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Abstract— Risk to human astronauts and interplanetary distance causing slow and limited communication drives scientists 

to pursue an autonomous approach to exploring distant planets, such as Mars. A portion of exploration of Mars has been 

conducted through the autonomous collection and analysis of Martian data by spacecraft such as the Mars rovers and the 

Mars Express Orbiter. The autonomy used on these Mars exploration spacecraft and on Earth to analyze data collected by 

these vehicles mainly consist of machine learning, a field of artificial intelligence where algorithms collect data and self-

improve with the data. Additional applications of machine learning techniques for Mars exploration have potential to 

resolve communication limitations and human risks of interplanetary exploration. In addition, analyzing Mars data with 

machine learning has the potential to provide a greater understanding of Mars in numerous domains such as its climate, 

atmosphere, and potential future habitation.  In order to explore further utilizations of machine learning techniques for 

Mars exploration, this paper will first  summarize the general features and phenomena of Mars to provide a general 

overview of the planet, elaborate upon uncertainties of Mars that would be beneficial to explore and understand, 

summarize every current or previous usage of machine learning techniques in the exploration of Mars, explore 

implementations of machine learning that will be utilized in future Mars exploration missions, and explore machine 

learning techniques used in Earthly domains to provide solutions to the previously described uncertainties of Mars.  
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I.  INTRODUCTION  

 

Machine learning is a field of artificial intelligence that 

studies algorithms that learn, or improve their 

performance, using collected data. The ability of machine 

learning algorithms to capture, analyze, and describe 

complex data patterns makes them a valuable tool for 

studying various phenomena across numerous industrial 

and scientific domains [1]. Machine learning techniques 

have also been applied successfully to spacecraft and 

towards analyzing space-collected data, as detailed in 

section 3.  

 

Space missions are often carried out remotely because of 

the risk to human astronauts, the costs of maintaining 

astronaut safety and health, and distance from Earth. Some 

locations in space are inaccessible to human exploration 

due to harsh, dangerous, remote, and inhospitable 

conditions. In addition, large distances result in two 

obstacles: extremely long communication times between 

spacecraft and Earth lead to time wasted and 

unproductivity while messages transmit between spacecraft 

and Earth, and a limit on data transmitted due to bandwidth 

limitations at large distances leads to discarding data in 

order to adhere to the low bandwidth. Due to these risks 

and drawbacks, autonomous robotic agents such as rovers 

are advantageous for space exploration [2]. Additionally, 

Mars exploration is a data-rich field, with future missions 

set to collect larger and more detailed datasets than before, 

significantly increasing the total data available and the rate 

of new observations reception. Machine learning 

techniques used for data analysis can address data analysis 

challenges arising from this. 

 

II. FEATURES OF MARS BENEFICIAL TO 

EXPLORE AND UNDERSTAND 

 

This section will summarize basic atmospheric and 

geological features of Mars, which will be referenced in 

future sections, to provide a basic understanding of Mars. 

The introduction will define general features or phenomena 

of Mars, and obstacles that hinder human exploration. 

Uncertainties, or features or phenomena of Mars that are 

undiscovered or unknown, will be described to establish 

why they would be beneficial to resolve. 

 

A. ATMOSPHERIC FEATURES 

1) OVERVIEW OF THE ATMOSPHERE OF MARS 

The atmosphere of Mars at the surface is mainly composed 

of carbon dioxide (95%), molecular nitrogen (2.6%), argon 

(1.9%), molecular oxygen (0.16%), and carbon monoxide 

(0.06%), additionally containing differing trace amounts of 

methane. These gases have been observed by the Sample 

Analysis at Mars (SAM) instrument onboard the Curiosity 

Rover [5], [9] to fluctuate in quantity from their seasonal 

averages depending on the season, with molecular oxygen 

varying by 13% on average [9]. 
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The Martian atmosphere is an oxidizing atmosphere. O2 

within the atmosphere corrodes the iron oxide of the 

Martian surface material, resulting in the signature red 

color of the planet. The Martian atmosphere similarly 

corrodes certain metals and degrades certain materials. For 

example, the wheels of the Curiosity Rover deteriorated 

after spending time on Mars partially because of the 

oxidizing atmosphere [5], [10]. 

 

The Mars atmosphere, which is much thinner than the 

atmosphere of Earth, offers little protection against the 

radiation-emitting galactic cosmic rays and solar energy 

particles exuded by the sun [5], [6] and prevents heat 

retention [5]. These factors, along with a massive distance 

away from the sun, result in a frigid Martian surface with 

an average surface temperature of ~220K [5], [7]. In 

addition to low temperatures, the Martian exterior 

frequently experiences dust storms and surface winds [5]. 

These harsh atmospheric conditions of the Martian surface 

altogether make current human exploration hazardous. 

 

Clouds are another weather feature of Mars, which have 

been observed on Mars by the light detection and ranging 

instrument on the Phoenix mission [11], by the Mars 

Global Surveyor Mars Orbiter Camera [12], and by the 

Opportunity rover [13]. Martian clouds are similar to cirrus 

clouds of Earth [11], [12]. However, the clouds observed 

by the Phoenix mission and the Mars Orbiter Camera were 

water ice clouds, while the clouds captured by the 

Opportunity rover were likely dry ice clouds. Additionally, 

the clouds captured by the Opportunity rover were at a 

higher altitude than typical Martian clouds [13]. Colder 

temperatures occur at higher altitudes, thus increasing the 

likelihood that the Opportunity-observed clouds were 

frozen carbon dioxide. 

