

 © 2018, IJCSE All Rights Reserved 355

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-9, Sept. 2018 E-ISSN: 2347-2693

Implementation of Sandhi Viccheda for Sanskrit Words/ Sentences/

Paragraphs

Bhagyashree Patil
1*

, Manoj Patil
2

1
Department of Computer Engineering, SSBT’s COET, Jalgaon, India

2
Department of Computer Engineering, SSBT’s COET, Jalgaon, India

*Corresponding Author: pbhagyashree39@gmail.com, Tel.: 0257-2261096

Available online at: www.ijcseonline.org

Accepted: 19/Sept/2018, Published: 30/Sept/2018

Abstract—Sandhi is a technique in which joining of two or more words happens. Sandhi viccheda means splitting of word or

sentences into its constituents. Languages like Hindi, Urdu, Marathi, Kannada, and Malayalam are used to implement the

sandhi viccheda concept. Sanskrit is a language in which rules are used to form a word. These rules play an important role in

sandhi viccheda process. So, to split the word or sentence rules are used in the system. As everyone knows BHAGWAT

GEETA is a religious book which contains more complex words, sentences, which user can’t understand. The proposed system

uses those words, sentences from BHAGWAT GEETA for splitting purpose. For this, rules of sandhi viccheda like (vowels,

consonant, and visarga) are used. The representation of the splits is shown using the directed acyclic graph to get a number of

possible outputs.

Keywords— Sandhi splitting, lexical analysis, rules, sandhi viccheda algorithm, DAG

I. INTRODUCTION

Sanskrit language and its grammar had exerted an

emphatic impact on Computer Science and related research

areas. Many more researchers have realized the importance

of Sanskrit language in NLP due to its computational

grammar. Famous Vedas or religious books are defined in

the Sanskrit language such as SamVed, YajurVed, RigVed,

AtharvaVed, Ramayana, Mahabharata, and Bhagwatgeeta

containing the complex words, sentences which user can’t

understand while reading. This data is the combination of

two or more words so it is difficult to understand. For that,

the system should be developed which will split those

words/sentences/paragraphs and the user will get actual word

of it.

In Bhagwatgeeta, there are many difficult words or

sentences which a user can’t understand easily. For that user

must know from which words that complex word or sentence

is made up of. So the main goal of this system is to provide

an environment for users such that the root words of that

difficult sentence or paragraph are obtained. The system uses

the sandhi viccheda algorithm for splitting those words,

sentences using DAG representation for possible outputs.

The proposed solution focuses on the sandhi viccheda of

the difficult words, sentences, and paragraphs which are

complicated to the user to understand. For this, the rules for

sandhi viccheda are used in the algorithm so that any word in

it is split into its constituent words. The input is traversed

from left to right till the valid pada is found if so then

splitting is done. The system is fulfilled by adding all the

rules (like Vowel, Consonant, and Visarga) of sandhi

viccheda.

The paper is organized as the follows: Section I depicts

the introduction of Sanskrit and Sandhi viccheda. Section II

contains the related work of sandhi viccheda, Section III

contains the proposed approach for sandhi viccheda, Section

IV contains the result and discussion of the proposed

approach and Section V conclude research work with future

directions.

II. RELATED WORK

Rupali Deshmukh et al., in [1], presented that natural

language processing (NLP) is a field of artificial intelligence,

and linguistics, concerned with the interactions between

computers and human languages. The combination of two

immediate sounds, that means union, is called as sandhi

formation. Sandhi-splitting describes the process by which

one letter is split to form two words. Sandhi-splitting is one

subtask for a complete analysis of input text in NL. The

proposed system recognizes sandhi word from an input text

in Sanskrit; splits sandhi word and return what type of sandhi

it is. Mrs. Namrata Tapaswi et al., in [2], presents a set of

instructions for the formulation of LFG rules to parse

Sanskrit. Some simple sentences are parsed which verifies

the rules follow with grammatical construction of language.

International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 356

Priyanka Gupta et al., in [3], showed that sandhi which

means combining (of sounds). The Rule-based algorithm is

proposed which gives an accuracy of 60-80% depending

upon the number of rules to be implemented. Joshi Shripad

S., in [4], presented that rule-based algorithm and rules for

sandhi splitting of Marathi words. Latha R. Nair and S.

