
 © 2019, IJCSE All Rights Reserved 338

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

A Self-adaptive System reconfiguring a Composite Web Service for

Emergency Medical Aid

Navinderjit Kaur Kahlon

Department of Computer Science, Guru Nanak Dev University, Amritsar, Punjab

Available online at: www.ijcseonline.org

Accepted: 21/Jan/2019, Published: 31/Jan/2019

Abstract- The web services run in a highly dynamic environment so, the most fundamental challenges in web services based

software solutions is to manage QoS changes of their component web services at runtime. In order to make the composite web

service adapt to these changes, a self adaptive system is proposed for web service composition. The distributed approach is

followed at the client and the server side along with the runtime monitoring and adaptation of the component web services at

the provider side. For the self adaptive systems to recover as quickly as possible, a way of performance prediction is proposed

in this paper along with the case study and the performance of the system. The prototype is developed using Java, and the

JADE platform is used for implementing software agents using hospital lookup case study. The experimental results show that

the proposed solution has better performance for supporting self adaptive web service composition.

Keywords- Self-adaptive systems; Web services; Quality of Service (QoS) and Web Service Composition

I. INTRODUCTION

The service composition which integrates different web

services provided from various service providers is becoming

as one of the major issue in Service Oriented Computing. The

service providers and consumers platforms are more and

more being used to provide methods that make possible the

combination of component web services to create the

composed web services. Therefore, the self adaptive web

service composition is critical to any emergency situation like

in wake of disaster. The medical emergency services are

especially vulnerable due to the failure or degradation of

component web services in a dynamic environment. This

affects the services offered to the patients. Therefore

continuous availability of medical services is critical for any

hospital or medical care facility. Though various fault

tolerant solutions have been introduced in recent years, this

paper addresses a self-contained and self-healing composite

web service.

The composite web service not only support business

processes within organizations but also across several

organizations [11]. Thus the companies should provide the

services which are of better quality among other web

services. The web services which are slow can adversely

affect the overall execution of the composite web service.

Thus, monitoring and adaptation of its partner web services in

a dynamic environment is needed while the execution of the

composite web service, and the client should be notified as

soon as possible for timely partner replacement decisions.

Although, many solutions have been proposed to adapt a

CWS to QoS changes of its partner web services [3], but run-

time monitoring of partner web services, and then

communication of the monitoring data to the clients still

needs to improve. Moreover, adaptation solution should be

custom made as different clients have different QoS

requirements.

A CWS may execute successfully when all its partner web

services are available and running at the expected QoS levels.

However, if a partner web service fails to deliver; the CWS

may have to be reconfigured to avoid its own failure or poor

performance. The research challenge is to make this

reconfiguration happen as soon as a partner web service fails

or slows down. The composite web service should easily

switch to a replacement service and should not affect the

execution performance of the composite web service. The

focus should be on finding a replacement of the faulty web

service which may or may not be available in the repository

at that time. Self autonomic systems ensure the self-

management, self-configuration, self-optimization, self-

healing and self-protection of the application if there is a need

for replacement of the faulty web service [22]. Many existing

solutions explore various mechanisms to ensure successful

execution of a CWS when a partner web service fails to

deliver. Notably the solutions follow backward recovery

using checkpoints or otherwise [17], forward recovery using

substitution as a last resort after multiple retries to use the

resource fail. Web service substitutes are supposed to be

made available by the existing provider, or client can start

discovering substitutes when failure occurs. Service

replication at the provider side is used as a mechanism to

improve reliability of partner web services [16]. The

https://www.ijcseonline.org/pdf_paper_view.php?paper_id=3508&55-IJCSE-05679.pdf
https://www.ijcseonline.org/pdf_paper_view.php?paper_id=3508&55-IJCSE-05679.pdf

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 339

combination of these strategies depending upon the context is

explored in [5].