 

Mars has an atmospheric pressure of ~610 Pa [14]. For 

reference, Earth has an atmospheric pressure of 101352.9 

Pa, so the atmospheric pressure of Mars is less than 1% of 

the atmospheric pressure of Earth. Due to low atmospheric 

pressure and low temperatures, liquid water cannot 

currently exist at the surface of Mars [5], [15]. The lack of 

liquid water on the surface of Mars contributes to the risk 

and difficulty of human exploration of Mars.  

 

2) FLUCTUATING AMOUNTS OF OXYGEN IN THE 

MARTIAN ATMOSPHERE 

The Tunable Laser Spectrometer of the Sample Analysis at 

Mars (SAM) instrument onboard Curiosity has detected 

that the amount of oxygen on Mars rises by 30% more than 

predicted seasonal patterns estimated during Martian 

springs and summers for unknown reasons [9]. 

Understanding why the oxygen of Mars fluctuates would 

contribute towards understanding how the Martian surface 

and atmosphere interact and might indicate habitability or 

presence of life [9]. 

 

3) UNKNOWN SOURCE OF METHANE IN THE 

MARTIAN ATMOSPHERE 

An unknown process produces the methane in the Martian 

atmosphere measured by SAM’s Tunable Laser 

Spectrometer, possibly through microbial life or abiotic 

processes [16], [17] including serpentinization, the process 

where olivine or pyroxene is heated under pressure and 

reacts with water and carbon dioxide to create methane and 

the mineral serpentine [17]. Methane produced by 

microbial processes would indicate the presence of 

microbial life on Mars. Methane produced by 

serpentinization would signify additional evidence of 

subsurface liquid water, further substantiating the previous 

evidence of subsurface water detected under the southern 

polar cap by scans from the Mars Radar for Subsurface and 

Ionospheric Sounding onboard the Mars Express 

spacecraft [18]. Thus, understanding the source of and 

patterning of methane in the Martian atmosphere would 

contribute to the search for signs of habitability on Mars, 

improve our general understanding of Mars, and further 

assure the presence of subsurface water on Mars. 

 

4) MARTIAN CLOUD DISTRIBUTION 

Martian clouds typically form during the coldest part of the 

Martian year, where the planet is at the furthest distance 

from the sun in its elliptical orbit. However, cameras 

onboard the Opportunity rover have recently captured 

Martian clouds earlier in the Martian year than predicted 

and at higher altitudes than normal [15]. As the positioning 

and timing of Martian clouds is now different from 

predictions, understanding the spatial distribution and 

timing of Martian clouds would result in a greater 

understanding of the Martian hydrological cycle and how 

the Martian atmosphere operates [13], [15].  

 

5) MARS WEATHER ANALYSIS 

Mars has a diverse weather system, with general features 

including but not limited to temperature, humidity, dust 

storms, surface winds, and pressure [4], [5], [7], [19]. 

Analyzing these general features of Martian weather would 

allow for predictive models of the future and past Martian 

climate. These models would increase knowledge of the 

Martian climate and atmosphere, strengthen or weaken 

arguments regarding the future habitation and colonization 

of Mars, and contribute to the overall search for future 

human habitability on Mars [19]. 

 

B. GEOLOGICAL FEATURES 

1) OVERVIEW OF THE GEOLOGICAL FEATURES OF 

MARS 

The uppermost layer of Mars is covered by regolith 

composed of red soil, varying amounts of fractured rock, 

and dust [20]. The regolith can be abrasive if it is rocky, 

which is a partial reason for wheel degradation of the 

Curiosity Rover [10]. Martian regolith covers craters, 

canyons, extinct volcanoes, mountains, dry lakebeds, dry 

channels, and dry valley networks, as well as smaller 

landforms such as dunes and gullies. A majority of the 

craters that span across Mars are impact craters formed by 

asteroid or comet crashes. In addition, common to the 

terrain of Mars are valley networks, which are systems of 

dry channels that traverse the Martian surface. They 
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indicate the presence of previously active but now dry 

water networks [21]. As previously mentioned, liquid 

water cannot exist on the surface of Mars due to the low 

atmospheric pressure of the planet. However, two 

permanent polar ice caps consisting of water ice and 

carbon dioxide are located at opposing poles of Mars. 

Within both polar ice caps are polar-layered deposits built 

from layers of water ice and dust, captured by Mariner 9 

and Viking missions [22]. There are also smaller ice 

patches on the surface of Mars, such as Korolev Crater.   

 

2) MARTIAN VALLEY NETWORKS AND THEIR 

STREAM ORDERS  

The valley networks traversing the Martian surface remain 

largely unmapped due to a lack of spatial integration and 

organization in typical drainage mapping algorithms [23]. 

A few valley networks have been mapped manually, which 

is time-consuming and labor-intensive, but most valley 

networks remain uncharted. Further mapping of valley 

networks would improve understanding of the history of 

liquids on Mars and the climate of Mars [21]. 

