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Abstract: Variational Autoencoders (VAEs) are powerful machine learning models that can be deployed on mobile devices. 

However, VAEs are often deployed on resource-constrained mobile platforms, resulting in a high computational overhead. In 

this study, we present a novel framework, called the Miniaturizing Variations Auto Encoder (mVAE), to overcome the 

computational constraints associated with VAE deployment on mobile platforms. By leveraging advanced miniaturization 

techniques and integrating Amortized Stochastic Variational Inference (ASVI), this framework unlocks the full potential of VAE 

models in the mobile realm. Through extensive experiments and performance analysis, we aim to demonstrate the feasibility and 

efficiency of the m VAE framework in enabling the deployment of sophisticated machine learning applications on mobile 

systems. The findings of this study not only contribute to the advancement of mobile computing but also pave the way for a wide 

range of practical applications, empowering mobile users with powerful AI capabilities. Overall, this research contributes not 

only to theoretical foundations but also provides practical insights into implementation, addressing the need for efficient machine 

learning systems in mobile computing environments. 
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1. Introduction 
 

In recent years, the field of artificial intelligence has 

witnessed remarkable advancements, particularly in the 

domain of mobile computing [1]. As internet-connected 

mobile devices have become an integral part of our daily 

lives, the demand for efficient and powerful machine-learning 

models that can operate seamlessly within the resource-

constrained confines of these platforms has grown 

exponentially [2]. However, deploying sophisticated models, 

such as Variational Autoencoders (VAEs), on mobile devices 

poses a significant challenge due to limited processing power, 

memory, and energy resources. 

 

VAEs have emerged as a prominent technique in generative 

modeling and dimensionality reduction, demonstrating 

remarkable capabilities in a wide range of applications, from 

image synthesis to anomaly detection [3]. Yet, the 

computational demands of traditional VAEs often exceed the 

capabilities of standard mobile hardware, hindering their 

adoption on these platforms. Consequently, there is a pressing 

need for tailored approaches that can bridge the gap between 

the potential of VAEs and the constraints of mobile 

computing environments [4] 

In response to this challenge, this research presents a novel 

framework called the Miniaturing Variational Autoencoder 

(mVAE). The mVAE framework is specifically designed to 

optimize the computational efficiency of VAEs, enabling 

their seamless integration into resource-constrained mobile 

devices without compromising performance. By leveraging 

advanced  miniaturization techniques and integrating 

Amortized Stochastic Variational Inference (ASVI), this 

framework unlocks the full potential of VAEs in the mobile 

realm. 
 

The primary objective of this study is to investigate and 

evaluate the effectiveness of the mVAE framework in 

overcoming the computational constraints of VAEs on mobile 

platforms. Through extensive experiments and performance 

analysis, we aim to demonstrate the feasibility and efficiency 

of mVAE in enabling the deployment of sophisticated 

machine learning models on mobile devices. The findings of 

this study will not only contribute to the advancement of 

mobile computing but also pave the way for a wide range of 

practical applications, empowering mobile users with 

powerful AI capabilities. 
 

This study presents a comprehensive exploration of the 

challenges involved in deploying VAEs on mobile platforms 
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and introduces the innovative mVAE framework as a 

solution. The research methodology, experiments, and 

performance analysis will provide valuable insights into the 

practical implementation of VAEs in resource-constrained 

mobile computing environments. Ultimately, this work aims 

to accelerate the adoption of powerful machine learning 

models on mobile devices and facilitate the integration of AI 

technologies into our everyday lives.  

 

This research addresses a critical challenge in mobile machine 

learning: the incompatibility of traditional, resource-intensive 

machine learning models with mobile devices. This was  

tackled by developing miniaturized Variational Autoencoders 

(VAEs) specifically designed for mobile environments. These 

miniaturized VAEs boast significantly reduced computational 

overhead compared to traditional models, making them 

suitable for resource-constrained devices.  

 

The potential impact of this research is significant. It paves 

the way for a wider range of powerful mobile applications by 

enabling efficient machine learning on mobile devices. This 

not only empowers diverse mobile devices with AI 

functionalities but also fosters a more seamless integration of 

AI into our mobile-centric world. Furthermore, miniaturized 

VAEs hold promise for real-world applications in image 

processing, real-time image analysis, and even on-device data 

processing for the Internet of Things (IoT). This research lays 

the groundwork for a future where mobile devices can 

leverage the power of machine learning for a broader range of 

tasks, transforming mobile machine learning and user 

experiences.  

  

2. Experimental Method/Procedure 
 

This study adopts a multi-faceted methodology to investigate 

the miniaturization of variational autoencoders (VAEs) for 

mobile computing environments. It leverages a constructive 

research approach, combining theoretical foundations with 

practical considerations. 

 

The research focuses on leveraging Amortized Stochastic 

Variational Inference (ASVI)[6],  and Resource-Aware 

Design Methodology [7][8] to optimize VAE performance for 

mobile platforms. Techniques such as pruning, quantization, 

and model compression are explored to reduce model size 

while maintaining performance metrics like reconstruction 

accuracy and anomaly detection. 

Evaluation metrics specific to mobile tasks are established, 

and experiments are conducted to assess the performance of 

miniaturized VAE models on mobile devices. The study not 

only contributes to theoretical foundations but also provides 

practical insights into implementation, addressing the need for 

efficient machine learning models in mobile computing. 

 

Comparative analysis and discussion of experimental results 

shed light on the effectiveness of miniaturized VAEs for 

mobile applications. The research concludes with a summary 

of key findings and potential future directions, emphasizing 

the importance of continuous exploration in this evolving 

field. 

