

 © 2019, IJCSE All Rights Reserved 364

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

Package Level Test Case Minimization for Bug Prediction using Linear

Regression Machine Learning Approach

Divya Taneja
1*

, Rajvir Singh
2
, Ajmer Singh

3

1,2,3
 Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science and Technology, India

*Corresponding Author:divya.taneja20.dt@gmail.com, Tel.: 8295610675

DOI: https://doi.org/10.26438/ijcse/v7i6.364370 | Available online at: www.ijcseonline.org

Accepted: 11/Jun/2019, Published: 30/Jun/2019

Abstract— With the growing complexities in Object Oriented (OO) software, the number of bugs present in the software

module is increased. In this paper, a technique has been presented for minimization of test cases for the OO systems. The

Camel 1.6.1 open source software was used the evaluation of proposed technique. The mathematical model used in the

proposed methodology was generated using the open source software WEKA by selecting effective Object Oriented (OO)

metrics. Ineffective and effective Object Oriented metrics were recognized by using the techniques based on feature selection

to generate test cases that cover fault proneness classes of the software. The defined methodology used only effective metrics

for assigning weights to test paths for minimization. The results show the significant improvements.

Keywords: Camel 1.6.1, Test Case Minimization, WEKA

I. INTRODUCTION

Presence of defects in software modules reduces the quality

of the software. It is necessary to improve the quality of

software by identifying defects and remove them from the

software module to deliver reliable software product[1].In

testing phase s development team finds the defects present

in the software module . It is costly to test the entire software

within a limited period of time. As a result, less reliable and

defective software is released. It becomes necessary to

eliminate software defects within limited time and less cost.

Software defect prediction model is one of the solutions to

this problem. The use of software defect prediction model is

to predict the defects present in the software. To select the

minimum number of test cases test case minimization

technique is used which are able to reveal more software

defects within less time and cost.

The software defect prediction model is skilled by using

attributes of the software and fault data according to the

previously released software or identical projects. This

information is used to calculate whether the software module

is defective or not. The effectiveness and performance of

software defect prediction model rely on the characteristics

of the software attributes that are used to calculate or predict

whether defects are present in the software module or not.

A. Organization of this paper

The organization of paper is as follows. In Section II we

provide information about the background or related work

on software defect prediction using software metrics. In

Section III provide details about the methodology used in

this paper. In Section IV implementation steps are defined.

Section V shows the results. Section VI and section VII

shows conclusions and future work respectively.

II. RELATED WORK

In 2016, S. Puranik, P. Deshpande, and K. Chandrasekaran

[2] researchers select only the minimum number of software

metrics. The researchers proposed an algorithm that predicts

the bug proneness index by using marginal R-square values

method. The regression testing was perform as mediator

step in this given algorithm, it was found that they was

different in nature when they compare with the models

by using regressions alone.

In 2013, S. Prateek, A. Pasala, and L. M. Aracena [3]

performed an analysis to check the effectiveness of the

network metrics above code metrics for the prediction of

bug. This work was carried out on the 11 datasets from the

Open source PROMISE repository [4] by using three

different machine learning algorithms. For each project the

binary classification model was built to identify the files

that contain bugs in different condition. It was seen that the

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 365

code metrics was predict better results over the network

metrics.

In 2018, A. Singh, R. Bhatia, and A. Singhrova [5]

discussed the usage of Object Oriented metrics for fault

prediction. The effective metrics was used to determine the

quality of the software module. It was concluded that the

code metrics needed in minimizing the efforts required in

software during the maintenance phase of the software.

In 2018, M. Akour and L. Abuwardih [6] found that a large

number of test suite were required to test the software

module and different methods were required to reduce the

test cases. The study was conduct to deal with the

effectiveness of genetic algorithm (GA) in order to reduce

the number of test cases. The GA steps were repeated to

minimize test suite.