 

The term stream order represents a positive integer that 

conveys the complexity of channel drainage, indicating the 

method and duration of water provided. There are 

numerous stream-ordering methods, but the most 

commonly used is the method of Strahler [23]. The stream 

ordering method of Strahler designates an order of k=1 to 

streams that have no tributaries (a tributary is a stream or 

river that flows into the main stem river, a larger stream, or 

a lake) or to the outermost streams of a stream network. 

When streams of the same order meet, they combine to 

form a stream with an order of k+1. However, when 

streams of different orders meet, the resultant stream order 

will be the largest stream order value of the converging 

streams [23]. Calculating the stream order of Martian 

valley networks would contribute towards a greater 

understanding of the presence of liquids in the past and 

hence greater comprehension of the climate of Mars. 

 

3) DISCOVERING IMPACT CRATERS ON THE 

SURFACE OF MARS 

Impact craters can form at any time due to an asteroid or 

comet collision with Mars. For example, the HiRise 

camera of the Mars Reconnaissance Orbiter recently 

captured new impact craters in 2019 and 2021. It would be 

beneficial to discover and map all existing and newly 

formed impact craters because analysis of the spatial 

statistics of impact craters results in information about the 

geological properties and processes of the Martian surface 

[24]. However, it is difficult to manually analyze Mars 

surface imagery to map impact craters because it is time-

consuming and labor-intensive to analyze thousands of 

Mars surface imagery to discover impact craters, which are 

prone to forming randomly.  

 

4) CYCLICITY OF LAYERED TERRAIN AT MARS 

POLAR CAPS 

The layer depth, patterning, and frequency of the polar-

layered deposits at the Martian polar caps appear to be 

stochastic from images captured by the Mariner 9 and 

Viking missions. This leads to the question of whether the 

disposition of the polar-layered deposits is cyclic [22]. 

Information about the Martian climate could be revealed 

from the polar-layered deposits if any cyclicity or pattern is 

discovered in the formation of layered terrains at the polar 

caps [26]. 

 

Unconformities develop when the Martian polar cap layers 

interrupt or overlay other layers due to layer erosion [28]. 

Images captured by the Viking mission display several 

unconformities spanning the PLDs at the Martian polar 

caps [22]. The erosion of PLDs that causes unconformities 

indicates previous climate change [22], so mapping and 

patterning the polar unconformities could provide 

information about the recent Martian climate and its 

evolution, along with how the PLDs changed with time 

[25], [26]. 

 

III. MACHINE LEARNING USED PREVIOUSLY 

OR CURRENTLY FOR MARS EXPLORATION OR 

DATA ANALYSIS 

 

This section will summarize applications of machine 

learning techniques utilized on either Mars (in-situ) or 

Earth (ex-situ) mainly to prioritize the collection of vital 

samples, analyze terrain and locate target terrain features, 

and analyze data collected on Mars.  

 

A. IN-SITU 

1) OASIS AND AEGIS FOR ROCK ANALYSIS AND 

TERRAIN FEATURE DETECTION 

The Onboard Autonomous Science Investigation System 

for Opportunistic Rover Science (OASIS) framework 

operates onboard Mars rovers to identify, analyze, and 

prioritize data for downlinking to Earth. OASIS has three 

main components: extracting features from images, 

analyzing and prioritizing data, and planning and 

scheduling new sequences based on the data analysis [8], 

[27]. Terrain features are identified in images using 

machine learning algorithms [8], [27]. Feature extraction 

from images occurs after terrain target identification, 

where the physical properties of the terrain are classified 

using factors such as albedo (a measure of the reflection of 

a surface), size, and shape variation. After terrain target 

identification and classification, prioritization of data 

acquisition occurs when humans manually configure 

targeting algorithms to assign values of importance to 

specific terrain features. OASIS then compares the 

designated most important terrain features to the terrain 

features present in the terrain imagery and prioritizes the 

terrain features that most closely match the target features 

by examining the distance of the extracted feature vectors 

from the weighted feature vector. 

 

The Autonomous Exploration for Gathering Increased 

Science system (AEGIS) is a component of the OASIS 

autonomous framework that provides automatic targeting 

for remote sensing instruments on Mars rovers and data 

analysis of images collected for the identification and 
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targeting of features of interest [2], [8]. AEGIS uses the 

terrain feature identification of OASIS to guide the 

ChemCam laser of the rover, automatically selecting then 

vaporizing target terrain features to analyze emanated 

plasma. The autonomous control of the ChemCam 

increases the pace of data acquisition and lessens lost time 

because AEGIS removes the need for human 

commandeering [8], [28]. AEGIS is also present on the 

Perseverance Rover, controlling the SuperCam of the rover 

to identify the chemical composition of rocks and soils 

[28]. 

 

2) ENAV AND ACE FOR ROVER PATH PLANNING 

Enhanced AutoNav, known as ENav, is the navigation 

software used by the Perseverance rover. ENav designates 

and ranks a list of paths for the Perseverance rover, then 

uses the Approximate Clearance Evaluation, or ACE, 

algorithm to validate the safety of the highest-ranked 

routes [29], [30]. ACE approximates the lowest and 

highest possible height of each rover wheel with 

measurements from rover sensors of the suspension angle 

of each rover wheel and the terrain, then predicts the safety 

of a path using stimulated worst-case scenarios of wheel 

positioning [30]. Because of automated navigation, the 

time spent for signals from Earth to reach the rover during 

manual operation is eliminated, allowing for extensive 

coverage of the Mars surface and reduced lost time. 