David Peter, in [5], described that morphological analyzers

are essential for any type of natural language processing

works. As Malayalam like other Dravidian languages is an

agglutinative language it needs a compound word splitter as

a preprocessor. An algorithm has been developed and

successfully used for splitting the compound words. 90%

success has been established in the initial scrutiny of around

4000 compound words. The splitter is also used for

developing and implementing a fully fledged morphological

analyzer. Devadath V. V. et al., in [6], presented that the

accurate execution of sandhi splitting is crucial for text

processing tasks such as POS tagging, topic modeling, and

document indexing. Different approaches to address the

challenges of sandhi splitting in Malayalam are tried, and

finally, they have thought of exploiting the phonological

changes that take place in the words while joining. This

resulted in a hybrid method which statistically identifies the

split points and splits using predefined character level

linguistic rules. Currently, the system gives an accuracy of

91.1%. M. Rajani Shree et al., in [7], showed the novel

approach towards internal sandhi splitting for Kannada

language. Using CRF (Conditional Random Fields) tool near

about 1000are tagged and 400 raw split words are given to

CRF tool. From the tagged list trained and testing data is

produced. The accuracy using CRF tool for Kannada corpus

nearly equals to 98.08, 92.91 and 95.43. Sachin Kumar, in

[8], presented sandhi analyzer and splitter for the Sanskrit

language. Rule base method and lexical lookup are used in

the system. Preprocessing, the lexical search is done on

examples before sandhi analysis process. Subanta analysis

takes place respectively which looks up into lexicon for

avyaya and verb words to remove them from processing. In

preprocessing, punctuations are removed. Split words

generated by reverse sandhi analysis are validated by subanta

analysis. The system looks up for fixed word list of nouns,

names, and MWSDD which if found in processing are

remain unchanged. Shubham Bhardwaj et al., in [9],

proposed SandhiKosh which evaluates the accuracy and

completeness of Sanskrit sandhi tools. SandhiKosh uses five

different methods to provide a corpus which is complete and

able to give the performance of sandhi tools on Sanskrit

literature. Amba Kulkarni and Sheetal Pokar et al., in [10],

developed a parser which finds a directed tree giving a graph

of nodes representing words and edges representing possible

relations between them. Mimamsa constraint of akanksa is

used to rule on nonsolution and sannidhi to prioritize the

solution. Vaishali Gupta et al., in [11], presented that Urdu is

a combination of several languages like Arabic, Hindi,

English, Turkish, Sanskrit etc. Here a stemmer is used to

convert a word to its root form. The suffix and prefix are

removed from the word to extract the actual word from it.

The accuracy of the system is up to 85% but there is

drawback which is over stemming and under stemming. Anil

Kumar, et al., in [12], presented an experience in Sanskrit for

building an automatic paraphrase generator. 90% of

compounds are used by paraphrase handler to produce

correct paraphrases for which morphological analyzer is

required. To know the meaning of the compound one should

know relations between them. Pawan Goyal et al., in [13],

proposed an approach called ‘utsarga apavaada’ for relation

analysis and morphological analysis for deterministic finite

automata (DFA). By giving Sanskrit text, root words

identified by the parser and gives dependency relations

between semantic constraints. The proposed parser creates

semantic nets for Sanskrit paragraphs. Both the external and

internal sandhi is implemented in the parser for Sanskrit

words. Bhagyashree Patil et al., in [14] showed the

comparative study of the different systems for sandhi

viccheda of Sanskrit words.

III. PROPOSED APPROACH

In the proposed system, Sanskrit words, sentences and

paragraphs are taken from Bhagwatgeeta. The system uses

the rules of sandhi viccheda on the input to split the given

data into its constituent words. The DAG representation is

used to find out the possible ways of the output. The system

works on all the sandhi viccheda rules. Here there are some

examples of Bhagwatgeeta words:

A. Examples of Bhagwatgeeta

 भवान्भीष्मश्च [भवान ्भीष्मस ्च] here

the visarga rule has been applied, visarga added

with च ्becomes श.्

 प्रथमोऽध्यायः [प्रथमस ्अध्यायस ्]

here the vowel sandhi rule has been applied, ओ

when added with अ becomes unchanged and

avagraha is added.

 भगवद्गीता [भगवत ्गीता] here the

consonant sandhi rule is applied, when hard

consonant त ्combines with vowel इ becomes द्.

Sandhi means joining of two or more words to get the

meaning of the sentence. But the sandhi viccheda (vigraha)

means to separate two or more words to get their constituent

words. Following are the examples of the sandhi viccheda

rules:

International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 357

B. Rules

 Vowel Sandhi Rule: Consider the vowel sandhi

rule that (आ) is formed when (अ, आ)

combines with (अ, आ). Then in the example,

ववद्यालयः will be splitted into ववद्या and

आलयः. Here in this example the word, will be

splitted at the point द्याल where the आ is

formed when combined with the आ of आलयः
word. Consider the next example that (अर)् is

formed when (अ, आ) combines with (ऋ, ॠ).