In 2017, D. L. A. L. Gupta and K. Saxena [7] proposed

software bug prediction system (SBPS) . The model

predicted the bugs present in a class using metrics. The

model forecasted the occurrence of bugs in a class during

test of the software. They formulate hypotheses

corresponding to each metric. The logistic regression

classifier gives high accuracy among all classifiers used in

this study.

In 2005, R. Ferenc [8] described how to calculate the

Chidamber and Kemerer (CK) Object Oriented metrics was

used in the detection of fault-proneness of the source code

of openly available software systems. The authors check

the value obtain against the bugs found in the database

containing bugs using machine learning and regression

algorithms to confirm convenience of the OO metrics for

the prediction of fault-prone classes .

In 2017, A. Boucher [9] presented the hybrid self organizing

map (SOM) model using source code metrics to find out the

fault prone functions present in software module. The

authors used Hybrid SOM model for OO software systems

to calculate fault prone code at the class level using OO

source code metrics which made it easier to prioritize the

efforts of the testing team .

In 2014, S. K. Mohapatra [10] proposed a approach for test

case reduction using genetic algorithm with different length

of chromosome to decrease test suit by finding

representative set of test cases that fulfilled the testing

criteria.

In 2017, S. Ali, Y. Li, T. Yue, and M. Zhang,[11] proposed

multi-objective uncertainty-wise test case minimization

approach. The approach focused on to choose a minimum

number of test cases for execution by maximizing

effectiveness e.g. coverage, limited cost, execution time.

In 2013, A. S. A. Ansari, P. K. K. Devadkar, and P.

Gharpure, [12] defines a test suite method which was a

effective technique that achieve significant reduction in the

test suite and also ensure product quality of the software. It

reduced the time and cost of regression testing and also

reduces the cost of maintenance activity and effort.

In 2018, O. Banias [13] proposed a dynamic programming

algorithm that was apply in software testing domain,

generally in the selection of the test cases. The authors

defines specific problem present in software testing that is

running a subset of test suite from the complete set of test

suite and the aim is to maximize the probability of finding

potential defects present.

In 2014, K. Choudhary [14] proposed a multi objective

optimization that deals with the disagreeing objectives. A

multi-objective problem was used to find the solution for all

disagreeing objectives. The authors focused on the

automatic test data generation. One of the objectives was

uniform distribution and another was to maximize the code.

The approach covered non-dominance property to maintain

sub-population of best fitness value.

In 2016, C. Technology, R. Khan, M. Amjad, and A. K.

Srivastava [15] proposed path based testing approach

covering all du-paths for a given program. The GA was used

for automatic test suite generation and optimization

purposed against the accepted a set of inputs and checked for

the path coverage.

In 2013, S. Sun, X. Hou, C. Gao, and L. Sun [16] combined

test case selection with test case prioritization. The reason of

test case selection was to check modified impact of

programs and dependencies between the programs. Test

cases which were selected during the selection phase were

ordered for the prioritization of the test cases.

In 2017,Vandana, Ajmer sigh [17] proposed a multi

objective optimization technique for minimizing test cases.

The authors finds that the use of meta heuristic algorithms

with the optimization can reduce the number of redundant

test cases and increase in the accuracy of automated testing.

In 2015, V. Gupta [18] proposed a quantitative research and

develop a prediction models which uses bug indicators as

models input and performed on open source projects namely

Ant and Camel. In the research, the results verified that there

was considerable correlation exist between the size metrics

or bug indicators metrics such as DIT, WMC, CBO, LOC

and bugs. The DIT metric took control in achieving better

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 366

impact than other bugs predicting metrics such as WMC,

CBO and LOC.

In 2018,Rajvir Singh, Anita Singhrova and Rajesh Bhatia

[19] proposed an optimized test case generation (TCG)

approach. The effective OO metrics were selected and study

carried out for the ant-1.7 software. The multivariate linear

regression approach was used for generating mathematical

model and for giving weights to test paths.