2.1 The Mathematical Model 

Deriving the expressions for a Variational Autoencoder 

(VAE) involves applying variational inference to formulate 

the evidence lower bound (ELBO). Find the step-by-step 

derivation of the ELBO for a VAE. These equations 

summarize the key components of the Variational 

Autoencoder (VAE) objective, including the ELBO, 

reparameterization trick, Gaussian likelihood, and KL 

divergence term. 

 The ELBO is typically optimized using stochastic 

gradient ascent, with Monte Carlo samples for the 

expectations. 

 The objective involves the expected log likelihood and 

KL divergence, which can be computed using samples 

from the variational posterior. 

 

2.3 Notations: 

 𝓍: observed data 

This refers to the raw input data utilized to train and 

validate the VAE model, enabling it to learn meaningful 

representations and generate outputs relevant to the 

mobile computing environment. 

 𝓏: latent variable 

This is essential to the operation of the VAE framework 

because it allows the model to learn compact 

representations of the input data "x" and carry out 

operations like data creation, interpolation, and latent 

space clustering. 

 𝑝(𝓍|𝓏): likelihood function 

plays a central role in the VAE framework by specifying 

how well the model reconstructs the observed data x from 

latent variables z, guiding the training process towards 

learning meaningful representations of the input data. 

 𝑝(𝓏): prior on latent variable 

The prior 𝑝(𝓏) on latent variable z reflects the prior 

knowledge or assumptions about the latent space and 

influences the generative process and training dynamics 

of the VAE model. 

 𝑞(𝓏|𝓍): variational posterior (encoder) 

𝑞(𝓏|𝓍) serves as the encoder in the VAE framework, 

providing an approximation to the true posterior 

distribution p(z∣x) and enabling efficient inference and 

learning of latent representations from observed data. 

 𝜃: parameters of the model 

θ represents the tunable parameters of the VAE model 

that are optimized during training to capture the 

underlying structure of the data and enable 

 ∅: parameters of the variational posterior 

ϕ represents the parameters of the encoder network that 

control the shape and characteristics of the variational 

posterior distribution q(z∣x), enabling efficient inference 

of latent representations from observed data in the VAE 

framework. 

 

2.2 Derivations 

Evidence: 

The evidence 𝑝(𝑥) is often intractable, and we aim to 

maximize the marginal likelihood 𝑝(𝑥). 
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ELBO (Evidence Lower Bound): 

Applying Jensen's inequality to log 𝑝(𝑥): 

log 𝑝(𝑥) =  𝔼𝑞(𝑧|𝑥)  [log
𝑝(𝑥,𝑧)

𝑞(𝑧|𝑥)
] + 𝔼𝑞(𝑧|𝑥) [log

𝑞(𝑧|𝑥)

𝑝(𝑧|𝑥)
]    (1) 

 

Reformulate: 

Rearrange terms and define the ELBO ℒ(𝜃, ∅; 𝑥): 

log 𝑝(𝑥) ≥ ℒ(𝜃, ∅; 𝑥) =

[log
𝑝(𝑥,𝑧)

𝑞(𝑧|𝑥)
] − 𝐾𝐿(𝑞(𝑧|𝑥)‖𝑝(𝑧))          (2) 

 

Meaning of Terms: 

The ELBO is the expected log-likelihood minus the 

KL divergence between the variational posterior and 

the prior. 

 

VAE Objective: 

The goal is to maximize the ELBO with respect to 

both the model parameters θ and the variational 

parameters ϕ: 

𝑚𝑎𝑥𝜃,∅ ℒ(𝜃, ∅; 𝑥) 

 

Reparameterization Trick: 

Introduce the reparameterization trick for 

differentiable sampling: 
𝑧 = 𝜇 + 𝜎 ⨀ 𝜖    
           (3) 
where ϵ is sampled from 𝒩(0,1).  
 

Likelihood Term: 

If 𝑝(𝑥|𝑧) is Gaussian, the likelihood term is the log-

likelihood of x given z: 

log 𝑝(𝓍|𝓏) −
1

2
 ∑ (1 +  log( 𝜎𝑖

2 ) −  𝜇𝑖
2 − 𝜎𝑖

2 )𝑖 +

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    

 

KL Divergence Term: 

If 𝑝(𝑧) and 𝑞(𝑧|𝑥) are Gaussian, the KL divergence 

term has a closed form: 

𝐾𝐿(𝑞(𝑧|𝑥)‖ 𝑝(𝑧)) =  −
1

2
 ∑ (1 +  log( 𝜎𝑖

2 ) −  𝜇𝑖
2 −𝑖

 𝜎𝑖
2 )    (4) 

 

Final Form of the Objective 

𝑚𝑎𝑥𝜃,∅ ℒ(𝜃, ∅; 𝑥) = 𝔼𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] −

𝐾𝐿(𝑞(𝑧|𝑥)‖ 𝑝(𝑧))   (5) 

 

This derivation provides a high-level understanding of the 

VAE objective and the terms involved. Implementing a VAE 

involves constructing neural networks for the encoder, 

decoder, and sampling using the reparameterization trick. 

Additionally, the KL divergence term often has a closed form 

when using Gaussian distributions for the prior and 

variational posterior. 