Example ग्रीष्मत्तः is splitted at the point ष्मत्तः
where अर ्is found when combined with ऋ.

 Consonant Sandhi Rule: Class soft consonant

except nasal followed by hard consonant

changes to 1
st
 consonant of class. Consider the

example एतत्पततत which has the

एतद् and पततत as its constituent words. Here

in this example द् is, a soft consonant combined

with प ् hard consonant forms the word

एतत्पततत. The next example is न ्at the end of

a word changes to [anusvara and श ्(palatal

sibilant)] when followed by (च,् छ्) (palatal hard

consonants). Consider the example काांश्श्चत ्

where anusvara and श ् is converted to its

original न ् and च.् It means that काांश्श्चत ् is

splitted into कान ्and चचत.्

 Visarga Sandhi Rule: Consider the visarga

sandhi rule that visarga is dropped when आ &

visarga standing for आस ् is followed by a

vowel or soft consonant. For example,

नरा गच्छश्न्त splitted into

नराः and गच्छश्न्त. Here visarga has been

dropped. The other example is नमस्ते; here

visarga changes to स ्when followed by त ्or थ ्

and the output is splitted into नमः and ते.

The proposed system works for sandhi viccheda of complex

Sanskrit words, sentences and paragraphs. Sandhi viccheda

gives the user the root words of the complex word which

help the user to understand what it means to. The system uses

the sandhi viccheda algorithm and DAG representation for

the possible outcomes came in the output. Graphs are

networks consisting of nodes connected by edges or arcs. In

directed graphs, the connections between nodes have a

direction, and are called arcs; in undirected graphs, the

connections have no direction and are called edges.

Algorithms in graphs include finding a path between two

nodes, finding the shortest path between two nodes,

determining cycles in the graph (a cycle is a non-empty path

from a node to itself), finding a path that reaches all nodes

(the famous “traveling salesman problem”), and so on. Here

the Networkx package has been taken into account to get the

DAG representation of the result i.e. the output is displayed

in possible 10 paths using the shortest path.

C. Sandhi Viccheda Algorithm

 Procedure Sanskrit Lexical analyzer

Input: Sanskrit word / sentence / Paragraph

 Action: Traverse the word/sentence, splitting it (or

not) at each location to determine all possible valid

splits.

 Traverse from left to right

 Using recursion (with memoization), assemble the

results of all choices

 To split or not to split at each phoneme

 If split, all possible left/right combination of

phonemes that may result

 Once split, check if the left section is a valid pada

(use level 1 tool to pick pada type and tag

morphologically).

 If the left section is valid, proceed to split the right

section

 At the end of step 2, the system will have all

possible syntactically valid splits with

morphological tags

 Output: All semantically valid sandhi split

sequences

In the Algorithm of the system, the Sanskrit word or sentence

has been given as an input to the system. The word or

sentence then traversed from left to right till all the splits are

not found. When the left section has been completed finding

all the splits then right section has been started, after that user

will get all the valid splits with morphological tags.

International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 358

IV. RESULTS AND DISCUSSION

Implementation of the system is done using the Python

environment. The version used for Python is 2.7 and the

dataset used is Bhagwatgeeta. While implementing the result,

it is in the form of Sanskrit language. The following Table 1

shows the analysis of sentences in Bhagwatgeeta.

Approximately 05 sentences have been analyzed in the

system.

Table 1. Analysis of Bhagwatgeeta Sentences

Sentences

Sr

no.

Input Sentence Output

1. ज्यायसी चते्कमतणस्त े मता
ब्विर्तनार्तन तश्त्कां कमतणण घोरे
माां तनयोर्यसस केशव

ज्यायसी + चते ् +
कमतणस ् + त े +
अमता + ब्विस ् +
र्न + आर्तन ् +
अतत ् + ककम ् +
कमतणण + घोरे +
माम ् + तन +
योर्यसस + केशव

2. लोकेऽश्स्मन ् द्ववववधा तनष्ठा
प्रा प्रोक्ता मयानघ ज्ञानयोगेन
साङ्ख्यानाां कमतयोगेन
योचगनाम ्

लोके + अश्स्मन ् +
द्ववववधा + तनष्ठा
+ प्रा + प्र + उक्ता
+ मयान ् + अघ +
ज्ञान + योगेन +
साङ्ख्यानाम ्+ कमत
+ योगेन +
योचगनाम ्

3. ॐ तत्सदर्तत
श्रीमद्भगवद्गीतासूपतनषत्स्
ब्रह्मववद्यायाां योगशास्र े
श्रीकृष्णार््तनसांवारे् साङ्ख्ययोगो
नाम द्ववतीयोऽध्यायः