In 2019,Rajvir Singh, Rajesh Bhatia and Anita Singhrova

[20] proposed demand based TCG method that selects the

test scenarios as per contextual demand in terms of

percentage. The optimized test cases were selected to fit

within the budget limitations.

This present paper is proposes the minimization of test cases

at package level and analyses the applicability of proposed

methodology. In the existing techniques, the test suite were

generate at the class level.

III. PROPOSED METHODOLOGY

The diagram of proposed methodology for the prediction of bugs is shown in Figure 1 given below.

Figure 1 Block diagram of proposed methodology for test case minimization

 Select of the effective object-oriented metrics for bug

prediction of the classes of Camel-1.6.1 open source software

using WEKA machine learning tool as proposed by Singh et

al. [19]. Then after selecting effective metrics the below steps

were followed.

The followed steps are:

i. Generate the mathematical model of the selected

metrics using WEKA tool.

ii. Input the source file of software under test i.e Camel

1.6.1.

iii. Generate package dependency graph (PDG) by

selecting the java files using code-pro analytic plug-

in for java eclipse.

iv. Calculate the weights of the package by adding the

weights of the classes present in the packages that

covered by the individual test paths.

v. Generate all paths applying breadth first search

(BFS) on PDG.

vi. Assign weights to each of the test path using below

proposed equation (1):

 () ∑()

 ()

Where, Wpn is the weight of i
th

 package covered by

the test path and i = 1, 2, 3, …, n. where n is the total

number of packages covered by k
th

 test path. Weight

(TPk) is the weight of k
th

 test path and k = 1, 2, 3, …

m. m is the total number of test paths.

vii. Sort the test paths in decreasing weight values

assigned and select the test paths with higher weight

values covering 50% of highest weight value.

viii. Generate final test cases corresponds to selected test

paths.

The class level CK Object Oriented metrics has been

considered for the fault proneness of classes which in turn

have been used to calculate weights of packages. The

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 367

Metrics data was collect from the publicly available and

open access repository known as promise repository

[4].Camel1.6.1 have been used for evaluation of proposed

methodology.

IV. IMPLEMENTATION

Figure 2 Package Dependency Graph of Camel1.6.1 Module

The implementation of the proposed methodology depicted

in Fig1 is as under:

Step1. Select effective Object Oriented metrics finding

bugs. The OO metrics namely wmc, rfc, lcom, ce, npm, loc,

bug have been selected and were used for generating

mathematical model using Weka tool. The screen shot of

generated mathematical model is shown in Figure. 3.

Step2. Generate PDG of the software module camel1.6.1

using code-pro analytic in eclipse neon for testers as shown

in Figure 2.

From the package dependency graph (PDG) in Figure 2, the

test cases were generated using BFS method. The test cases

generated are given in Table1below:

Table1. All Test Cases

Test Case ID Test Case

TC1 1,6

TC2 1,5

TC3 1,4

TC4 2,1

TC5 2,1,4

TC6 2,1,5

TC7 2,1,6

TC8 3,5

TC9 4,5

TC10 4,1,6

Step3. Select test paths using equation (2) generated by

using open source software tool known as WEKA. The

selection of the test cases based on the value of weight

assigned to each test cases. Weights are assigned to each test

cases by using linear regression model “(2)” i.e. the values

of the weight that are calculated by using model generated

in WEKA for Camel1.6.1 open source software module.

Bug = 0.1758 * wmc - 0.0206 * rfc - 0.0008 * lcom -

 0.0932* npm + 0.0018 * loc - 0.0524

(2)

The mathematical model represented in Figure. 3, the value

of root relative squared error (R2) is 136.6585%.

The table 2 shows the value of weight assigned to the test

cases based on mathematical model generated by WEKA

represented by equation “(1)” and “(2)”. The tests paths are

sorted in decreasing order of the weights are shown in Table

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 368

3. The sorted test path help in selecting the optimum test

paths.

