
 © 2019, IJCSE All Rights Reserved 346

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Automation Testing Using Selenium+Sikuli Scripting

Ashish

1*
, Nishu

2

1,2
Dept. of Computer Science and Engineering, NC College of Engineering, Israna, Panipat, Haryana, India

Corresponding Author: ashishlathwal4@gmail.com, Tel.: +91-8529355272

 DOI: https://doi.org/10.26438/ijcse/v7i5.346351 | Available online at: www.ijcseonline.org

Accepted: 16/May/2019, Published: 31/May/2019

Abstract— Automation testing is a methodology that uses an application to implement entire life cycle of the software in less

time and provides high efficiency and effectiveness to the software. In automation testing the tester writes scripts by own with

the help of any suitable application software in order to automate any target software application. Automation is basically an

automated process that comprises lots of manual activities. In other words, Automation testing uses automation tools like

Selenium, Sikuli, Appium etc. to write test script and execute test cases, with no or minimal manual involvement while

executing an automated test suite. Usually, automation testers write test scripts for any test case using any of the automation

tool and then group several test cases into test suites. Here, we will discuss a neat case study explaining the automation testing

using hybrid test script.

Keywords— Automation testing, Selenium, Sikuli, ROI (Return on Investment), Hybrid automation testing.

I. INTRODUCTION

Automation testing deals with automated manual efforts that

a tester usually perform in any software application testing

with the help of automation testing tools like Selenium,

Appium, Sikuli [1].

Generally, automation is carried out to reduce software

testing lacks in repeated tasks of various types of manual

testing like UI testing, functionality testing, negative testing

because automation can perform repeated steps of testing

without any human intervention and without any mistake

[2]. Therefore, overall performance of the testing can be

improved up to one more high scale. It is quite simple to

understand if we make any mistake in software testing then

testing will go in wrong direction. Also, wrong testing may

lead to either wrong product development or more cost to

the software testing. More cost to the software testing means

that some extra cost will add to the project budget to track

the defect in defect tracking system (testing). So, ultimately

the project budget will suffer from un-expected increase in

software cost [3]. And, these are some basic reasons due to

which companies are focussing on the automation of test

cases in order to avoid extra cost of bug tracking in testing.

One more thing we should point out that once we have

implemented the automation in software testing then the

requirement for the manual software testers will come to null

or diminish completely. In today’s era IT companies are

focussing on automation along with manual testing. And the

credit of automation goes to the manual testing also because

automation is only carried out after manual testing. So, we

cannot eliminate manual testing completely but we can

introduce automation testing to improve the testing

efficiency.

This paper presents a new approach to automate any test

case by using hybrid automation tool with the help of

Selenium and Sikuli automation testing tools [4]. As, in

current era Selenium is the most popular automation testing

tool in the industries but it has many limitations also which

includes less automation capacity (it can’t automate outside

the web browser body section). And, if any automation tool

is unable to automate any test case then we consider that it is

the right time to move on to next automation tool. And, if

any company is using only Selenium then it becomes quite

difficult to change the whole environment which comprises

new talent, more hardware and software requirements. So,

there is one more solution to overcome the limitations of the

Selenium tool that is hybrid scripting in which we will use

Selenium as the base tool but along with that tool we will

integrate some features of Sikuli to handle those scenarios

which Selenium can’t handle alone [5]. In this way we will

focus on Sikuli over Selenium concept instead of Selenium

over Sikul so, we will use Selenium as base tool for hybrid

scripting [6]. The objective of this research is to increase the

automation of test cases which can’t be automated using a

single scripting tool.

This research sill explain how we can use Selenium and

Sikuli tools together in order to create a hybrid test script.

This type of hybrid scripting will overcome the limitations

of Selenium and Sikuli tools (individual tools).

This paper is organized as follows, Section I contains the

introduction of the research paper, Section II contains the

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 347

architecture of Selenium + Sikuli scripting, Section III

contains Proposed work or implementation of hybrid

scripting, Section IV contains the comparison of this paper

with earlier research or advance features of current research

and Section V concludes the research with future directions

and scopes.

II. ARCHITECTURE OF SELENIUM + SIKULI

SCRIPTING

Any automation tester has a biggest ever challenge of

deciding the automation tool [7]. Now a days, only one

automation tool is selected for any automation project due to

budget and other constraints. But, this Selenium + Sikuli

architecture propose a good hybrid scripting approach that

can easily fit in any cost effective and qualitative scripting

budget [8]. Actually, automation tool selection is a time-

consuming activity because it decides the automation

coverage of application or we can say that as an ideal

automation tool it (automation tool) should be capable to

automate our application software around 90% [9]. And, if

any automation software can achieve this 90% feasibility for

target application software then it is preferred to use for that

automation project. Here, we consider a hybrid test

automation tool approach in which all the functionalities of

Selenium are available to the automation tester to write any

test automation script for automating any web application

testing with the help of Selenium and Sikuli automation

tools (hybrid scripting). Generally, if there is no requirement

of Sikuli tool in automation of any software application test

case then the below architecture is followed for the

automation of that test case (only Selenium work from

hybrid approach) [10].