 

Variational Inference 

Generalizing the likelihood term to include variational 

inference for a Bayesian likelihood. Lets represent the 

variational posterior for the Bayesian likelihood parameters 𝜃′ 
as 𝑞(𝜃′|𝑥): 

 

Variational Inference in Likelihood Term: 

log 𝑝(𝑥|𝑧, 𝜃′) ≈ 𝔼𝑞(𝜃′|𝑥)[log 𝑝(𝑥|𝑧, 𝜃′)]          (6) 

      

   

Final Objective with Variational Inference in Likelihood: 

𝑚𝑎𝑥𝜃,∅ ℒ(𝜃, ∅; 𝑥) = 𝔼𝑞(𝑧|𝑥) [𝔼𝑞(𝜃′|𝑥) [log 𝑝(𝑥|𝑧, 𝜃′)]] −

𝐾𝐿(𝑞(𝑧|𝑥)‖ 𝑝(𝑧))                                                     (7) 

 

This equation reflects the use of variational inference to 

approximate the Bayesian likelihood term. The outer 

expectation is with respect to the variational posterior 𝑞(𝓏|𝓍) 

over latent variables, and the inner expectation is with respect 

to the variational posterior 𝑞(𝜃′|𝑥) over the Bayesian 

likelihood parameters. The KL term remains as the 

divergence between the variational posterior over latent 

variables and the prior over latent variables. 

 

Incorporating variational inference for the Bayesian 

likelihood, we have: 

 

Jensen's Inequality with Variational Inference: 

log 𝑝(𝑥) ≥ ℒ(𝜃, ∅; 𝑥) = 𝔼𝑞(𝑧|𝑥) [𝔼𝑞(𝜃′|𝑥) [log
𝑝(𝑥,𝑧,𝜃′)

𝑞(𝑧|𝑥)𝑞(𝜃′|𝑥)
]]

  (8) 

 

Reparameterization Trick: 

𝑧 = 𝜇 + 𝜎 ⨀ 𝜖                          (9) 

 

Variational Inference in Likelihood Terms: 

log 𝑝(𝑥|𝑧, 𝜃′) ≈ 𝔼𝑞(𝜃′|𝑥)[log 𝑝(𝑥|𝑧, 𝜃′)]        (10) 

 
KL Divergence Term (Gaussian Distributions): 

𝐾𝐿(𝑞(𝑧|𝑥)‖ 𝑝(𝑧)) = −
1

2
 ∑ (1 +  log( 𝜎𝑖

2 ) −  𝜇𝑖
2 − 𝜎𝑖

2 )𝑖  (11) 

 

Final Objective with Variational Inference in Likelihood: 

𝑚𝑎𝑥𝜃,∅ ℒ(𝜃, ∅; 𝑥) = 𝔼𝑞(𝑧|𝑥) [𝔼𝑞(𝜃′|𝑥) [log 𝑝(𝑥|𝑧, 𝜃′)]] −

𝐾𝐿(𝑞(𝑧|𝑥)‖ 𝑝(𝑧))           (12) 

 

These equations represent the Variational Autoencoder 

(VAE) objective incorporating variational inference for the 

Bayesian likelihood term. The ELBO is optimized to 

maximize the expected log-likelihood while minimizing the 

KL divergence between the variational posterior and the prior 

over latent variables. 

 

2.4 Integrating Amortized Stochastic Variational 

Inference 

Using Amortized Stochastic Variational Inference (ASVI) as 

the optimization strategy for the Variational Autoencoder 

(VAE) in the context of miniaturization for mobile 

computing, the decision variables would involve the 

parameters that need optimization. In ASVI, these parameters 

typically include both the parameters of the probabilistic 

model (the VAE itself) and the parameters of the variational 

family. 

 

Let's denote the decision variables as X, and these could 

include: 
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VAE Parameters (θ): These are the parameters of the 

generative and inference networks in the VAE. They define 

the structure and behaviour of the VAE model. 

𝑋1 = 𝜃 

Variational Family Parameters (ϕ): ASVI often 

involves using a variational family to approximate the 

true posterior. The parameters of this variational family 

are optimized along with the VAE parameters. 

𝑋2 = ∅ 

Hence, the combined decision variables X would be: 

𝑋 = (𝜃, ∅) 
The objective function f(X) involves the evidence lower 

bound (ELBO) that is being maximized during the training of 

the VAE with ASVI: 

 

𝑓(𝑋) = 𝔼𝑞∅(𝑧|𝑥)[log 𝑝𝜃 (𝑥, 𝑧) − log 𝑞∅ (𝑧|𝑥)]       (13) 

 

Where 𝑞∅(𝑧|𝑥) is the variational distribution and 𝑝𝜃(𝑥, 𝑧) is 

the joint distribution of the data and latent variables. 

 

For miniaturization, this objective function will be extended 

to include regularization that addresses the goals of 

optimizing the VAE for a mobile computing environment.  

The optimization problem becomes: 

𝑚𝑎𝑥𝑋𝑓(𝑋) 
 

Now, to optimize the Variational Autoencoder (VAE) for 

mobile computing environment using Amortized Stochastic 

Variational Inference (ASVI), we shall extend the standard 

VAE objective with additional terms related to model 

miniaturization. Considering specific miniaturization 

techniques: pruning, quantization, knowledge distillation, and 

sparse coding. Let θ represent the VAE parameters, and ϕ 

represent the variational family parameters. The decision 

variables are denoted as 𝑋 = (𝜃, ∅). 

 

The objective function 𝑓(𝑋) involves maximizing the 

evidence lower bound (ELBO) augmented with terms for 

miniaturization: 

 

𝑓(𝑋) = 𝔼𝑞∅(𝑧|𝑥)[log 𝑝𝜃 (𝑥, 𝑧) − log 𝑞∅ (𝑧|𝑥)] + 𝜆𝑚𝑖𝑛𝑖𝑅(𝑋) 

(14) 

Here: 

 𝑞∅(𝑧|𝑥) is the variational distribution. 

 𝑝𝜃(𝑥, 𝑧) is the joint distribution of the data and latent 

variables. 

 𝑅(𝑋) represents the miniaturization-related 

regularization term. 