However, ACE will evaluate the entirety of the list to find 

a feasible path if it cannot determine a suitable path from 

the array of best paths, which is time-consuming and 

computationally demanding [30]. Reference [29] presents a 

machine learning model tested using Monte Carlo trials to 

have less computation time per amount of ACE 

evaluations, increase path efficiency, and preserve or 

improve the rate of successful traverses without 

compromising the detection of unsuitable terrain of ACE.

  

 

3) OASIS DUST DEVIL AND CLOUD DETECTION IN 

MARS ROVER  SURFACE IMAGERY 

The OASIS software (also present in AEGIS, see section 

2.1.1) onboard Mars Exploration Rovers (MER) downlinks 

portions of images or full images only containing targeted 

or desired features after analyzing rover Navcam imagery 

of dust devils and clouds [31]. Before implementing 

OASIS onboard MER rovers, the rovers captured sets of 

images at fixed times, and then downloaded the entirety of 

the image sets. There was not much opportunity for data 

acquisition of targeted, and usually rare, events such as 

dust devils or clouds because of image capturing at fixed 

times. The implementation of this command, known as 

WATCH, allowed for a larger period for capturing targeted 

phenomena and a reduction in the amount of relayed 

images, hence resulting in immense bandwidth savings 

[31]. 

 

B. EX-SITU 

1) COSMIC DISCOVERING OF MARS IMPACT 

CRATER 

The Capturing Onboard Summarization to Monitor Image 

Change (COSMIC) project is currently in development to 

automatically analyze data onboard Mars spacecraft and 

notify scientists when anything noteworthy occurs or 

changes in order to eliminate bandwidth limitations at 

large distances [32]. As a part of COSMIC, JPL scientists 

created an automatic impact crater classifier, which 

analyzes images captured by the Martian Reconnaissance 

Orbiter (MRO) to discover impact craters on the surface of 

Mars. As described in section 1.2.3, new impact craters can 

form randomly. Before utilizing machine learning 

techniques for crater discovery, crater discovery initially 

resulted from time-consuming and labor-intensive manual 

human analysis of MRO imagery of the Martian surface. 

The utilization of machine learning methods for analyzing 

MRO-captured imagery to discover impact craters resulted 

in easier discovery of smaller impact craters, less wasted 

time manually analyzing images, and an increase in crater 

discoveries [32]. 

 

2) CRISM MARS CRATER MINERAL DISCOVERY 

The Compact Reconnaissance Imaging Spectrometer for 

Mars (CRISM), located on the Mars Reconnaissance 

Orbiter, uses detectors to search for aqueous mineral 

residue. Previous CRISM discovery of aqueous minerals 

on the Martian surface was monumental towards improved 

understanding of Mars [33]. However, mainly commonly 

occurring minerals and mineral phases, not secondary or 

accessory phases, were discovered by CRISM [33]. 

Reference [33] have developed machine learning methods 

for automatic mineral discovery of less common minerals 

in CRISM-acquired data, resulting in mineral discoveries 

that suggest the existence of water in the Jezero crater 

landing site and the Northeast Syrtis region. 

 

3) SPOC AND AI4Mars 

The Soil Property and Object Classification (SPOC) 

software uses machine learning to identify terrain types 

and features in orbital and ground-based images [34]. 

SPOC is a component of the Machine learning-based 

Analytics for Automated Rover Systems (MAARS) effort, 

a system of autonomous algorithms designed to improve 

the safety and productivity of future rover missions 

(section 2.2.3 summarizes the other components of 

MAARS) [35]. SPOC analysis of images captured by the 

Navcam of the Curiosity rover to identify areas of slippage 

on Mars terrain and images captured by the HiRISE 

camera to determine the traversability of potential landing 

sites for the Mars 2020 Rover mission. SPOC has been 

successful for these purposes and will become more 

successful after refinement using the AI4MARS dataset 

[36]. AI4Mars is a large dataset totaling ~35K high-

resolution images taken on the surface of Mars from the 

Opportunity, Spirit, and Curiosity rovers, with 

approximately ten people labeling each image in the 

dataset to ensure that each image is high quality [36]. 

Training SPOC using the AI4MARS dataset increases the 

accuracy of SPOC, and future improvements to the 

algorithm will result in further improved traversability 

analysis and terrain-feature discovery [34]. 
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4) MARS EXPRESS POWER-PREDICTING 

ALGORITHM 

The Mars Express (MEX) spacecraft of the European 

Space Agency has been exploring the surface of Mars and 

performing science operations from orbit since 2004 [37], 

[38], such as finding evidence of the presence of 

subsurface Martian water using its Mars Radar for 

Subsurface and Ionospheric Sounding (described in 2.1.3) 