Figure 1. Core Selenium Architecture

Here, Selenium Language Building consists the languages

which Selenium supports for scripting of any test case [11].

Also, the requests reach to server using HTTP protocol in

JSON format. In the same way response is received in the

form of JSON using HTTP protocol.

When there is the requirement of Sikuli in the scripting then,

the complete handover is given to the Sikuli and automation

scripting follows below architecture in that scenario [12].

Figure 2. Sikuli Architecture

Therefore, we will have all the advantages of the Selenium.

Ultimately, we can show this hybrid architecture in simple

block diagrams as shown below [13].

Figure 3. Selenium+Sikuli scripting

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 348

Initially, script would be designed using any of the existing

programming language like Java, C#, Ruby, Python, .Net

etc. As per scenario, Selenium or Sikuli is used and

correspondingly response is captured [14]. Later on, the

command will reach at Selenium remote control server

which will pass this command to corresponding browser

driver and that driver will hit the command at browser using

HTTP protocol. This request reach at server end and

corresponding response will appear at browser. Here, drivers

may be different as per the browser on which we are running

ours script. Also, up to Selenium 2.0 there was not

requirement for the Firefox driver but from Selenium 3.0,

Selenium has been enhanced and there is the requirement of

geckoDriver.

This paper presents couple of approaches to automate

various types of web projects for example: Java applet

projects, platform independent test scripting with high

automation coverage of any project.

III. PROPOSED WORK

Many automation projects include various types of complex

scenarios and these scenarios may increase challenges in

automation [15]. Some of these challenges are

understandable from the most famous Agile testing

environment because in present world almost every

company is moving towards Agile methodology to improve

theirs work load and performance of project deliverables

[16].

Figure 4. Automation Project

As the diagram represents the most common challenge of

automation testing is the tool selection. Tool is selected very

carefully, so that we can cover automation of as much test

cases as possible or almost complete automation. If any test

case can be automated with 90% accuracy then, it is

suggested as a good automation.

Here, we have many automation tools in the market.

Selenium is one of the trending automation tools which is

used from small scale organisations to large scale

organisations. We will discuss about the writing test script

using Selenium automation test tool and the difficulties in

scripting with Selenium which we will remove using Sikuli

automation tool in various ways. Here are some ways of

writing hybrid test script using Selenium and Sikuli tools

which are following:

Core Selenium: Any test case written for web application

testing which does not require to handle any window alert,

any captcha, no applet-based application then, we can use

core Selenium to automate such test case.

Selenium is enough powerful tool suit to automate around

80% web applications. We require a browserDriver and a

“selenium-server-standalone” JAR file to automate using

any of the Selenium testing tool like jUnit, TestNG etc.

Following is the example for jUnit test script which

automate a simple test case of home Page of a web

application. We can use core Selenium to automate a web

application with the help of its following features:

- Locate elements by the selector

- Retrieve their state

- Perform actions on UI

Let us consider a test case which verifies the home page of

Google, it may consist following steps:

- Launch Google chrome browser.

- Hit “https://www.google.com” URL.

- Verify text field visibility on the web page

before 30 seconds after hitting the URL or

assert on response should receive within 30

seconds.

To automate this flow, we can write following test script in

Selenium and ensure the test case will pass or fail on the

basis of which we can escalate the error to our client (in case

of failure):

private static WebDriver driver;

@Test

private void seleniumTestCase()

{

System.setProperty("webdriver.chrome.driver","chromedriv

er.exe_path");

driver = new ChromeDriver();

driver.manage().window().maximize();

String url = "https://www.google.com";

driver.navigate().to(url);

https://www.google.com/

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 349

new WebDriverWait(driver, 60L).

until(ExpectedConditions.visibilityOfElementLocated(By.id

("textfield")));

}

Selenium with Sikuli: We can integrate Sikuli with

Selenium in two ways (basically). Sometimes there came the

requirement to handle window alerts using automation

script, applet-based software application automation etc.

And, these such types of scenarios can’t handle using core

Selenium. So, we can handle these scenarios using any third-

party software. Also, Selenium supports integration of other

tools so we can use this feature also for Sikuli integration.

Actually, such type of integration allowed by Selenium

makes it flexible in nature and more powerful tool. We can

integrate Selenium with Sikuli mainly in following two

ways:

- Using DesiredCapabilities class

- Using Screen class

Using DesiredCapabilities class: We can integrate

Selenium with Sikuli automation testing tool easily in case

of any browserDriver by passing “sikuliExtension”

capability as “true” to the browserDriver. Hence, we will

only pass few propertes to handover the automation handle

to Sikuli.