 𝜆𝑚𝑖𝑛𝑖  is the regularization strength. 

 

Now, let’s include terms for specific miniaturization 

techniques: 

1. Pruning introduces a regularization term based on 

the sum of absolute weights. 

 

𝑅𝑝𝑟𝑢𝑛𝑒(𝑋) = ∑ |𝓌𝑖|𝑖          (15) 

 

Adding this to the objective function: 

𝑓(𝑋) = 𝔼𝑞∅(𝑧|𝑥)[log 𝑝𝜃 (𝑥, 𝑧) −

log 𝑞∅ (𝑧|𝑥)] + 𝜆𝑝𝑟𝑢𝑛𝑒 ∑ |𝓌𝑖|𝑖         (16) 

 

2. Quantization introduces a regularization term based 

on the difference between weights and their 

quantized values. 

𝑅𝑞𝑢𝑎𝑛𝑡(𝑋) = ∑ |𝓌𝑖 − 𝓌𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑|𝑖                       (17) 

Adding this to the objective function: 

𝑓(𝑋) = 𝔼𝑞∅(𝑧|𝑥)[log 𝑝𝜃 (𝑥, 𝑧) − log 𝑞∅ (𝑧|𝑥)] +

𝜆𝑞𝑢𝑎𝑛𝑡 ∑ |𝓌𝑖 − 𝓌𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑|𝑖                                  (18) 

 

3. Knowledge Distillation introduces a regularization 

term based on the Kullback-Leibler divergence 

between the original VAE and a smaller model (p 

and q). 

𝑅𝐾𝐷(𝑋) = 𝐾𝐿𝐷(𝑝‖𝑞)   

           (19) 

Adding this to the objective function: 

𝑓(𝑋) = 𝔼𝑞∅(𝑧|𝑥)[log 𝑝𝜃 (𝑥, 𝑧) −

log 𝑞∅ (𝑧|𝑥)] + 𝜆𝐾𝐷𝐾𝐿𝐷(𝑝‖𝑞)        (20) 

 

4. Sparse Coding introduces a regularization term 

based on the L1 norm of sparse codes. 

𝑅𝑠𝑝𝑎𝑟𝑠𝑒(𝑋) = ‖𝛼‖1         (21) 

Adding this to the objective function: 

𝑓(𝑋) = 𝔼𝑞∅(𝑧|𝑥)[log 𝑝𝜃 (𝑥, 𝑧) − log 𝑞∅ (𝑧|𝑥)] + 𝜆𝑠𝑝𝑎𝑟𝑠𝑒‖𝛼‖1

                                                                               (22) 

 

2.6 Dynamic Hyperparameter Adjustment 

Adaptive hyperparameter tuning involves dynamically 

adjusting hyperparameters during the training process based 

on the observed performance of the model. One common 

approach is to use optimization algorithms that adaptively 

update hyperparameters to find the optimal values. 

 

For optimizing a Variational Autoencoder (VAE) for a mobile 

computing environment with Amortized Stochastic 

Variational Inference (ASVI) as the optimization strategy, we 

can integrate learning rate adaptation methods, specifically 

those suitable for adaptive optimization. Both stochastic 

gradient descent (SGD) variants with adaptive learning rates 

and learning rate schedulers can be incorporated into the 

mathematical model. In this study Adam optimizer shall be 

employed, within the context of ASVI for mVAEs. 

 

Let θ denote the model parameters, ϕ the variational 

parameters, ηt the adaptive learning rate, ϵ a small constant, 

and 𝛼∅ the learning rate for updating variational parameters. 

 

Now, we shall incorporate adaptive hyperparameter tuning 

along with miniaturization techniques into the solution. 

Adaptive hyperparameter tuning can be applied to adjust 

hyperparameters related to miniaturization techniques 

dynamically during the training process. 

 

Let's integrate the Adam optimizer with Amortized Stochastic 

Variational Inference (ASVI) and specific miniaturization 

techniques. We'll consider a general framework that includes 

parameters related to miniaturization (such as pruning, 
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quantization, etc.), adaptive hyperparameter tuning, and the 

ASVI framework. 

 

Decision Variable: 

The comprehensive decision variable now includes 

parameters for the Adam optimizer, ASVI, adaptive 

hyperparameter tuning, and specific miniaturization 

techniques: 

  

𝒟 = {

𝜃, ∅, 𝜂, 𝛼∅, 𝛽1, 𝛽2, 𝜖, Miniaturization 

Hyperparameters, Adam 
Optimizer Parameters

}      (23) 

 

Here, "Miniaturization Hyperparameters" represents 

parameters specific to chosen miniaturization techniques, and 

"Adam Optimizer Parameters" includes hyperparameters for 

adaptive tuning.  

 

Complete Framework:  

The update rules for θ and ϕ within the ASVI framework 

using the Adam optimizer and incorporating miniaturization 

techniques and adaptive hyperparameter tuning are as 

follows:  

 

𝓂𝜃,𝑡 = 𝛽1 ∙ 𝓂𝜃,𝑡−1 + (1 − 𝛽1)  ∙  ∇𝜃ℒ(𝜃𝑡−1, ∅𝑡)    (24) 

 

𝓋𝜃,𝑡 = 𝛽2 ∙ 𝓋𝜃,𝑡−1 + (1 − 𝛽2) ∙  (∇𝜃ℒ(𝜃𝑡−1, ∅𝑡))
2
      (25) 

𝓂̂𝜃,𝑡 =
𝓂𝜃,𝑡

1−𝛽1
𝑡     

         (26) 

𝓋̂𝜃,𝑡 =
𝓋𝜃,𝑡

1−𝛽2
𝑡     

         (27) 

𝜃𝑡 = 𝜃𝑡−1 −
𝜂𝑡

√𝓋̂𝜃,𝑡+𝜖
∙ 𝓂̂𝜃,𝑡    

         (28) 

∅𝑡+1 = ∅𝑡 + 𝛼∅ ∙ ∇𝜃ℒ(𝜃𝑡 , ∅𝑡)   

         (29) 

 

Here, 𝛽1 and 𝛽2 are the exponential decay rates for the first 

and second moments, ηt the adaptive learning rate, ϵ a small 

constant, and 𝛼∅ the learning rate for updating variational 

parameters. The decision variable components such as 

"Miniaturization Hyperparameters" and "Adam Optimizer 

Parameters" are used appropriately within the update rules. 

