper, OO security accessibility metrics are used to remove

redundant test cases found using BFS through CDG obtained

for software module under test (jEdit5.5.0).

Table1-Test Case Reduction Techniques for OO programs

S.No Authors Technique

Used

Research gaps

1.
Nicolas

Frechette, Linda

Badri, and

Mourad Badri

(2013)

Control call

graph based

technique

Security metrics

are ignored

2. S.K. Mohapatra

and S. Prasad

(2015)

ACO reduce

technique

Not included

security metrics

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 373

3. Naresh Chauhan

and Vedpal (2015)

Slicing and

OPDG are

used

Not

discussed

security

metrics

4. S.K. Mohapatra

(2015)

Genetic

Algorithm

Further

analysis can

be done with

program of

more line of

code in

future

5. B. Geetha And

Jeya Mala (2016)

Reflexive

Technique

Lack of

security

metrics

Lack of

flexibility

6. B. M. Alshammari

(2016)

Model

considering

cohesion

metrics

Influence of

software

quality

properties

for example

polymorphis

m,

inheritance

on the safety

of programs

that are

object-

oriented is

ignored.

7. A. Marchetto, G.

Scanniello, and A.

Susi (2017)

Multi

Objective

Approach

Focused

only on the

cost of test

suite

reduction

Absence of

the security

metrics

parameters

8. Dr Sandeep Dalal,

Susheel Hooda

(2017)

Used

Metaheuristi

c approach

to reduce

test cases

Object

oriented

metrics are

not used

9. A.Al

Hussein(2017)

Made

Object

oriented tool

Quality

metrics are

considered

Ignored the

security

metrics

10. S. Dwivedi(2018) Clustering

Technique
Lack of

security

metrics

 III. METHODOLOGY

Relevant details should be given including experimental

design and the technique (s) used along with appropriate

statistical methods used clearly along with the year of

experimentation (field and laboratory).In this proposed work,

firstly source code of jEdit 5.5.0 is given as an input then

security metrics are calculated for that code.

Secondly, a mathematical model or equation is generated

through WEKA tool(free and open source software) using

machine learning algorithm namely linear regression which

helped in categorizing effective metrics and ineffective

metrics. Thirdly, using the same input file, class dependency

graph (CDG) was generated using Code Pro Analytics

version7.1.0 tool, a plug in used for java eclipse neon.3.

From the CDG, test paths were generated using BFS

algorithm. Then weights were assigned to each test path

using security prediction mathematical model and sorting of

test paths were done based on assigned weights.

Finally, reduced test cases were obtained corresponding to

test paths selected. To detect less secure classes, OO security

metrics were taken into consideration. Security metrics can

be calculated based on factors like interaction, accessibility

etc. In this paper, security accessibility metrics has been

used.

To examine the values of metrics, jEdit 5.5.0 was chosen.

The security metrics considered are Class Public Method

Ratio (CPUBMR), Class Private Method Ratio (CPRIMR),

Class Protected Method Ratio (CPROMR), Class Public

Attribute Ratio(CPUBAR), Class Private Attribute

Ratio(CPRIAR), Class Protected Attribute Ratio(CPROAR).

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 374

Fig 3.1 Block Diagram for proposed Test Case Reduction

Method

The detailed stepwise implementation is given below:

Step1. Selection of effective metrics: Calculate security

metrics for software used for evaluation (here jEdit

5.5.0).WEKA provides two methods for selecting effective

metrics: (i) Using Filters (ii) Using Select Attributes.

CfsSubsetEval (attribute evaluator) with Best First Search

Method is used for selecting metrics. The selected metrics

are CPUBMR, CPRIAR and Security.

At this step, classifier is selected and mathematical model or

equation is generated. Classifier chose for this paper is

Linear Regression.

The Linear Regression Model generated is:

Security Prediction = 2.2293 * CPRIMR + 0.3224 *

CPRIAR + 0.4896 * CPROAR - 0.0756

Root relative squared (R2) error for this model is 88.267%.

Step2. Generation of CDG: Class Dependency graph (CDG)

has been used to show the dependencies of classes which

will further required to generate test paths through Breadth

First Search(BFS). For making class level CDG, Code Pro

Analytix version 7.1.0 was used.