[18]. The MEX orbiter is powered by electricity generated 

by its solar panels, stored in batteries to be used when the 

sun is not present [37], [38]. The autonomous thermal 

system of MEX, which maintains the temperature of every 

instrument onboard MEX, uses a majority of the total 

generated electric power, leaving only a portion of energy 

for scientific operations [37], [38]. In order to effectively 

distribute the total energy between the thermal system and 

planned scientific procedures, the power consumption of 

the thermal system, which varies depending on factors 

such as spacecraft heat and instrument heat, must be 

predicted to allocate the remaining energy towards 

scientific operations. Reference [38] has presented a 

machine learning model trained with three Martian years of 

telemetry data and thermal system data, including the 

measured electric current of the thermal system, to predict 

the values of the electric current used by the thermal 

system. However, the raw data cannot initially train 

machine learning algorithms because it consists of data in 

formats that machine learning algorithms cannot process 

(ex. text) and has incompatible time resolutions. The raw 

data is transformed and then employed by multi-target 

regression to produce accurate and efficient models of 

predicted thermal energy consumption using a common set 

of inputs. This machine learning technique can also be 

utilized onboard Mars rovers to predict rover energy 

consumption, similar to the proposed MER rover driving 

energy prediction VeeGer algorithms described in section 

4.1.1. 

 

IV. NOVEL, THEORETICAL, AND FUTURE 

APPLICATIONS OF MACHINE LEARNING FOR 

MARS EXPLORATION 

 

This section will summarize applications of machine 

learning techniques in current development for future 

utilization on Mars (in-situ) or Earth (ex-situ). In addition, 

this section will explore machine learning techniques 

applications of Earthly domains with amenability to Mars 

exploration and data analysis, as well as novel machine 

learning applications for Mars exploration and data 

analysis.  

 

A. IN-SITU  

1) MAARS COMPONENTS: SCOTI, RAND, VEEGER, 

CAAPS, OBKS, AND P-ACE 

SPOC, a component of the autonomous MAARS 

framework described in section 2.2.3., has been utilized on 

the Curiosity Rover [36]. However, the remaining majority 

of the MAARS algorithms, including SCOTI, RAND, 

VeeGer, p-ACE, OBKS, and CAAPS, have not been 

utilized onboard MER rovers currently but will be used on 

future MER missions. 

    

a) SCOTI: 

The Scientific Captioning Of Terrain Images (SCOTI) 

model automatically creates captions for pictures of the 

Martian surface [35], [39]. Reference [35] describes in 

detail how SCOTI is trained. Any imagery of the surface of 

Mars is input into SCOTI, and SCOTI outputs an English 

caption that describes the geographic features of the image 

[35], [39]. SCOTI can prioritize the downlink of terrain 

imagery with captions containing certain words 

corresponding to desired terrain features onboard MER 

rovers by uplinking words and phrases containing terrain 

features of interest to the rover. Additionally, scientists can 

use downlinked SCOTI-created captions to select images 

containing specific geologic features of interest to be 

downlinked by MER rovers and summarize all features 

present in terrain imagery. Although SCOTI utilization is 

mainly for onboard MER rovers, SCOTI can also be used 

on Earth to filter millions of images of the Martian surface 

for specific features based on the captions of the images 

through a text-based query. SCOTI reduces the volume of 

downlinked images to keep in limit with the downlink 

bandwidth of an MER rover, allows for the downlink of 

only images containing features of interest, and saves 

scientists from filtering through millions of terrain images 

in search of features of interest [35], [39]. 

 

b) RAND: 

The Resource-Aware planner for Non-stop Driving 

(RAND) algorithm, in current development, will provide 

onboard rover path planning for as little driving time as 

possible. RAND evaluates Monte Carlo simulations of 

paths towards a designated goal target, randomly sampling 

factors such as the location of the rover, time of day, and 

the amount of rover energy during its calculations [35]. 

The algorithm ranks the numerous trajectory simulations, 

and the best paths are compressed and uplinked to the 

rover. The network of remembered trajectories is then 

decompressed on the rover and used by a Mars rover to 

navigate the surface of Mars whenever the rover must alter 

its current path or has a significant change in energy level. 

For an example of how effective RAND compression is, 

[35] demonstrated that RAND compressed a search space 

of the Jezero crater landing site to only three trajectories, 

compressing the original ~1 gigabyte of raw planning data 

to only <1 gigabyte of data. RAND is also unique in the 

sense that more data leads to less computational strain. If 

there are more networks uploaded to the rover, there will 

be more trajectory options for the rover to select, and the 

rover will have less computational strain trying to choose a 

feasible path. However, the rover will have a large 

computational load when selecting the most suitable path 

option from a small array of networks, as lesser options 

might mean fewer good paths and more computing to 

determine the best route. RAND can eliminate reliance on 

Earth planning for rover navigation, save space, and 

conserve rover energy by choosing the most efficient path 

towards a target location, increasing driving time [35].  
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c) VeeGer: 

The proposed Vision-based Driving Energy Prediction 

algorithm will predict the driving energy of future MER 

rovers before traveling and potential slippage of the 

Martian surface with the image identification of SPOC (see 

2.2.3) and obstacle detection with sensors on rovers such 

as stereo vision [35], [40]. Because future MER rovers are 

likely to be powered using solar panels, a predictive energy 

algorithm would be vital for rover path planning when the 

sun is not present. There are two VeeGer machine learning 

approaches, VeeGer-EnergyNet and Veeger-

TerramechanicsNet. Veeger-TerramechanicsNet predicts 

the terramechanics parameters of the rover using a 

convolutional neural net that predicts wheel-terrain 

interactions using depth images and RGB and then 

calculates energy consumption based on the simplified 

terramechanics model [40]. VeeGer-EnergyNet uses only 

RGB and depth images captured by rover cameras to 

estimate energy consumption, skipping the terramechanics 

estimations of the VeeGer-TerramechanicsNet model [40]. 