 

Objective Function: 

The objective function, considering specific miniaturization 

techniques, is: 

 

ℒ(𝜃, ∅) = 𝔼𝑞∅(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐾𝐿(𝑞∅(𝑧|𝑥)‖ 𝑝(𝑧)) +

𝑀𝑖𝑛𝑖𝑎𝑡𝑢𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠 (
𝜃, 𝑀𝑖𝑛𝑖𝑎𝑡𝑢𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

)       (30) 

 

Here, "MiniaturizationLoss" captures the additional loss term 

associated with chosen miniaturization techniques, including 

relevant hyperparameters. 

 

This integrated solution represents a comprehensive 

framework that combines the Adam optimizer with ASVI, 

adaptive hyperparameter tuning, and specific miniaturization 

techniques. 

 

When integrating miniaturization into the optimization of a 

VAE for mobile computing environments with ASVI, these 

hyperparameters become part of the decision variable, 

influencing the optimization process. Adjustments to these 

hyperparameters during training, potentially guided by an 

adaptive tuning algorithm, contribute to the overall 

optimization strategy. 

 

3. Design 
 

The system architecture for optimizing autoencoder models 

for mobile computing environments constitutes a robust and 

efficient framework to integrate powerful and resource-aware 

models into mobile devices. This section presents an in-depth 

exploration of the system architecture, comprising its core 

components, data flow, and interactions that collectively 

contribute to the successful implementation of data 

compression, feature extraction, and anomaly detection tasks 

on mobile devices. 

 

 
Figure 1. Architecture of the System 

 
3.1 Components of the System Architecture 

Mobile Devices 

At the heart of the system architecture lie the mobile devices, 

serving as the primary interface for users to interact with the 

miniaturized variational autoencoder models. These devices 

encompass smartphones and tablets equipped with Android or 

iOS operating systems. Each mobile device hosts a user-

facing mobile application, which empowers users to perform 

data compression, feature extraction, and anomaly detection 

tasks on their local data. 

 

Sequence-to-Sequence  

 

 
Figure 2. Sequence to Sequence Diagram  
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In mobile computing environments, Sequence-to-Sequence 

(Seq2Seq) models play a vital role by processing textual 

inputs and generating corresponding images using variational 

autoencoders (VAEs). These neural network architectures are 

well-suited for natural language processing tasks due to their 

efficiency and adaptability on mobile devices. 

 

In this setup, Seq2Seq models function as encoder-decoder 

frameworks. The encoder encodes textual input into a fixed-

length vector representation capturing semantic meaning and 

context. This representation is then decoded by the Seq2Seq 

decoder to generate a sequence of tokens representing the 

image output, leveraging the encoded information and 

previous tokens. 

 

The generated output sequence is fed into the VAE, which 

operates within mobile device constraints to decode the 

sequence into an image representation. This integration 

enhances the system's capability to handle multimodal data, 

enabling innovative applications like text-to-image generation 

and caption-based image retrieval on mobile platforms. 

 

Miniaturized Variational Autoencoder Model 

 

 
Figure 3. Architecture of Miniaturized Variational Autoencoder 

 

The variational autoencoder model constitutes the core of the 

system architecture, driving the data compression and feature 

extraction tasks. Developed using the TensorFlow and 

PyTorch frameworks, these miniaturized variational 

autoencoder model have undergone meticulous design and 

optimization to achieve efficiency and resource awareness. 

On mobile devices, the autoencoder models are deployed and 

executed, allowing for localized data processing without 

constant communication with external servers. 

 

Data Flow and Interactions 

In the on-device inference scenario, the mobile devices 

process data locally using the deployed miniaturized 

variational autoencoder models. Users engage with the mobile 

application, providing prompts in textual form to be generated 

or from which features need to be extracted. The mobile 

application preprocesses the data, ensuring that the data is 

well-prepared for the autoencoder model. Subsequently, the 

data is fed into the model, and the output yields compressed 

data or extracted features. The complete process is described 

below. 
 

 
Figure 4. On-Device Data Preprocessing 

 

When the computational demands exceed the mobile device's 

capabilities, data processing is offloaded to the model server. 

Users interact with the mobile application, offering data as 

input. The mobile application encrypts the data and securely 

communicates with the model server through SSL or 

equivalent secure communication protocols. The model server 

receives the encrypted data, performs data preprocessing, and 

runs the miniaturized variational autoencoder models. The 

resulting compressed data or extracted features are 

transmitted back to the mobile application, preserving the 

privacy and security of user data. 
 

 
Figure 5. Model Server Interaction 

 

3.2 Performance and Scalability 

The system architecture is meticulously designed for 

efficiency and scalability, accommodating a wide spectrum of 

mobile devices. The miniaturized variational autoencoder 

models are optimized for superior performance, and 

performance evaluation tools are incorporated into the 

architecture for continual monitoring and enhancement. The 

system's adaptability is evident with the optional model 

server, enabling seamless adjustments to varying hardware 

resources and dynamic user demands. 