With all these problems in the mind, our proposed approach

presents a solution for the composite web service to adapt

itself. The key to our approach is to provide a self adaptive

solution in which web services included in the CWS

workflow are monitored using a distributed approach.

Whenever, a QoS degradation is detected at the provider side,

the client is notified, and then the client may choose to

replace the partner service with an alternative from another

provider, if its aggregate QoS is compromised.

In our previous work, a preliminary framework to monitor

and adapt a CWS when quality of its partner web service(s)

degrades [15] is discussed. This paper extends the framework

to incorporate more QoS parameters such as throughput,

availability and reliability. Also, a more elaborated

experimental study to evaluate the framework is presented.

The rest of the paper is organized as follows: Section II

decribes a review of the related work, Section III provides the

proposed methdology. Section IV repersents the case study

whereas, Section V illustrates the experimantal setup with

Section VI provides the results and anaysis. Finally, Section

VII concludes the paper.

II. RELATED WORK

This section describes the work done on the web service

composition and self-adaptive system. The self adaptive

systems ensure the quality of an application through analysis

of runtime events at the time of execution. Run-time

monitoring generates alerts whenever an unexpected event

occurs. In run-time monitoring, events can be analyzed online

- during execution of an application, or offline - after the

execution has been terminated. Online monitoring is

preferred over offline monitoring as it analyzes small and

sufficient amount of data. It enables to handle the quality

violations as soon as they happen. It also gives a chance of

recovery once a problem has been detected, e.g., by

terminating execution or returning to a stable state [15].

Monitoring results in triggering adaptation events. A

monitoring module sounds an alert when it identifies an

erroneous situation (after it has happened), and in reaction the

system adapts to accommodate the change (e.g. replaces an

unavailable service). The adaptation mechanisms (or

reconfiguration) of a CWS can be reactive or proactive. In

reactive adaptation, service manager changes configuration of

the composition when an undesirable event has already

occurred (an unavailable web service), whereas a proactive

adaptation is based on prediction of occurrence of an

undesirable event [18]. In this work, a proactive predictive

approach is suggested that prevents invocation of partner web

services with degraded QoS values.

A cost effective monitoring for monitoring and evaluating

different monitoring strategies for service - based systems

(SBS) is presented [12]. A novel approach, CriMon,

calculates the criticalities of the different execution paths and

component services in service - based systems to produce

optimal monitoring strategy to be followed for cost of

monitoring. A QoS monitoring framework (called SALMON)

is designed to support entire service-based system's lifecycle

[21].

After detecting violations in QoS values, the adaptation

mechanism gets triggered. The effective runtime adaptation

of service needs real changes in QoS of web services for

timely and accurate decisions about -When to trigger

adaptation action?, Which web service to replace in

execution?, and Which candidate web service to select? [28].

The composite service should adapt itself as quickly as

possible by performance prediction based on Semi Markov

Model [10]. A proactive adaptation framework is proposed

for service composition based upon prediction of the response

time of a service using exponentially weighted moving

average [8]. The framework adapts the composition if a

service become unavailable or its response time degrades.

Various recovery strategies are analysed and to define a

model to choose the best recovery strategy that is

dynamically based on context information of the execution

state is given in [5]. The recovery techniques are backward,

forward, and replication based on detecting the impact on

QoS if failure occurs.

The analysis of self-adaptive web service composition by

reactive adaptation [11] classifies on use of variability

models, context awareness, and multi agent approaches with

detailed discussion on their limitations.

III. THE PROPOSED METHODOLOGY

This section presents an approach to address the self adaptive

system working in a service oriented dynamic execution

environment.

A workflow manager receives a client request; gets the

corresponding abstract composition; selects corresponding

concrete web services; dispatches agents to service providers

to monitor the QoS behavior of the chosen web services for

execution in composition; invokes the partner web services

for preparing the results and responds back to the client.