However, both of these machine learning models have in 

common that they both rely on images to predict energy 

consumption. Testing both the algorithms on the Athena 

test rover of JPL determined that the VeeGer-

TerramechanicsNet model predicted energy consumption 

with greater accuracy than the VeeGer-EnergyNet model 

[35]. VeeGer is likely to be applied to future MER rovers 

under the MAARS autonomous system described in 2.2.3, 

combined with future solar-energy generation calculation 

algorithms and path-planning algorithms such as ENav 

(see 2.1.2) for energy-optimal autonomous driving.  

    

d) CAAPS, OBKS, and p-ACE: 

The MAARS autonomous framework provides three 

obstacle-checking algorithms: Approximate Clearance 

Evaluation (ACE, see 2.1.2), Optimization-Based 

Kinematic Settling (OBKS), and p-ACE, a probabilistic 

extension of ACE. MAARS uses the Context-Aware 

Adaptive Policy Selection (CAAPS) algorithm to select the 

optimal planning algorithm for a current environment that 

would result in the lowest path generation time without 

compromising safety [35].  

 

As mentioned in 2.1.2, ACE determines the feasibility of 

an area for Mars rover traversal using the worst-case 

scenarios of the suspension system of a rover and the 

height of the terrain. However, the intrinsic conservative 

approach of ACE often results in ACE designating feasible 

areas as infeasible [35], [41]. A proposed extension of the 

ACE algorithm, p-ACE, uses real-time probability 

distributions in real-time rather than the restrictive and 

conservative bounds of ACE to evaluate the safety of 

terrain without compromising rover safety. Unlike the 

deterministic validation of ACE that estimates terrain 

safety using worst-case scenarios despite their unlikelihood 

of occurring, the probabilistic validation of p-ACE 

determines the probability of a worst-case scenario 

resulting in a collision before assessing terrain feasibility 

[35], [41].  

 

The OBKS planner minimizes contact between rover 

wheels and terrain with less conservatism than ACE, 

similar to p-ACE. OBKS solves a local optimization 

problem modeled as a least-squares problem subject to 

pose constraints on joint angles as determined by rover 

design limits to minimize contact between terrain and 

rover wheels [35]. Because OBKS calculations expect to 

result in a close representation of the exact rover position 

for a given location on a heightmap, the interval of 

uncertainty is smaller, making the path planner more 

conservative than ACE. Compared to ACE, OBKS has a 

greater success rate and lower path selection time in areas 

with more terrain complexities, such as increased rock 

abundance, and has increased efficiency due to less 

conservatism, but has a larger time per query [35].  

 

The CAAPS algorithm selects the most optimal planning 

algorithm between OBKS, ACE, or p-ACE depending on 

the environment and state of a Mars rover [35]. Depending 

on the environmental factors of the rover, CAAPS selects a 

planner that minimizes the energy needed to compute the 

planner and path generation time because different levels 

of environmental factors lead to varying path generation 

time between the three planners. For example, ACE path 

generation is the slowest and OBKS the fastest when rock 

abundance is high, and vice versa when rock abundance is 

low [35]. In such a scenario, the path selection of CAAPS, 

which combines the planners to select the most efficient 

path generation given the environmental factors, reduces 

path generation time with greater efficiency than a single 

planner. 

    

2) MARS OXYGEN DETECTION AND ANALYSIS 

As described in section 2.1.2, The Sample Analysis at 

Mars (SAM) instrument onboard the Curiosity rover 

measures the chemical composition of major atmospheric 

species, including oxygen, using the Tunable Laser 

Spectrometer. SAM has observed amounts of oxygen that 

fluctuate significantly during Martian summers and springs 

for unknown reasons. Understanding the cause of the 

oxygen fluctuation would reveal information on how the 

Martian surface and atmosphere interact and contribute to 

the search for habitability or life [9]. 

 

Machine learning techniques are amenable to detecting and 

patterning oxygen, albeit not utilized on Mars yet. 

Reference [42] has developed an extreme machine learning 

model (ELM) that determines the robustness of oxygen 

using data collected by a tunable laser spectrometer, which 

is the same technology that SAM uses to observe oxygen 

in the Martian atmosphere. If applied to the oxygen data of 

SAM, the ELM model of [45] would reduce data 

uncertainty and allow for greater accuracy of oxygen data 

that would result in a greater understanding of how the 

Martian surface and atmosphere interact and the 

habitability of Mars. In addition, machine learning 

techniques of pattern recognition are also amenable to 

SAM oxygen data. Recognizing a pattern in the abundance 

of oxygen of Mars that would indicate the presence of a 

biological or geological process can exhibit interactions 
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between the Martian surface and atmosphere, and ascertain 

the habitability of Mars [9]. 