Step3. Selection of Test Paths: After generating test paths,

selection of test paths take place on the basis of weights

calculated for test paths obtained, with the help of model

generated through WEKA.

Step4: Generation of reduced test paths: After getting the

selected test cases, redundant test cases get removed and

50%test cases having weights of lower value are generated.

Finally, reduced test cases are obtained.

Fig.2. CDG for classes of jEdit5.5.0 module

(a)

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 375

(b)

(c)

(d)

(e)

 (f)

(g)

 (h)

(i)

Fig.3. (a)-(i) Generation of Test paths from CDG using

Breadth First Search

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 376

These are the test paths that are generated using Breadth First

Search from CDG of jEdit5.5.0 software.

Table.2. Test Paths generated using CDG

Test Case ID Test Paths

TC1 0,3 bb0,3

TC2 0,1,3 0,1,3

TC3 0,2,3 0,2,3

TC4 0,1,2,3 0,1,2,3

TC5 0,1,4,3 0,1,4,3

TC6 0,1,6,3 0,1,6,3

TC7 0,2,1,3 0,2,1,3

TC8 0,2,1,4,3 0,2,1,4,3

TC9 0,2,1,6,3 0,2,1,6,3

TC10 1,3 1,3

TC11 1,2,3 1,2,3

TC12 1,4,3 1,4,3

TC13 1,6,3 1,6,3

TC14 2,3 2,3

TC15 2,1,3 2,1,3

TC16 2,1,4,3 2,1,4,3

TC17 2,1,6,3 2,1,6,3

TC18 4,3 4,3

TC19 5,3 5,3

TC20 6,3 6,3

TC21 7,3 7,3

TC22 9,3 9,3

TC23 10,3 10,3

Table 3. Weights Calculated for test cases

Test Case Id Weight

TC1 0.840185

TC2 1.527165

TC3 1.270024

TC4 1.957004

TC5 1.451565

TC6 1.451565

TC7 1.957004

TC8 1.881404

TC9 1.881404

TC10 1.218440

TC11 1.648279

TC12 1.14284

 TC13 1.14284

TC14 0.961299

TC15 1.648279

TC16 1.572679

TC17 1.572679

TC18 0.45586

TC19 1.09396

TC20 0.45586

TC21 0.77826

TC22 1.06292

TC23 1.06292

Figure 4: Security prediction Model using WEKA

Table 4. Ordered Test Cases

Test Case ID Weight

TC18 0.45586

TC20 0.45586

TC21 0.77826

TC1 0.840185

TC14 0.961299

TC22 1.06292

TC23 1.06292

TC19 1.09396

TC12 1.14284

TC13 1.14284

TC10 1.218440

TC3 1.270024

TC5 1.451565

TC6 1.451565

TC2 1.527165

TC16 1.572679

TC17 1.572679

TC11 1.648279

TC15 1.648279

TC8 1.881404

TC9 1.881404

TC4 1.957004

TC7 1.957004

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 377

Table 5. Selected Test Paths

Test Case ID Weight Nodes

TC18 0.45586 4,3

TC20 0.45586 6,3

TC21 0.77826 7,3

TC1 0.840185 0,3

TC14 0.961299 2,3

TC22 1.06292 9,3

TC23 1.06292 10,3

TC19 1.09396 5,3

TC12 1.14284 1,4,3

TC13 1.14284 1,6,3

TC10 1.218440 1,3

TC3 1.270024 0,2,3

Table 6. Finally Generated Test Cases

 IV. RESULTS AND DISCUSSION

It should include important findings discussed briefly.

Wherever necessary, elaborate on the tables and figures

without repeating their contents. Interpret the findings in

view of the results obtained in this and in past studies on this

topic. State the conclusions in a few sentences at the end of

the paper. However, valid colored photographs can also be

published.

Root Relative Squared Error for proposed model is 88.267%

Root Relative Absolute Error is 63.2912%

Execution time=The execution time is reduced as test cases

that are selected are less than the total number of test cases.

Assuming execution time for each test case is per unit

time(one second) then time saving is 23-12=11s i.e. 47.8%

time is saved.

TSI(Total Security Index)=The total security index which

was earlier 30.034435,now is reduced to 11.485408 which

means the overall security of object oriented system is

increased by 38%.