Basically, a web service is defined by its operations and QoS

attributes. Operations describe the functional capabilities of a

service, and QoS attributes describe the quality with which

functionality is delivered to the clients. There are a number of

criteria to describe a web service’s QoS e.g. execution time,

throughput, reliability, availability, accuracy, and so on. The

mathematical formulae to calculate the value of a QoS

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 340

parameter for a given web service are specified below (as

given in Table 1) are embedded in the framework and are

calculated automatically at runtime. The observed values of

QoS parameters (taken at runtime execution of framework)

are stored in a log file which are used concurrently for

comparing the real observed values and expected values

(refer definition 2) of QoS parameters. The four QoS

parameters used for dynamic monitoring of web services are

shown in Table 1 below.

Table1. Formulae to calculate QoS Parameters

Execution Time

Throughput

Reliability

Availability

MTBF in Table 1 represents the mean time between failures.

Larger are the values of MTBF, better it is. MTTR represents

the mean time to repair i.e. average time taken for repair of a

faulty web service. The less the values of MTTR, better it is.

Majority of the QoS attributes, discussed here, have positive

dimension i.e., higher the value, better the quality. Examples

are throughput and availability. The execution time has

negative dimension i.e. lower the value, better the quality.

Once the deployed web services are invoked upon client

request in the composition workflow, continuous monitoring

and analysis of web services is done by examining their

execution log. Every web service that gets executed, when

invoked by a client, maintains its log of QoS values on the

provider side. In the proposed work, a service monitor agent

monitors execution logs of the web services maintained at the

service provider side. The web service execution log is

maintained for monitoring and prediction based analysis. The

QoS monitoring of the partner web services is done for the

following four QoS parameters - execution time, throughput,

reliability and availability.

In order to predict the values of a QoS parameter, say ,

EWMA [20] calculates the next expected value, which is

exponentially weighted moving average of the past data. The

EWMA is a statistical analysis which provides less weight to

data as they get older and can forecasts the next observation

one step ahead of the most recent observation.

The EWMA calculation at time t (for t=1, 2,…,n) is

calculated recursively from the individual data readings for n

observations, where the first EWMA value, EWMA0, is

arithmetic average of historical data.

 (()) (()) () (())

 (1)

Where (()) is the expected value of QoS

parameter at time t+1 of execution;

 (())is the last observed value QoS parameter at

time t of execution;

 (())is the expected value of QoS parameter at

time t of execution;

The weighting factor, , is a smoothening factor that decides

the rate at which past expected values are considered in the

calculation ();

 is the set threshold value where SD is the standard

deviation calculated from the past observed values and k is a

constant parameter. The weighting factor, , is a

smoothening factor that decides the rate at which past

expected values are considered in calculation() It
acts as a balancing factor between the older, and the most

recent observations. Depending upon , the upper and lower

control limits are set. The upper control limit (as in case of

the execution time), or the lower control limit (as in case of

throughput) is added to the threshold value in equation 1.

Adaptation of a partner web service is based on the

comparison of observed QoS values with expected QoS

values. If SMA notices three consecutive degradations

(beyond tolerance) in any of QoS values, it notifies the

CMAs, and sends them the normalized values (refer

Definition 3) of the QoS parameters. A CMA then uses these

normalized values to calculate a quality score for the web

service as per the client’s quality requirements (refer

Definition 4). The normalized value of a QoS parameter Qi is

represented in the following equations (2) & (3), where
 is

the i
th

attribute of a particular web service in a given

transaction t and
 and

 are the maximum and

minimum values respectively for all transactions recorded for

the same web service in a particular session.