 

Through the meticulous design and comprehensive 

integration of these components, the system architecture 

realizes an effective and user-friendly solution for 

miniaturizing autoencoder models in mobile computing 

environments. Empowered by this architecture, the system 

proficiently performs data compression, feature extraction, 
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and anomaly detection on resource-constrained mobile 

devices. Moreover, the seamless integration with existing 

mobile systems paves the way for versatile applications and 

services, harnessing the potential of mobile computing in real-

world scenarios. 

 

3.3 Miniaturization Process 

The process of miniaturizing a Variational Autoencoder 

(VAE) involves optimizing the model to reduce its size and 

computational complexity while maintaining its generative 

capabilities. Here are the steps typically involved in the 

variational autoencoder miniaturization process: 

 
Simplification of Architecture 
Simplifying the architecture of a Variational Autoencoder 

(VAE) involves strategic modifications to reduce its 

complexity while maintaining its effectiveness. One approach 

is to decrease the number of layers in both the encoder and 

decoder (DeOliveira, et al., 2021). By removing unnecessary 

hidden layers, the architecture becomes more streamlined. 

Additionally, reducing the number of neurons in each layer is 

another effective method. This directly decreases the 

parameter count and computational load (DeOliveira, et al., 

2021).. Another key strategy is adjusting the dimensions of 

the latent space, which represents a compressed, lower-

dimensional representation of the input data in the VAE. This 

reduction in dimensionality simplifies the model.  

 

4. Results and Discussion 
 

The primary focus of this research centres on the endeavour 

to miniaturize and optinize Variational Autoencoders (VAEs) 

tailored specifically for mobile computing environments. This 

pursuit arises from the critical need to optimize machine 

learning models for devices with limited computational 

resources. As mobile devices continue to play an increasingly 

integral role in our daily lives, from communication to 

productivity and beyond, the demand for efficient and 

resource-conscious models has become paramount. By 

reducing the computational overhead of  VAEs without 

compromising their generative capabilities, this research 

endeavours to pave the way for more effective and responsive 

applications in the realm of mobile computing. This 

exploration holds substantial significance in enhancing the 

performance and viability of machine learning applications on 

a diverse range of resource-constrained mobile devices, 

ultimately contributing to a more seamless integration of AI 

technologies into our mobile-centric ecosystem. 

 
Table 1.  Table of First Experiment Training Process 

Epochs Loss KL Divergence Likelihood 

Term 

0/1000 17.24948120117

1875 

90.32037353515

625 

-

73.0708923339

8438 

100/10

00 

-5.74365234375 70.20504760742

188 

-

75.9486999511

7188 

200/10

00 

-

29.97385406494

1406 

48.36785125732

422 

-

78.3417053222

6562 

300/10

00 

-

31.13236236572

2656 

41.13382720947

2656 

-

72.2661895751

9531 

400/10

00 

-

53.54600524902

344 

32.84107971191

406 

-

86.3870849609

375 

500/10

00 

-

45.31668090820

3125 

21.62503814697

2656 

-

66.9417190551

7578 

600/10

00 

-

52.03794097900

3906 

16.52689361572

2656 

-

68.5648345947

2656 

700/10

00 

-

57.84206390380

8594 

11.66026401519

7754 

-

69.5023269653

3203 

800/10

00 

-52.32373046875 7.273551464080

8105 

-

59.5972824096

6797 

900/10

00 

-

53.14376068115

2344 

4.844170093536

377 

-

57.9879302978

5156 

 

The table below represents the training Progress for the first 

experiment. During training, the loss function is monitored 

across epochs to assess the model's performance. Initially, at 

Epoch 0/1000, the loss is relatively high at 17.25, indicating a 

significant deviation from the target. This high loss value 

suggests that the model's initial predictions are far from the 

ground truth. As training progresses, the loss gradually 

decreases, indicating improvement in the model's ability to 

reconstruct the input data accurately. At Epoch 100/1000, the 

loss decreases further to -5.74, indicating that the model is 

starting to capture essential features of the input data more 

effectively. This trend continues as training continues, with 

the loss steadily decreasing over subsequent epochs. Notably, 

the KL Divergence and Likelihood Term components of the 

loss function also exhibit decreasing trends, suggesting that 

the model is successfully balancing the trade-off between 

reconstruction accuracy and latent space regularization. 

 

By Epoch 900/1000, the loss reaches -53.14, indicating 

significant improvement compared to the initial epoch. The 

KL Divergence decreases to 4.84, indicating that the latent 

space regularization is becoming more effective, while the 

Likelihood Term remains negative, indicating that the model 

is effectively reconstructing the input data. 

 

 
Figure 6.  Graph of First Experiment Training Process 

-150

-100

-50

0

50

100

150

Training Process During First 

Experiment  

Loss KL Divergence

Likelihood Term



International Journal of Computer Sciences and Engineering                                                                           Vol.12(5), May 2024 

© 2024, IJCSE All Rights Reserved                                                                                                                                             49 

 
Figure 7.  First Experiment Latent Space 

 
Table 2. Table of Second Experiment Training Process 

Epoch Loss KL Divergence Likelihood Term 

0/1000 19.149147033691

406 

57.812606811523

44 

-

38.663459777832

03 

100/10

00 

12.055616378784

18 

38.996406555175

78 

-

26.940790176391

6 

200/10

00 

0.8380355834960

938 

26.222572326660

156 

-

25.384536743164

062 

300/10

00 

-

24.561340332031

25 

21.165180206298

828 

-

45.726520538330

08 

400/10

00 

-

12.951531410217

285 

14.655127525329

59 

-

27.606658935546

875 

500/10

00 

-

26.339786529541

016 

8.1659688949584

96 

-

34.505756378173

83 

600/10

00 

-

25.889547348022

46 

4.5937008857727

05 

-

30.483247756958

008 

700/10

00 

-

31.938011169433

594 

2.8171000480651

855 

-

34.755111694335

94 

800/10

00 

-

15.147588729858

398 

2.2827475070953

37 

-

17.430335998535

156 

900/10

00 

-

11.435503959655

762 

1.1547362804412

842 

-

12.590240478515

625 

 