 V. CONCLUSION AND FUTURE SCOPE

In this paper, less secure classes are found out for jEdit 5.5.0

software using effective security metrics. CDG is generated

for it and all the test paths are revealed using BFS and then

weights it and all the test paths are revealed using BFS and

then weights are given to each test path using generated

model and finally test cases are reduced by removing

redundant test cases The approach used for test case

reduction is effective as it shows root relative squared (R2)

error for corresponding model as 88.267% and 47.8% time is

saved and efficient as security is increased by 38%.

The proposed approach used is capable of achieving the

objectives but still more work can be done like:

In this case, more options of machine learning can be used

for saving more execution time and to automate testing

completely.Total Security Index of this approach can be

improved by considering more factors of security so that

overall security of the object oriented systems can be

improved.

REFERENCES

 [1] M. Harrold, R. Gupta and M. Soffa, “A methodology for

controlling the size of a test suite,” ACM Transactions in Software

Engineering and Methodology, Vol. 2, No. 3, 1993, pp. 270-285.

[2] A. Agrawal, S. Chandra, and R.A. Khan, “An Efficient

Measurement of Object-Oriented Design Vulnerability”, In

Proceedings of International Conference on availability, Reliability and

Security, Fukuoka, Japan, 1619 March 2008, ARES 2009

Test

Case

ID

 Nodes Class level test case

TC18 4,3 “org.gjt.sp.jedit.Macros”

 “org.gjt.sp.jedit.Editbus”

TC20 6,3 “org.gjt.sp.jedit.JEditRegisters

 Listeners”“org.gjt.sp.jedit.Editbus”

TC21 7,3 “org.gjt.sp.jedit.EBPlugin

 “org.gjt.sp.jedit.Editbus”

TC1 0,3 “org.gjt.sp.jedit.Edit pane”

 “org.gjt.sp.jedit.Editbus”

TC14 2,3 “org.gjt.sp.jedit.buffer

 “org.gjt.sp.jedit.Editbus”

TC22 9,3 “org.gjt.sp.jedit.Send Message”

 “org.gjt.sp.jedit.Editbus”

TC23 10,3 “org.gjt.sp.jedit.HandlerList” 

 “org.gjt.sp.jedit.Editbus”

TC19 5,3 “org.gjt.sp.jedit.Window Handler”

 “org.gjt.sp.jedit.Editbus”

TC12 1,4,3 “org.gjt.sp.jedit.jEdit”

 “org.gjt.sp.jedit.Macros”

 “org.gjt.sp.jedit.Editbus”

TC13 1,6,3 “org.gjt.sp.jedit.jEdit”

 “org.gjt.sp.jedit.JEditRegisters

 Listeners”“org.gjt.sp.jedit.Editbus”

TC10 1,3 “org.gjt.sp.jedit.jEdit” 

 “org.gjt.sp.jedit.Editbus”

TC3 0,2,3 “org.gjt.sp.jedit.Edit Pane”

 “org.gjt.sp.jedit.buffer” 

 “org. gjt. sp. jedit.Editbus”

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 378

[3] Zhang Guangquan and Rong Mei, “An Approach Of Concurrent

Object-Oriented Program Slicing Based On LTL Property”,

International Conference on Computer Science and Software

Engineering, pp. 650-653,2008

[4] S. Chandra and R. A. Khan, “Software Security Metric

Identification Framework” International Conference on Advances in

Computing, Communication and Control, pp. 725–731, 2009

[5] B. Alshammari, C. Fidge, and D. Corney (2009), “Security Metrics

for Object-Oriented Class Designs,” 9th International Conference

on Quality Software, Jeju, pp. 11-20,2009.

[6] B. Alshammari, C. Fidge, and D. Corney (2010), “Security Metrics

for Object-Oriented Designs,” 21st Australian Software

Engineering Conference, pp 55-64, 2010.

[7] D. M. Thakore and S. J. Sarde, “Assessing the Software Complexity

and Security metrics from UML Class diagram,” International

Journal of Engineering Research and Applications, vol. 2, no. 4, pp.

585–587, 2012.

[8] S. H. Gandhi, D. R. Anekar, M. A. Shaikh, and A. A. Salunkhe,

“Security Metric for Object Oriented Class Design- Result

Analysis,” International Journal of Innovative Technology and

Exploring Engineering, vol no. 6, pp. 139–144, 2013.