 () {

if Q

i

max Q
i

min

 if Q
i

max Q
i

min

 for a positive QoS parameter (2)

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 341

 () {

for a negative QoS parameter (3)

The proposed approach works by proactively taking adaptive

actions to handle the QoS degradation of web services that

are chosen for execution at runtime. It uses an agent based

approach. A mobile agent is a light weight program that can

migrate to a remote machine on the network. A mobile agent

is dispatched to the service provider side. QoS requirements

of different clients are not the same. A client may prefer

execution time over reliability. The CMA calculates the

aggregate QoS values for the affected service using the

normalized values it received from the SMA, and the client’s

QoS preferences (on the basis of the weights assigned to

different QoS parameters). It compares the QoS aggregate

value of the affected web service with the threshold value as

specified by the client. If the aggregated value is within the

permissible limits, then the CMA itself may defer the plan to

notify the service and continue with the web service without

notifying the client about the degradation. Otherwise, the

CMA will notify the client. Then the client may run the

adaptation logic to replace the web service.

The aggregated QoS of a particular web service is calculated

(by the CMA) using the Simple Additive Weighting

Technique [14]. It uses the normalized values of the QoS

parameters (refer equations 2 & 3) along with their weights as

per client preferences.

 (()) (4)

 is the weighting factor of Qi..The weights are assigned in

such a way that ∑ =1.

The aggregated value, AggScore, is then used as the basis

whether the substitution is needed in that particular case or

not. If the calculated AggScore, does not match with the

given quality threshold that is specified by the client, the

client is notified. Then that particular web service is removed

from the execution plan and is replaced with an alternative

(by the Service Repair Module on the client side). The

threshold limit can be specified by executing the framework

for multiple requests in a best case scenario.

Figure 1. The Case Study

IV. THE CASE STUDY

For implementation and analysis of the framework, a hospital

look up service in emergency situations is used as a case

study. A primary motivation of creating this service is to

reduce patient waiting time in a crowded emergency ward of

a hospital. In the worst case, when a patient arrives at a

crowded emergency ward, he or she may be diverted to

another hospital. This delay in the treatment may put the

patient’s life at risk. The service can be used in handling

patients in wake of emergencies during a natural disaster such

as an earthquake.

Figure 1 demonstrates the whole process. A patient or the

attendants can use the service to find out the nearby hospitals

to handle the patient in emergency. The hospital look-up

service interacts with five partner services 1) location

locater (to find the current location of the user with the help

of Global Positioning System; 2) a hospital registry (to find a

nearby hospital with special facilities to manage the

emergency, and availability of a bed; 3) a map service to

provide the available routes; 4)a service to provide the best

route (depending upon the time of day, weather, and traffic);

5) a transport management service to let the patient request an

ambulance or a normal cab. The best route is passed onto the

cab driver.

V. EXPERIMENTAL SETUP

The prototype tool of framework is implemented in Java EE.

The Abstract Composition, Workflow Manager, Service

Manager and Service Repair are implemented as single

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 342

components for simplicity. The Workflow Manager and

Service Manager are exposed as RESTFUL web services.

Service Repair module is implemented as an agent. The

SMA and CMA are implemented as mobile agents. The client

request is taken from an Android mobile phone.

The configuration of experiment environment for client and

provider is done on an i5 processor with 4 GB RAM using

Tomcat server and JADE 7. The external service registry and

web service database is implemented using SQL server. The

web services used in the experiment are described and

selected with quality parameters. In order to save time, an

abstract service composition is available before execution of

the workflow starts. We also assume that each service is

atomic. That is, behaviour of a service is independent of other

services. The network connection between services is error

free, even though individual atomic services may be

problematic.

VI. RESULTS AND ANALYSIS

In this section, we analyze the performance of the proposed

system as changes happen in the service environment at run-

time. The proposed framework is validated by analyzing

aggregate QoS behaviour of the CWS. We assume that a

degraded web service is replaced with a one-to-one mapping.

QoS attributes of the individual partner web services impact

the QoS of the CWS. The QoS parameters include execution

time, and throughput of the composite web service. Figures 2

to 3 show the QoS values of the CWS for 100 requests.

Execution time of the CWS remains stable with QoS

degradation happening in the partner web services.

Throughput improves over the period of time. Therefore, we

can say that the framework contributes in maintaining good

levels of the different QoS parameters of the CWS.