Step4. The package level test cases have been generating

resultant to the selection of test path. In this case study of

camel1.6.1, Table 4 represents the selected test paths which

are selected on the basis of weights value assigned to each

test path. Test case are selected whose value is greater than

50% of highest weight value because of the limited time and

less cost requirements.

Table5 represent the selected test cases and their packages

detail and table 6 shows the bug revealed by all selected test

cases.

Figure 3 Mathematical model

All the test cases are generated by using the breadth first

search(BFS) are shown in these figures given below:

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 369

V. Results and Discussion

The analysis of the results that are obtained by using

proposed methodology is discussed below:

 Total faults exposed if all the test cases were executed

= 39

 Total number of faults that is covered by the chosen

test cases = 31.
 The Fault Exposition Potential (FEP) of the chosen

test cases = 80%.

 Execution time reduced by 50%.

Hence, it can be concluded that the proposed methodology is

effective methodology in terms of FEP.

Table2. Calculated Weight of the Test Case

Test Case-ID Weight Value

TC1 4.7438

TC2 4.4612

TC3 10.0074

TC4 10.6780

TC5 16.3882

TC6 10.8420

TC7 12.2246

TC8 1.4982

TC9 5.8742

TC10 10.5540

Table3. Ordered Test Cases

Test Case-ID Weight Value

TC5 16.3882

TC7 12.2246

TC6 10.8420

TC4 10.6780

TC10 10.5540

TC3 10.0074

TC9 5.8742

TC1 4.7438

TC2 4.4612

TC8 1.4982

Table4. Selected Test Cases

Test Case-ID Test Cases

TC4 2,1

TC5 2,1,4

TC6 2,1,5

TC7 2,1,6

TC10 4,1,6

Table5. Final test cases generated

Test

Case-ID

Test

Case

Package Level Test Cases

T4 2,1 Org.apache.camel.management 

Org.apache.camel.model

T5 2,1,4 Org.apache.camel.management 

Org.apache.camel.model 

Org.apache.camel.model.dataformat

T6 2,1,5 Org.apache.camel.management 

Org.apache.camel.model 

Org.apache.camel.language.constant

T7 2,1,6 Org.apache.camel.management 

Org.apache.camel.model 

Org.apache.camel.modify.config

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 370

T10 4,1,6 Org.apache.camel.model.dataformat 

Org.apache.camel.model 

Org.apache.camel.modify.config

 Table6. Bug covered by selected Test Cases

Test Case ID Test Case Bug Revealed

T5 2,1,4 31

T4 2,1 23

T6 2,1,5 23

T7 2,1,6 23

T10 4,1,6 12

VI. CONCLUSION

The proposed methodology firstly selected the effective

Object Oriented metrics for bug prediction using WEKA tool.

The PDG was generated using code-pro for camel-1.6.1 open

source software module. Using BFS test paths were generated.

The model is generated using WEKA for the camel-1.6.1

dataset available at promise repository. Weights values were

assigned to each of the generated test case. The final test suite

has been generated resultant to selected test paths only which

saved time and effort of testing. To fit within the limited time

the test cases have been minimized whose FEP = 80% and

execution time reduced by 50%. This showed that the

proposed methodology is an effective methodology.

REFERENCES

[1] P. Mandal and A. S. Ami, “Selecting Best Attributes for Software

Defect Prediction,” no. December 2015, 2019.

[2] S. Puranik, P. Deshpande, and K. Chandrasekaran, “A Novel

Machine Learning Approach for Bug Prediction,” Procedia

Computer Science, vol. 93, pp. 924–930, 2016.

[3] S. Prateek, A. Pasala, and L. M. Aracena, “Evaluating Performance

of Network Metrics for Bug Prediction in Software,” no. December

2013, 2017.