 
Figure 8. Graph of Second Experiment Training Process 

Table 3.  Table of Third Experiment Training Process 

Epoch Loss KL Divergence Likelihood Term 

0/1000 40.412891387939

45 

93.726661682128

9 

-

53.313770294189

45 

100/10

00 

9.7646789550781

25 

73.8642578125 -

64.099578857421

88 

200/10

00 

-

10.292354583740

234 

54.934253692626

95 

-

65.226608276367

19 

300/10

00 

-

17.095249176025

39 

48.433956146240

234 

-

65.529205322265

62 

400/10

00 

-

20.136711120605

47 

35.001739501953

125 

-

55.138450622558

594 

500/10

00 

-

26.414287567138

672 

32.369712829589

844 

-

58.784000396728

516 

600/10

00 

-

39.071403503417

97 

19.475368499755

86 

-

58.546772003173

83 

700/10

00 

-

52.374687194824

22 

17.199090957641

6 

-

69.573776245117

19 

800/10

00 

-

38.133499145507

81 

15.547822952270

508 

-

53.681324005126

95 

900/10

00 

-

50.824249267578

125 

8.7667541503906

25 

-

59.591003417968

75 

 

 
Figure 9. Graph of Third Experiment Training Process 

 

 
Figure 10.  Latent Space of Third Experiment 
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Table 4 . Table of Fourth Experiment Training Process 

Epoch Loss KL Divergence Likelihood 

Term 

0/1000 -

59.7668647766

1133 

21.49181747436

5234 

-

81.25868225097

656 

100/10

00 

-

70.4335784912

1094 

15.77765846252

4414 

-

86.21123504638

672 

200/10

00 

-

72.9332580566

4062 

11.35970687866

211 

-

84.29296112060

547 

300/10

00 

-

73.7215347290

039 

9.415487289428

711 

-

83.13702392578

125 

400/10

00 

-

73.4001083374

0234 

7.077116012573

242 

-

80.47722625732

422 

500/10

00 

-97.9970703125 5.059318542480

469 

-

103.0563888549

8047 

600/10

00 

-

91.6314544677

7344 

3.891025066375

7324 

-

95.52247619628

906 

700/10

00 

-

82.3971786499

0234 

2.683616638183

5938 

-

85.08079528808

594 

800/10

00 

-

84.7581558227

539 

1.783576488494

873 

-

86.54173278808

594 

900/10

00 

-

93.1687545776

3672 

1.154829502105

713 

-

94.32358551025

39 

 

 
Figure 11.  Graph of Fourth Experiment Training Process 

 

 
Figure 12.  Latent Space of Fourth Experiment 

4.1 The Average Values of the Experiments 

Calculating the average of the experiments as recorded in the 

tables, let us compute the mean for each column separately 

and then create a new table with these average values. Let's 

proceed with the calculation: 

 

Let's denote: 

n as the total number of values in the column, 

  𝑥𝑖  as the ith value in the column, where i ranges from 1 to n 

Using sigma notation, the sum of all values in the column can 

be expressed as: 

 

∑ 𝑥𝑖

𝑛

𝑖=1
 

And the average (𝑥̅) can be calculated as: 

 

(𝑥̅) = 1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1      

 (29) 

 

This formula states that you sum up all the individual values 

in the column using sigma notation, and then divide by the 

total count of values in the column. 

 
Table 5  Table of Average of the Training Processs 

Metric Average Value 

Loss -36.3087 

KL Divergence 31.6827 

Likelihood Term -65.0440 

 

The average KL divergence and likelihood term provide 

information about how well the VAE balances the trade-off 

between reconstruction accuracy and the learned latent space 

structure. A lower average KL divergence indicates that the 

model's learned latent space distribution is closer to the prior 

distribution, which is desirable for effective data generation 

and interpolation tasks. On the other hand, a higher likelihood 

term implies that the model can better capture the essential 

features of the input data while minimizing information loss. 

 

 
Figure 13. A Graph of the Average of the Experiment 

 
Table 6. Table of the Experimental Runtime 

 Experiment Runtime (Seconds) 

First Experiment 31 

Second Experiment 26 

Third Experiment 26 

Fourth Experiment 27 

-400

-200

0

Training Process 

During Third 

Experiment  

Loss KL Divergence

Likelihood Term

Average Value

-100

-50

0

50

Average Value 
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To calculate the average runtime across the experiments: 

 

Average Runtime = 
𝑇𝑜𝑡𝑎𝑙 𝑅𝑢𝑛𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠
      (30) 

 
Total Runtime = 31 + 26 + 26 + 27 = 110 seconds     (31) 

 

Number of Experiments = 4   
    

Average Runtime = 
110

4
 = 27.5 seconds      (32) 

 
The average runtime of the experiments, computed to be 

approximately 27.5 seconds, provides insight into the 

efficiency of the system implementation. In this research, 

where the focus is on optimizing variational autoencoder 

(VAE) models for mobile computing environments, runtime 

is a critical factor. The lower the runtime, the more efficient 

the system is at processing inputs such as images, performing 

tasks like data compression, feature extraction, and anomaly 

detection on resource-constrained mobile devices. Therefore, 

achieving an average runtime of 27.5 seconds signifies 

successful optimization efforts, contributing to the overall 

goal of creating efficient VAE models suitable for mobile 

deployment. 