ओम ् + तत ् + सत ्

+ इतत + श्रीमत ् +
भगवत ् + गीतास ् +
उपतनषत्स् + ब्रह्म

+ ववद्यायाम ् +
योग + शास्र े + श्री
+ कृष्णा + अर््तन +
सांवारे् + साङ्ख्य +
योगस ् + अनाम +
द्ववतीयस ् +
अध्यायस ्

4. तस्मात्त्वसमश्न्ियाण्यार्ौ
तनयम्य भरतषतभ पाप्मानां
प्रर्दि ह्येनां
ज्ञानववज्ञाननाशनम ्

तस्मात ् + त्वम ् +

इश्न्ियाणण + आर्ौ
+ तन + यम्य +
भरत + ऋषभ + पा
+ अप ् + मानम ् +
प्र + र्दिदि + एनम ्

+ ज्ञान + ववज्ञान +
नाशनम ्

5. इमां वववस्वत े योगां
प्रोक्तवानिमव्ययम ्
वववस्वान्मनवे प्राि
मन्ररक्ष्वाकवेऽब्रवीत ्

इमम ् + वववस्वत े +
योगम ् + प्र +
उक्तवान ्+ अिम ्+
अव्ययम ् +
वववस्वान ्+ मनव े+
प्र + आि + मन्स ्

+ इक्ष्वाकवे +
अब्रवीत ्

From Bhagwatgeeta 500 words have been analyzed showing

10 words in the following Table 2.

Table 2. Analysis of Bhagwatgeeta Words

Bhagwatgeeta Words

Sr

no.

Input word Output

01 प्रथमोऽध्यायः प्रथमस ्+ अध्यायस ्

02 पाण्डवाश्चैव पाण्डवास ्+ च + एव

03 र्य्ोधनस्तर्ा र्य्ोधनस ्+ तर्ा

04 आचायतम्पसांगम्य आचायतम ् + उप + सम ् +

गम्य

05 पाण्ड्प्राणामाचायत पाण्ड् + प्राणाम ् +

आचायत

06 भीमार््तनसमा भीम + अर््तन + समा

07 प्रुश्र्त्क्श्न्तभोर्श्च प्रु + श्र्त ् + क्श्न्त +

भोर्स ्+ च

International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 359

08 तान्ब्रवीसम तान ्+ ब्रवीसम

09 भीष्मासभरक्षितम ् भीष्म + असभ + रक्षितम ्

10 भीष्ममेवासभरिन्त् भीष्मम ् + एव + असभ +

रिन्त्

The system analyzes the Bhagwatgeeta data (i.e. words,

sentences, and paragraphs) which show that rules in the

Sanskrit language are implemented. As the objective is

defined, the result shows that the rules are implemented in

the system and the analysis is done using Bhagwatgeeta data.

The analysis of rules of sandhi viccheda in Sanskrit has been

shown in Table 4.3. Each and every rule of sandhi viccheda

has been analyzed. Limitation for the system is that some

rules are not implemented due to some symbols in the

Sanskrit language which system does not support.

Table 3. Analysis of Rules of Sandhi Viccheda

Sr

no.

 Sandhi

Type No

. of

rules

passe

d

No.

of

rules

failed

1. Dirgha Sandhi

Rule

Vowel 04 00

2. Guna Sandhi

Rule

Vowel 04 00

3. Yana Sandhi Rule Vowel 03 01

4. Vrddhi Sandhi

Rule

Vowel 04 00

5. Ayadi Sandhi

Rule

Vowel 06 00

6. Soft to hard

consonant

Conson

ant

00 01

7. Hard to soft

consonant

Conson

ant

01 00

8. ह् to 4
th

 of class
Conson

ant

01 00

9. Dental to palatal Conson

ant

04 00

10. Dental to celebral Conson

ant

03 01

11.
Dental to ल ्

Conson

ant

01 01

12. Consonant to

nasal of class

Conson

ant

02 00

13. श ् to छ्
Conson

ant

01 00

14. म ् and न ् to

anusvara

Conson

ant

05 01

15.
Consonants ङ्ख, ण ्

, न ्

Conson

ant

01 00

16. च ्before छ् and

न ्to ण ्

Conson

ant

02 01

17.
Visarga to ‘ओ’

Visarga 02 00

18. Visarga is

dropped

Visarga 05 01

19.
Visarga to र ्

Visarga 01 02

20.
Visarga to श,् ष,्

स ्

Visarga 05 01

21. Visarga to ardha-

visarga

Visarga 02 00

Total 57 10

V. CONCLUSION AND FUTURE WORK

Sandhi viccheda is a technique in which a long word,

sentences, and paragraphs are separated into its constituent

words. It is a challenging task to implement in the Sanskrit

language itself. Till the vowel sandhi has implemented but

adding the other rules the system increases the accuracy. The

difficult task is to provide output in the Sanskrit language

itself. The result is obtained when the Sanskrit word is given

to the system as an input. Though there are many works has

been done but the dataset used is different that is

Bhagwatgeeta. In future, the text summarization is done in

Sanskrit language using different methods so that the

summary of that paragraph is understood by the user.