[4] “Promise repository,” 2014. [Online]. Available:

http://openscience.us/repo/defect/ck/. [Accessed: 26-Mar-2018].

[5] A. Singh, R. Bhatia, and A. Singhrova, “Taxonomy of machine

learning algorithms in software fault Taxonomy of machine learning

algorithms in software fault prediction using object oriented metrics

prediction using object oriented metrics,” Procedia Computer

Science, vol. 132, pp. 993–1001, 2018.

[6] M. Akour and L. Abuwardih, “Test Case Minimization using

Genetic Algorithm : Pilot Study,” 8th International Conference on

Computer Science and Information Technology (CSIT), pp. 66–70,

2018.

[7] D. L. A. L. Gupta and K. Saxena, “Software bug prediction using

object-oriented metrics,” vol. 42, no. 5, pp. 655–669, 2017.

[8] R. Ferenc, “Empirical Validation of Object-Oriented Metrics on

Open Source Software for Fault Prediction,” vol. 31, no. 10, pp.

897–910, 2005.

[9] A. Boucher and M. Badri, "Predicting Fault-Prone Classes in Object-

Oriented Software: An Adaptation of an Unsupervised Hybrid SOM

Algorithm," IEEE International Conference on Software Quality,

Reliability and Security (QRS), pp. 306-317, 2017.

[10] S. K. Mohapatra and S. Prasad, "Minimizing test cases to reduce the

cost of regression testing," IEEE international Conference on

Computing for Sustainable Global Development (INDIACom), pp.

505-509, 2014.

[11] S. Ali, Y. Li, T. Yue and M. Zhang, "An Empirical Evaluation of

Mutation and Crossover Operators for Multi-Objective Uncertainty-

Wise Test Minimization," IEEE/ACM 10th International Workshop

on Search-Based Software Testing (SBST), Buenos Aires, 2017, pp.

21-27, 2017.

[12] A. S. A. Ansari, K. K. Devadkar and P. Gharpure, "Optimization of

test suite-test case in regression test," IEEE International Conference

on Computational Intelligence and Computing Research, Enathi,

2013, pp. 1-4, 2013.

[13] O. Banias, “Dynamic programming optimization algorithm applied

in test case selection,” International Symposium on Electronics and

Telecommunications (ISETC), pp. 1–4, 2018.

[14] K. Choudhary and G. N. Purohit, "A Multi-Objective optimization

algorithm for uniformly distributed generation of test cases," IEEE

International Conference on Computing for Sustainable Global

Development (INDIACom), pp. 455-457, 2014.

[15] R. Khan, M. Amjad and A. K. Srivastava, "Optimization of

Automatic Generated Test Cases for Path Testing Using Genetic

Algorithm," 2016 Second International Conference on

Computational Intelligence & Communication Technology (CICT),

pp. 32-36, 2016.

[16] S. Sun, X. Hou, C. Gao and L. Sun, "Research on optimization

scheme of regression testing," Ninth International Conference on

Natural Computation (ICNC), pp. 1628-1632, 2013.

[17] P. A. Vikhar, "Evolutionary algorithms: A critical review and its

future prospects," International Conference on Global Trends in

Signal Processing, Information Computing and Communication

(ICGTSPICC), pp. 261-265, 2017.

[18] V. Gupta, N. Ganeshan and Tarun K. Singhal, “Developing Software

Bug Prediction Models Using Various Software Metrics as the Bug

Indicators,” International Journal of Advanced Computer Science

and Applications, Vol. 6, no. 2, 2015.

[19] R. Singh, A. Singhrova, and R. Bhatia, “Optimized Test Case

Generation for Object Oriented Systems Using Weka Open Source

Software,” International Journal of Open Source Software and

Processes, vol. 9, no. 3, pp. 15–35, Jul. 2018.

[20] R. Singh, R. K. Bhatia, and A. Singhrova, “Demand Based Test Case

Generation for Object Oriented Systems,” IET Software, 2019.