 
Table 7  Hyper-parameters for the VAE experiments 

Hyper-Parameters Values 

Epochs 5000 

Batch-Size 100 

Learning Rate 0.001 

Optimizer RMSprop 

Dataset LAION-5B 

 
Table 8  Dynamically Tuned Hyperparameters for the mVAE experiment 

Hyper-Parameters Values 

Epochs 1000 

Batch-Size 32 

Learning Rate 0.001 

Optimizer RMSprop 

Dataset LAION-5B 

 

 
Figure 14  Graph for the Hyperparameters of VAE and mVAE 

 

Table 9. Quantitative results of VAE variants and mVAE during experiments 

Algorithms Accuracy of 

Generated Image 

(%) 

Computational Time 

(secs/epoch) 

VAE 75.3 2 
VaDE 92.5 58 
GMVAE 94.7 43 
InfoVAE 65.9 39 
β-VAE 86.1 17 
VQ-VAE 85.6 5 
S-VAE 78.3 58 
VAE-GAN 61.7 43 
mVAE 97.2 2 
 

 
Figure 15.  Bar chart of Benchmark results of VAE variants and mVAE 

 
This research tackles the challenge of optimizing machine 

learning models for mobile devices, which are increasingly 

central to our lives.  Traditional models often require 

significant computational resources, hindering their use on 

these devices.   

 

This was addressed by developing miniaturized Variational 

Autoencoders (VAEs) specifically designed for mobile 

computing environments. VAEs are a type of machine 

learning model that can learn complex patterns from data and 

then use that knowledge to generate new data. By 

miniaturizing VAEs, the researchers aim to reduce the 

computational overhead without compromising the model's 

ability to generate data. 

 

This research has several goals. First, it seeks to create more 

effective and responsive applications in mobile computing. 

By reducing the computational burden of VAEs, the 

researchers hope to pave the way for more powerful mobile 

applications. Second, they aim to enhance the performance 

and viability of machine learning on diverse mobile devices.  

Miniaturized VAEs could enable a wider range of devices to 

leverage the power of machine learning. Finally, this research 

contributes to a more seamless integration of AI technologies 

into our mobile-centric ecosystem.  As VAEs become more 

efficient, they can be used to create new and innovative 

mobile applications.   
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We developed a meticulous evaluation approach to assess the 

performance of the miniaturized VAEs. This evaluation 

considered factors such as model accuracy, inference speed, 

and resource utilization.  This approach allowed them to gain 

a deep understanding of how the VAEs performed in the 

specific context of mobile hardware settings.  

 

The research involved four experiments, each with a different 

prompt used to train the VAE.  The researchers monitored a 

loss function during training, which provided insight into the 

model's performance. Initially, the loss function was high, 

indicating a significant deviation from the target data. 

However, as training progressed, the loss function decreased, 

signifying improvement in the model's ability to reconstruct 

the input data.   

 

The results are promising. The miniaturized VAEs achieved a 

significant decrease in runtime compared to traditional VAEs. 

This demonstrates their suitability for resource-constrained 

mobile environments.  Another positive finding is that the 

models were able to strike a balance between reconstruction 

accuracy and latent space properties.  These findings suggest 

that miniaturized VAEs have the potential to be valuable tools 

for mobile machine learning. 

 

The potential applications for miniaturized VAEs are vast.  

They could be used for image processing tasks on mobile 

devices, such as image enhancement, denoising, and even 

medical imaging in resource-constrained settings.  

Additionally, they could be used for real-time image analysis, 

which is crucial for scenarios requiring prompt decision-

making.  Beyond image processing, miniaturized VAEs hold 

promise for the Internet of Things (IoT).  By enabling on-

device data processing, they could reduce reliance on cloud 

services and facilitate efficient processing. 

 

5. Conclusion 
 

In conclusion, this research on optimizing VAEs represents a 

significant step forward in the development of efficient and 

versatile mobile machine learning applications. By reducing 

the computational burden of VAEs, the researchers open 

doors to a future where mobile devices can leverage the 

power of machine learning for a wider range of tasks.  Further 

exploration in this area has the potential to revolutionize 

mobile computing by enabling advanced functionalities on 

even the most resource-constrained devices. 

 

This study has successfully optimized Variational 

Autoencoder (VAE) models for deployment in mobile 

computing environments. The integration of dynamic 

hyperparameter tuning, amortized stochastic variational 

inference (ASVI), and miniaturization techniques yielded 

promising results. The mVAE model achieved an impressive 

classification accuracy of 97.2%, demonstrating its potential 

across various applications like mobile image processing, IoT 

optimization, and anomaly detection within sensor networks. 

 

The thesis accomplished its objectives by developing a 

comprehensive framework that seamlessly integrates ASVI 

with miniaturization techniques. Evaluation of each 

technique's impact provided valuable insights into model 

miniaturization trade-offs, crucial for deploying efficient 

VAEs in real-world scenarios. 

 

Integration of ASVI into VAE training enhanced efficiency 

and addressed mobile platform challenges. ASVI's 

adaptability and compatibility with miniaturization techniques 

position it as a powerful tool for developing VAEs tailored to 

mobile computing constraints. 

 

Benchmarking against existing methods established the 

proposed framework as a state-of-the-art solution, solidifying 

its practical relevance. Overall, this research contributes to the 

advancement of VAEs and machine learning applications in 

resource-constrained environments, paving the way for future 

advancements in efficient model deployment on mobile 

platforms. 
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