  

3) MARS METHANE DETECTION AND ANALYSIS 

As described in 2.1.3, the source of methane measured by 

the Tunable Laser Spectrometer of Curiosity is currently 

unknown, but theories range from abiotic processes like 

serpentinization [16], [17] to microbial life [16]. 

Serpentinization would provide further evidence towards 

subsurface liquid water, and microbial life would indicate 

life on Mars. Thus, understanding how Martian methane 

produces can provide immense information about the 

planet and its habitability. 

 

Machine learning techniques can identify the source and 

patterning of the Martian Methane. Reference [43] has 

developed a probabilistic machine learning algorithm that 

predicts high-emitting sites of methane with 70% accuracy 

[43]. The algorithm could predict the source of methane on 

Mars if utilized with methane data from the Tunable Laser 

Spectrometer. With the origin of the methane, scientists 

can determine the process used to create Martian methane, 

which could potentially indicate the existence of life on 

Mars or provide additional evidence for the presence of 

subsurface liquid water. 

 

4) AUTOMATIC ONBOARD PIXEL 

CLASSIFICATION OF MARS SURFACE IMAGERY  

As described in section 3.1.1, OASIS is currently onboard 

MER rovers to analyze photographic data captured by the 

MER’s Navcam and select images with features of interest 

to be downlinked back to Earth, and help with the rover’s 

navigation. OASIS is effective, but a downside is that 

downlinking high-quality images useful for scientists to 

analyze requires significant rover energy [44]. Reference 

[44] proposed an extreme machine learning (ELM) pixel 

classifier algorithm to reduce the amount of rover energy 

needed to downlink high-quality images to Earth, as well 

as increase the accuracy and quality of downlinked images. 

The proposed ELM algorithm improved pixel 

identification accuracy and run time and reduced rover 

energy needed to downlink images [44], allowing for a 

potential upgrade of OASIS without compromising 

functionality. 

 

5) CLOUD PATTERNING OF MARTIAN CLOUDS  

As described in 2.1.4, Martian clouds as of recent, captured 

by the Opportunity rover’s Navcams, have deviated from 

typical formations and have begun to form earlier during 

the Martian year and at irregularly high altitudes [13]. 

Recognizing the spatial distribution and timing of Martian 

clouds could result in a greater understanding of how the 

Martian atmosphere and hydrological cycle operate [13]. 

 

Machine learning techniques can identify patterns of the 

spatial distribution and timing of Martian clouds. For 

example, [44] has demonstrated the effectiveness of using 

machine learning to build models of clouds based on Earth 

cloud imagery. Although [44] uses machine learning to 

model Earth clouds, the same cloud modeling algorithms 

can be amenable to image data of Martian clouds captured 

by cameras on MER rovers. If the distribution and timing 

of Martian clouds were to be modeled by machine learning 

algorithms, a greater understanding of the Martian 

atmosphere, as well as the Martian hydrological cycle, can 

be attained [13]. 

 

B. EX-SITU 

1) MARS WEATHER ANALYSIS 

Analyzing numerous features of Martian weather, 

including temperature, humidity, dust storms, surface 

winds, and pressure [4], could increase knowledge of the 

Martian climate and atmosphere, provide evidence towards 

debates regarding the future habitation and colonization of 

Mars, and support the search for habitability, as 

summarized in section 2.1.5. Machine learning techniques 

are amenable to analyzing the numerous factors that 

compose the Martian weather, as demonstrated by [19], 

who was the first to explore the analysis of Martian 

weather using several machine learning models. Using 

Mars weather data, (21) tested machine learning models 

including convolution neural networks, gated recurrent 

units, long short term memory (LSTM), stacked LSTM, 

and CNN-LSTM to determine that LSTM provided the 

best analysis with the least error (21). With significantly 

more data available to train the model and the usage of 

more models, future analysis of Martian weather would 

result in a greater exploration of Martian weather and the 

identification of conditions that would contribute to the 

search for sustainability and habitation on Mars [19]. 

 

2) MARS VALLEY NETWORK MAPPING AND 

STREAM ORDERING 

As detailed in 2.2.2, numerous valley networks that 

indicate the past presence of running water on the Martian 

surface cross the surface of Mars. However, because 

current network mapping algorithms lack spatial 

integration and organization and it is labor-intensive to 

map each network manually, most Martian valley networks 

remain unmapped [21]. Further valley network mapping 

would increase understanding of the history of liquids on 

Mars and hence the climate of Mars. Machine learning 

algorithms can effectively map Martian valley networks, as 

demonstrated by [21]. Reference [21] proposes a machine 

learning algorithm that maps Martian valley networks 

using images captured from the Mars Odyssey Spacecraft’s 

THEMIS camera. The valley networks mapped by 

machine learning were of better quality than manually 

mapped valley networks, resulting in more accurate valley 

network mapping and less wasted time. Therefore, using 

machine learning to map Martian valley networks can 

increase knowledge of the climate and history of the past 

surface liquid of Mars while creating higher-quality maps 

than manually created mapped networks [21]. 

 

The calculation of the stream order of each Martian valley 

network would also contribute towards a greater 

understanding of the presence of past surface liquids, and 

hence greater comprehension of the climate of Mars. 