// Create a DesiredCapabilities object

DesiredCapabilities cap = new DesiredCapabilities();

//Set capabilities

cap.setCapability("sikuliExtension", true);

System.setProperty("webdriver.chrome.driver","

chromedriver.exe_path ");

// Initialize WebDriver object

WebDriver dr = new ChromeDriver(cap);

//Hit the URL

dr.get("https://www.google.com/");

SikuliExtensionClient sikuliClient = new

SikuliExtensionClient(GridSettings.HOST,

GridSettings.PORT, remoteWebDriverSessionId);

sikuliClient.uploadResourceBundle(ACE_IMAGES_BUND

LE);

SikuliHelper sikuliHelper = new SikuliHelper(sikuliClient);

TextBox sikulihndl =

sikuliHelper.findTextBox("textfield.png");

sikulihndl.click();

sikulihndl.write("Search Text");

sikulihndl.press(KeyEvent.VK_ENTER);

Using Screen class: In this method we will use a “Screen”

class which would be imported from Sikuli-script.jar. This

Screen class provides many methods which can be used to

perform various operations on the GUI, on the basis of

image resolution. Sikuli becomes more useful when we

automate a stable GUI window-based application. As, in

window-based applications we cannot fetch the properties of

any element by using core Selenium. So, Sikuli helps a lot in

that case to solve such problems of automation. A Sikuli

script allow any user to use screenshots of the screen and

provide particular actionable image. With the help of

Selenium + Sikuli scripting, we can perform functions like-

click on any web element, enter any text in text fields, wait

until any particular web component appears on the screen.

We can use Screen class in Selenium in following way:

// Create an object of Screen class

Screen s = new Screen();

// Initialize WebDriver object

WebDriverdriver = new ChromeDriver();

//Maximize the browser window

driver.manage().window().maximize();

String url = "https://www.google.com";

//Hit the URL

driver.navigate().to(url);

//Initializing the Patterns

Pattern img1 = new Pattern("D:\\IMG\\text1.png ");

Pattern img2 = new Pattern("D:\\IMG\\text2.png ");

//wait for max. 10 sec. or until img1 pattern appear

s.wait(img1, 10);

//Click on img1 pattern on screen

s.click(img1);

//Type "Search text"

s.type("Search text");

s.click("D:\\IMG\\searchBtn.png",0);

//wait for max. 60 sec. or until img2 pattern appear

s.wait(img2, 60);

Here, in the last line of code script will wait dynamically for

60 seconds that is if the img2 appear before 60 seconds then

script will not wait till 60 seconds and it will move ahead

otherwise script will wait for img2 till 60 seconds. And, if

img2 will not become visible till 60 seconds then script will

show FAILURE in test case.

Hence, with above two methods we can not only integrate

Selenium with Sikuli but we can also take the advantages of

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 350

Sikuli to overcome the limitations of Selenium. Here, we

only require the installation of an extra “Sikuli” software in

order to use Sikuli with Selenium for automation of any test

case.

Therefore, once we would be able to use this (Selenium +

Sikuli) hybrid automation scripting then ultimately, we will

be capable enough to automate any project (automation of

more than 90% test cases) and as much we would be capable

to automate any project in same proportion, we would

increase the project efficiency.

IV. COMPARISON WITH EARLIER RESEARCH

There are multiple advantages of hybrid scripting. Below

table represents few advantages of the hybrid

 Table 1: Comparison Table

(Selenium / Sikuli) Earlier

Research

Proposed Work

Improvements

(Selenium+Sikuli)

Multithreading is not

possible in Sikuli Multithreading is possible

Background functioning is

impossible using Sikuli

Background functioning is

possible

Desktop application’s

automation testing can't be

done using Selenium

Desktop application

automation testing is

possible

Unable to handle window-

based alerts in Selenium

Enable handling of window

alerts

API testing is not possible in

Sikuli API testing is possible

Auto-report generation is not

possible using Sikuli

Auto-report generation is

possible

Error screenshots cannot be

captured by Sikuli.

Error screenshots can be

captured.

automation test scripting using Selenium + Sikuli tools over

individual use of Selenium / Sikuli automation test tools for

writing automation test scripts in any programming language

[17].

These advantages of hybrid scripting increase the scope of

automation of any project or we can also consider it as the

increase in automation coverage of those test cases also

which were not covered earlier due to project budget

constraints. Even after so many advantages of hybrid

automation tool captcha handling and image resolution

dependency during Sikuli execution are still impossible to

automate [18].

V. CONCLUSION

Automation scripts reduce the manual efforts and improves

the efficiency of any software application testing.