Figure 2. Execution time of the CWS

Figure 3. Throughput of the CWS

VI. CONCLUSIONS

The self-adaptation of composite web services based upon

prediction and proactive monitoring at runtime has drawn a

lot of attention in the web services based solutions. This

paper proposes a distributed monitoring and adaptation

framework to keep track of the QoS degradation of partner

web services for hospital lookup service. This paper follows a

preventive approach in invocation of partner web service with

degraded QoS. Additionally, the applicability of the self-

adaptive system features on the various quality dimensions,

like reliability, availability and throughput. The adaptation

decision is flexible enough as it takes into consideration

different QoS requirements of different clients.

A prototype of the framework is implemented using J2EE

and JADE environment. The experimental results show that

the proposed approach results is acceptable performance in

light of the QoS degradation simulated at different intervals

and of different scales. There is, however, a limit on the

number of requests that can be handled when concurrent

requests are submitted to the system. In the present setup, the

system is unstable after 2000 requests. In future, we plan to

extend the framework for global optimization of composite

web service.

REFERENCES

[1] V. Agarwal, & P. Jalote, “Enabling end-to-end support for non-

functional properties in web services”, 2009 IEEE International

Conference on Service-Oriented Computing and Applications

(SOCA) , pp 1 8, 2009.

[2] A. Amin, A. Colman, & L. Grunske,”Statistical detection of qos

violations based on cusum control charts”. In Proceedings of the

3rd ACM/SPEC International Conference on Performance

Engineering, ACM., pp. 97-108, 2012.

[3] R. Angarita, Y. Cardinale, & M. Rukoz, “Reliable Composite Web

Services Execution: Towards a Dynamic Recovery Decision”,

Electronic Notes in Theoretical Computer Science Volume 302,

Proceedings of the XXXIX Latin American Computing Conference

(CLEI 2013) , pp 5-28, 2014.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 343

[4] R. Angarita, “Responsible objects: Towards self-healing internet of

things applications”,2015 IEEE International Conference on

Autonomic Computing (ICAC). IEEE., pp. 307-312, 2015, July.

[5] R. Angarita, M. Rukoz, & Y. Cardinale, “Modeling dynamic

recovery strategy for composite web services execution”, World

Wide Web, 19(1), pp 89-109, 2016.

[6] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, & P. Plebani,

“PAWS: A Framework for Executing Adaptive Web-Service

Processes”, IEEE software, 24(6) , 39, 2007.

[7] S. Asadollah, & T. Chiew, “Web Service Response Time

Monitoring: Architecture and Validation”, Theoretical and

Mathematical Foundations of Computer Science Volume 164 of the

series Communications in Computer and Information Science , pp

276-282, 2011.

[8] R. Aschoff, & A. Zisman, “QoS-Driven proactive adaptation of

service composition”, Service-Oriented Computing, Lecture Notes

in Computer Science, Volume 7084 2011 , pp 421-435, 2011.

[9] L. Baresi, & S. Guinea, “Towards Dynamic Monitoring of WS-

BPEL Processes”. Service-Oriented Computing - ICSOC 2005

Volume 3826 of the series Lecture Notes in Computer Science , pp

269-282, 2005.

[10] Y. Dai, L. Yang, & B. Zhang, “QoS-driven self-healing web

service composition based on performance prediction”, Journal of

Computer Science and Technology, 24(2), pp 250-261, 2009.

[11] D. H. Elsayed, E. S. Nasr, M. Alaa El Din, & M. H. Gheith,

“Appraisal and Analysis of Various Self-Adaptive Web Service

Composition Approaches”, In Requirements Engineering for

Service and Cloud Computing, Springer International Pub , pp.

229-246, 2017.

[12] Q. He, J. Han, Y. Yang, H. Jin, J.G. Schneider, & S. Versteeg,

“Formulating cost-effective monitoring strategies for service-based

systems”, IEEE Transactions on Software Engineering, 40(5).