Machine learning algorithms can calculate the stream order 



   International Journal of Computer Sciences and Engineering                              Vol.9(11), Nov 2021, E-ISSN: 2347-2693 

  © 2021, IJCSE All Rights Reserved                                                                                                                                    36 

of valley networks, as demonstrated by [23]. Reference 

[23] proposes a machine learning framework that 

calculates the stream order of a valley network using the 

stream ordering method of Strahler that is more efficient 

and less time-consuming than previous algorithms. Martian 

valley network data can train the stream-ordering 

framework of [23], which would result in the calculation of 

the stream order of Martian valley networks. With the 

determination of the stream order of Martian valley 

networks comes a greater understanding of the presence of 

surface liquids on the Martian surface, and therefore a 

greater understanding of the climate of Mars over its 

history [21], [23]. 

 

3) MAPPING POLAR-LAYERED DEPOSITS 

Section 2.2.4 summarizes the currently unmapped polar-

layered deposits (PLD) at the Martian polar caps. The 

PLDs captured by the Mariner 9 and Viking missions are 

unmapped, and although appearing to be random, may 

have cyclicity. Determining the cyclicity of the PLD could 

uncover previous Martian climate change [25], [26], as 

well as indicate patterns of Martian weather conditions 

such as dust storms [26], which would add to the total 

understanding of the Martian climate and atmosphere. 

Also described in 2.2.4 are the unconformities present 

within the PLDs, created when erosion causes PLD layers 

to interrupt or overlay one another. Several of these 

unconformities have been captured during the Viking 

mission to span the PLDs on the polar caps of Mars [22], 

[45], but remain currently unmapped. Mapping the 

locations and patterning the disposition of all PLD 

unconformities would provide information about how the 

Martian climate and PLDs have changed over the planet’s 

history [22], [45]. 

 

However, manually mapping PLDs and their 

unconformities is slow, labor-intensive, and biased 

depending on the mapper [46].  Using machine learning 

patterning techniques, which are amenable to the 

autonomous mapping and patterning of PLDs and their 

unconformities, can counter the pitfalls of manual PLD 

mapping. Reference [46] proposes machine learning 

techniques such as clustering or classification to 

autonomously map planetary topography data, which have 

above 86% accuracy in identifying and patterning terrain 

features. The cyclicities and patterns of PLD and their 

unconformities can be determined if these machine 

learning techniques are applied to image data of the 

dispositions of PLDs and their unconformities. In addition, 

automated PLD mapping eliminates the time and labor 

required for manual mapping. [47] also presents a neural 

network and clustering method of applying machine 

learning to the autonomous mapping of terrain pattern 

discovery that is above approximately 80% accurate, but 

[47] uses the machine learning methods for the surface 

analysis and mapping of mineral deposits in the deep-sea 

floor. Similar to [46], the autonomous analysis of the 

surface terrain to determine patterning of [47] would save 

time and labor if utilized to pattern and map the disposition 

of PLDs and their unconformities. 

4) ANALYSIS OF MOMA DATA 

The Mars Organic Molecule Analyzer (MOMA) is a dual-

source (laser desorption and gas chromatography) mass-

spectrometer that will launch onboard the European Space 

Agency’s ExoMars rover in 2022 to analyze soil samples 

for signs of past or current life on the surface or subsurface 

of Mars [49], [50]. However, low bandwidth and high time 

of interplanetary data transfer will limit the downlink of all 

raw MOMA-collected data to Earth [50]. In addition, the 

soil samples are time-sensitive, so scientists will have a 

finite time to determine how to adjust ExoMars 

instruments to collect and study further data. To analyze 

collected mass-spectrometer data to prioritize the downlink 

of important or time-sensitive data, [50] has developed a 

machine learning approach to be trained using future 

MOMA data. The mass-spectrometry-focused neural 

network algorithm trained using MOMA modeled data will 

evaluate future MOMA data collected in-situ by the 

ExoMars rover, adjust rover instrument usage, and return 

the best or most time-sensitive data [50]. Harnessing 

machine learning for the analysis of MOMA data will 

allow only the most desirable data to be downlinked to 

Earth for analysis, and allow the ExoMars rover to make 

its own decisions on how to select and utilize its 

instruments to analyze soil sample data in its search for 

current or previous life on Mars [50]. 

 

V. CONCLUSION AND FUTURE SCOPE  

 

This paper has outlined why machine learning methods 

would be beneficial for the exploration of Mars. Machine 

learning is already in use across numerous spacecraft 

purposed for Mars exploration to prioritize data selection, 

perform data collection, and analyze data. In addition, 

machine learning techniques are utilized on Earth 

computers to analyze raw Martian data. Further utilization 

of machine learning techniques in Mars spacecraft can 

expand the capabilities of Mars scientific missions by 

improving path-planning to save spacecraft energy, energy 

prediction to improve spacecraft path planning, , which can 

potentially increase the capabilities of current and future 

Mars exploration missions. In addition, because 

automation would eliminate the need for manual data 

analysis, further applications of machine learning 

techniques to analyze Martian data would speed up the 

analysis process of Mars imagery or Mars-collected 

samples, reducing unproductivity and saving time. Most 

importantly, further applications of machine learning 

techniques for in-situ Mars exploration overcomes the 

issue of human hazards for the exploration of Mars. 
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