Automation testing can reveal real time defects. Selenium

and Sikuli are freeware tools that can be used to automate

web sites. But both the tools have some limitations. These

limitations can be overcome with the hybrid test script

(Selenium + Sikuli). This (Selenium + Sikuli) script does not

affect the quality of the test script. It makes the test script

capable to handle complex scenarios as well. Also,

integration of Selenium with Sikuli is easy to implement

which makes it a quite beneficial new test framework that

has various good qualities from both the automation tools.

Selenium with Sikuli becomes a powerful tool that can

automate almost all scenarios except a few like Google

captcha handling as the captcha response comes in the form

of an image that does not give the captcha code information,

that information is stored only at server end.

REFERENCES

[1] Sarika Chaudhary, "Latest Software Testing Tools and

Techniques: A Review ", International Journal of Advanced

Research in Computer Science and Software Engineering,

Volume 7, Issue 5, May 2017

http://www.softwaretestingclass.com/software-testing-tools-list/.

[2] M. Jovanovic, Irena, "Software testing methods and techniques,"

IPSI BgD Journals, vol. 5, 2009.

[3] Shruti Malve, Pradeep Sharma, “Investigation of Manual and

Automation Testing using Assorted Approaches”, International

Journal of Scientific Research in Computer Science and

Engineering, Vol.5, Issue.2, pp.81-87, April (2017).

[4] T. Yeh, T. H. Chang and R. C. Miller, "Sikuli: Using gui

screenshots for search and automation”, In the Proceedings of the

22nd annual ACM symposium on User interface software and

technology Pages 183-192.

[5] Nisha Gogna, "Study of Browser Based Automated Test Tools

WATIR and Selenium”, International Journal of Information and

Education Technology, Vol. 4, No. 4, August 2014.

[6] Miika Kuutila, "Benchmarking configurations for Web-testing-

Selenium versus Watir", researchgate, November 2016.

[7] P. Raulamo-Jurvanen, K. Kakkonen and M. Mäntylä, “Using

Surveys and Web-scarping to Select Tools for Software Testing

Consultancy”, In Proceedings of the 17th International Conference

on Product-Focused Software Process Improvement, 2016.

[8] A Surabhi Saxena, Devendra Agarwal, “Realiability Assessment

Model to Estimate Quality of the Effective E-Procurement Process

in Adoption”, IJSRNSC, Volume-6, Issue-3, June 2018.

[9] Michiel Van Genuchte, “Why is software late? An empirical study

of reasons for delay in software development”, IEEE Trans. on

Software Eng. IEEE, Vol 17, Issue 6, pp.582-590, 1991.

[10] N. Uppal and V. Chopra, "Design and implementation in

selenium ide with web driver", International Journal of Computer

Application, vol. 46, 2012.

[11] Shilpa Garg, Paramjeet Singh, Shaveta Rani, "Comparative Study

of Selenium WebDriver and Selenium IDE (Integrated

Development Environment)", International Journal of Computer

Sciences and Engineering, Vol.-6, Issue-7, July 2018.

[12] Inderjeet Singh and Bindia Tarika, “Comparative Analysis of

Open Source Automated Software Testing Tools: Selenium,

Sikuli and Watir”, International Journal of Information &

Computation Technology, Volume 4, Number 15 (2014), pp.

1507-1518.

[13] Revathi.K, Prof.V.Janani “SELENIUM TEST AUTOMATION

FRAMEWORK IN ON-LINE BASED APPLICATION”,

http://www.softwaretestingclass.com/software-testing-tools-list/

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 351

International conference on Science, Technology and

Management, 2015.

[14] Samiksha R. Rahate, Uday Bhave, “A Survey on Test

Automation”, International Journal of Innovative Research in

Computer and Communication Engineering, Vol. 4, Issue 6, June

2016.

[15] Shuang Wang and Jeff Offutt, “Comparison of unit-level

automated test generation tools in Software Testing, Verification

and Validation Workshops”, ICSTW'09, International Conference

on IEEE, 2009.

[16] Sonia Thakur, Amandeep Kaur, “Role of Agile Methodology in

Software Development”, International Journal of Computer

Science and Mobile Computing, IJCSMC, Vol. 2, Issue. 10, pg.86

– 90, October 2013.

[17] K. M and K. R, "Comparative study of automated testing tools:

Testcomplete and quicktest pro," International Journal of

Computer Application, vol. 24, 2011.

[18] Suliman A. Alsuhibany, “Evaluating the Usability of Optimizing

Text-based CAPTCHA Generation”, IJACSA, Vol. 7, No. 8,

2016.

Author’s Profile

Mr. Ashish pursuing Masters of Technology

from N.C. College of Engineering, Israna,

Panipat, Haryana, India in year 2017-19. He

has published literature survey on hybrid

automation testing using Selenium and Sikuli

tools. He has more than two years of professional working

experience in manual and automation testing. He has already

worked in performance testing for some web applications

also. His main research focuses on software testing.