IEEE Transactions on Software Engineering, 40(5), pp 461-482,

2014.

[13] J. S. Hunter, “The Exponentially Weighted Moving Average”,

Journal of Quality Technology, Vol. 18, No. 4 , pp 203-210, 1986.

[14] C. L. Hwang, & K. Yoon, “Multiple attribute decision making

Methods and applications”, CRC press, 1981.

[15] N.K. Kahlon, K.K. Chahal, & S.B. Narang, “Managing QoS

degradation of partner web services: A proactive and preventive

approach”, Journal of Service Science Research, 8(2) , pp 131-159,

2016.

[16] Q. Liang, B. Lee, & P.Hung, “A rule-based approach for

availability of service by automated service substitution”. Softw.,

Pract. Exper. 44(1) , pp 47-76, 2014.

[17] H. Mansour, & T. Dillon, “Dependability and Rollback Recovery

for Composite Web Services”, IEEE Transactions on Services

Computing, Volume: 4, Issue: 4 , pp 328-339, Oct.-Dec. 2011.

[18] A. Metzger, C. H. Chi, Y. Engel, & A. Marconi, “Research

challenges on online service quality prediction for proactive

adaptation”, 2012 Workshop on EuropeanSoftware Services and

Systems Research - Results and Challenges (S-Cube), pp 51 57,

2012.

[19] A. Michlmayr, F. Rosenberg, P. Leitner, & S. Dustdar,

“Comprehensive QoS monitoring of Web services and event-based

SLA violation detection”, Proceeding MWSOC '09 Proceedings of

the 4th International Workshop on Middleware for Service

Oriented Computing, ACM New York, NY, USA , pp 1-6, 2009.

[20] M. Natrella, NIST/SEMATECH e-Handbook of Statistical Methods,

2010.

[21] M. Oriol, X. Franch, & J. Marco, “Monitoring the service-based

system lifecycle with SALMon”, Expert Systems with Applications,

42(19) , pp 6507-6521, 2015.

[22] P. Plebani, & B. Pernici, “URBE: Web service retrieval based on

similarity evaluation”, IEEE Transactions on Knowledge and Data

Engineering, 21(11), pp 1629-1642, 2009.

[23] K. Ren, J. Song, M. Zhu, & N. Xiao, “A bargaining-driven global

QoS adjustment approach for optimizing service composition

execution path”, The Journal of Supercomputing, Volume 63 (1),

pp 126 149, 2013.

[24] F. Rosenberg, C. Platzer, & S. Dustdar, “Bootstrapping

Performance and Dependability Attributes of Web Services”, In

Proceedings of the IEEE International Conference on Web

Services (ICWS’06),pp. 205 212, 2006.

[25] F. Rosenberg, C. Platzer, & S. Dustdar, “QUATSCH A QoS

Evaluation and Monitoring Tool for Web Services” Journal on

Web services Research, 2007.

[26] J. Ruiz, & C. Rubira, “Quality of Service Conflict During Web

Service Monitoring: A Case Study”, Electronic Notes in

Theoretical Computer Science, 321 , pp 113-127, 2016.

[27] Z. Zheng, & M. Lyu, “A runtime dependability evaluation

framework for fault tolerant web services”, In The International

Workshop on Proactive Failure Avoidance, Recovery and

Maintenance (PFARM'09), co-located with DSN2009, 2009.

[28] J. Zhu, P. He, Z. Zheng, & M. Lyu, “Online QoS Prediction for

Runtime Service Adaptation via Adaptive Matrix Factorization”,

IEEE Transactions on Parallel and Distributed Systems, IEEE,

2017.

Author Profile

Navinderjit Kaur Kahlon received Master

Degree in Computer Applications and Ph.D.

degree in Computer Science and Engineering

from Guru Nanak Dev University, Amritsar,

India. The research interests include Service

Oriented Computing, dynamic monitoring of web

services, agent based systems and machine

learning approaches.