[9] N. Frechette, L. Badri, and M. Badri, “Regression Test Reduction

for Object-Oriented Software : A Control Call Graph Based

Technique and Associated Tool,” Hindawi Publishing Corporation

ISRN Software Engineering, 10 pages, vol. 2013.

[10] S. H. Gandhi, D. R. Anekar, M. A. Shaikh, and A. A. Salunkhe,

“Finding Accessibility and Interaction Vulnerability of Rational

Rose Class Design Using Design Metrics,” International Journal Of

Scientific and Engineering Research, vol. 4, pp. 1–5, 2013.

 [11] Devendra Singh Thakore and Dr. Akhilesh R Upadhyay, “A

System for Identification and Assessment of Secure Design using

Dynamic Security Metrics,” Journal Of Information, Knowledge

and Research in Computer Engineering, vol. 2, pp. 276–278, 2013

 [12] Vedpal, N. Chauhan, “Regression Test Selection for Object

Oriented Systems Using OPDG and Slicing Technique,” 2nd

International Conference on Computing for Sustainable Global

Development, pp.1371-1378, 2015

[13] S. K. Mohapatra and S. Prasad, “Test Case Reduction Using Ant

Colony Optimization for Object Oriented Program,” International

Journal Of Electrical and Computer Engineering, vol. 5, no. 6, pp.

1424–1432, 2015.

[14] S. K. Mohapatra and M. Pradhan, “Finding representative test suit

for test case reduction in regression testing,” International

Conference on Computer, Communication and Control, Indore,

2015, pp. 1-6.

[15] S. A. Khan and R. A. Khan, “Security Improvement of Object

Oriented Design using Refactoring Rules,” International Journal of

Modern Education and Computer Science, vol. 2, pp. 24–31, 2015.

[16] B. M. Alshammari, “A Generic Model for Assessing Multilevel

Security-Critical Object-Oriented Programs,” International Journal

Of Advanced Computer Science and Applications, vol. 7, no. 11, pp.

419-427, 2016.

[17] B. Geetha and D. Jeya Mala, (2016) “Automatic Test Case

Reduction in Object Oriented System Using Clustering and Fuzzy

Logic,” Asian Journal of Information Technology, Vol. 15, no. 20,

pp. 4071-4076.

[18] A. Al Hussein, “An Object-Oriented Software Metric Tool to

Evaluate the Quality of Open Source Software,” International

Journal Of Computer Science And Network Technology, vol. 17,

no. 4, pp. 345–351, 2017.

[19] P. Bhandari, “Review of Object-Oriented Coupling Based Test

Case Selection In Model Based Testing,” International Conference

on Intelligent Computing and Control Systems, pp. 1161–1165,

2017.

[20] A. Marchetto, G. Scanniello, and A. Susi, “Combining Code and

Requirements Coverage with Execution Cost for Test Suite

Reduction,” IEEE Transactions on Software Engineering, vol. 5589,

no. c, pp. 1–28, 2017.

[21] S. Dwivedi, “Minimization of Test Suites for Fuzzy Object-

Oriented Database,” International Journal Of Computer

Applications, vol.179, no. 43, pp. 10–15, 2018.

Authors Profile

Mrs. Sameeksha Khare pursed Bachelor of Technology from
PIET,Kurukshetra University , Kurukshetra in 2015 and currently
pursuing Master of Technology from Deenbandhu Chhotu Ram
University of Science and Technology,Murthal. Her main research
work focuses on, Test Case Reduction.

Mr Rajvir Singh pursued B.tech and M.Tech in Computer Science
and Engineering and is currently pursuing Ph.D. in Software
Testing domain and currently working as Assistant Professor in
Department of Computer Science, Deenbandhu Chhotu Ram
University of Science and Technology , Murthal, India. He is a
member of IAENG.He has 10 years of teaching experience and 4
years of Research Experience.

Mr Ajmer Singh pursued B.tech and M.Tech from Kurukshetra
University,India. He is currently pursuing Ph.D. in Software Testing
domain and currently working as Assistant Professor in Department
of Computer Science, Deenbandhu Chhotu Ram University of
Science and Technology , Murthal, India. He is a member of
IAENG.He has 10 years of teaching experience and 4 years of
Research Experience.