REFERENCES

[1] Rupali Deshmukh and Varunakshi Bhojane, “Building Vowel

Sandhi Viccheda System for Sanskrit”, International Journal of

Innovations and Advancement in Computer Science, Vol. 4,

December 2015.

[2] Mrs. Namrata Tapaswi, Dr. Suresh Jain and Mrs. Vaishali

Chourey, “Parsing Sanskrit Sentences Using Lexical Functional

Grammar”, Proceedings of the International Conference on

Systems and Informatics, IEEE, pp 2636-2640, 2012.

[3] Priyanka Gupta, Vishal Goyal, “Implementation of Rule-Based

Algorithm for Sandhi-Viccheda of Compound Hindi Words”, IJCSI

International Journal of Computer Science Issues, Vol. 3, 2009.

[4] Joshi Shripad S., “Sandhi Splitting of Marathi Compound Words”,

International Journal on Advanced Computer Theory and

Engineering (IJACTE), Vol. 2, no. 02, 2012.

[5] Latha R. Nair, S. David Peter, “Development of a Rule-Based

Learning System for Splitting Compound Words in Malayalam

Language”, Proceedings of the Recent Advances in Intelligent

Computational Systems, IEEE, pp 751-755, 2011.

International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 360

[6] Devadath V V, Litton J Kurisinkel, Dipti Misra Sharma, and

Vasudeva Varma, “A Sandhi Splitter for Malayalam”, Proceedings

of the 11
th
 International Conference on Natural Language

Processing, 2014.

[7] M. Rajani Shree, Sowmya Lakshmi, “A novel approach to Sandhi

splitting at Character level for Kannada Language”, Proceedings

of the 2016 International Conference on Computational Systems

and Information Systems for Sustainable Solutions, IEEE, pp 17-

20, 2016.

[8] Sachin Kumar, “Sandhi Splitter and Analyzer for Sanskrit”, With

Special Reference to aC Sandhi, Special Centre for Sanskrit

Studies, Jawaharlal Nehru University, New Delhi, 2007.

[9] Shubham Bhardwaj, Neelamadhav Gantayat, Nikhil Chaturvedi,

Rahul Garg, Sumeet Agarwal, “SandhiKosh: A Benchmark Corpus

for Evaluating Sanskrit Sandhi Tools”, Language Resources and

Evaluation Conference, 2018.
[10] Amba Kulkarni, Sheetal Pokar and Devanand Shukl, “Designing a

Constraint-Based Parser for Sanskrit”, Proceedings of the

International Sanskrit Computational Linguistics Symposium,

SpringerLink, vol. 6465, pp 70-90, 2010.

[11] Vaishali Gupta, Nisheeth Joshi, Iti Mathur, “Rule-Based Stemmer

in Urdu”, Proceedings of the 2013 4th International Conference on

Computer and Communication Technology, IEEE, pp 129-132,

2013.

[12] Anil Kumar, V.Sheebasudheer, Amba Kulkarni, “Sanskrit

Compound Paraphrase Generator”, Proceedings of the ICON,

2009.

[13] Pawan Goyal, Vipul Arora, and Laxmidhar Behera, “Analysis of

Sanskrit Text: parsing and Semantic Nets”, Springerlink,

Proceedings of the Sanskrit Computational Linguistics, Vol. 5402,

pp 200-218, 2009.

[14] Bhagyashree D. Patil and Manoj E. Patil, “A Review on

Implementation of Sandhi Viccheda for Sanskrit Words”,

Proceedings of the International Conference in ICGTETM, IJCRT,

vol.5, no. 12, pp 489-493, December 2017.

Authors Profile

Miss Bhagyashree D. Patil pursuing Masters in Computer Science
and Engineering from Shrama Sadhana Bombay Trust, College of
Engineering Bambhori, Jalgaon in the year 2018.

Mr. Manoj E. Patil pursed Ph.D. and currently working as Assistant
Professor in Department of Computer science and engineering,
North Maharashtra University, Jalgaon. He is a member of ISOC,
IAENG. He has published more than 15 research papers in reputed
international journals. He has 13 years of teaching experience.

