

 © 2018, IJCSE All Rights Reserved 304

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-10, Oct 2018 E-ISSN: 2347-2693

COMPARISON OF ENCRYPTION ALGORITHMS ON NoSQL

DATABASES

P. Rajesh Kannan
1*

, R. Mala
2

1
Dept. Of Computer Science, MarudhuPandiyar College,Thanjavur, Tamilnadu, India.

2
Dept. Of Computer Science, Alagappa University College of Arts and Science, Paramakudi, India

*Corresponding Author: rajeshapril04@gmail.com

Available online at: www.ijcseonline.org

Accepted: 20/Oct/2018, Published: 31/Oct/2018

Abstract— Security has become one of the key features of data transmission on large databases. Sensible data that are available

in the form of documents or unstructured format must be shared among the users in a confidential manner. NoSQL databases

are nowadays popular in handling the unstructured data that are available as open source databases such as MongoDB,

Cassandra, Redis etc. This paper make a detailed study on the encryption techniques of NoSQL databases especially MongoDB

which becomes popular in data management. Since encryption features are not applied on handling the data in MongoDB, the

various encryption techniques proposed on securing the sensitive data at rest and at transit are compared based on different

encryption algorithms.

Keywords— Data Security, NoSQL, MongoDB Encryption, encryption at rest, encryption at transit.

I. INTRODUCTION

Secure handling of private data becomes very important

nowadays on the databases. Relational databases are securing

their data with some additional efforts provided along with

the database. Data security is maintained by the Data Base

Administrators (DBA) depending on the level of security

needed by the concern. With the huge storage of unstructured

data on various mediums have become difficult to handle

with the help of relational databases like SQL databases. In

order to handle these kinds of un structured data,

NoSQL(Not only SQL) databases are available as open

source databases like MongoDB, Cassandra, Redis,

Hypertable, CouchDb etc. Most of these open source

databases are not built with complete data security. In this

paper, the open source databases are studied on the basis of

encryption techniques used by them to handle the security

flaws that are prevalent in data security. The existing

measures of data security are compared and the proposed

techniques are suggested to mitigate these data security

problems on the data at rest and data in transit.

Hariharan et al. [1] discusses the database encryption

techniques on the databases. This author surveyed different

encryption methods like A Database Record Encryption

Scheme Using the RSA Public Key Cryptosystem and its

Master Keys, Chip-Secured Data Access: Confidential Data

on Untrusted Servers, Fast, Secure Encryption for Indexing

in a Column-Oriented DBMS, The Transport Layer Security

(TLS) Protocol Version 1.2 etc. These suggested techniques

differ based on their performance, access time and key

management.

Jef Van Loon et al. [2] discussed the engineering aspects of

security and present some basic measures to protect

databases from unauthorized access. In order to mitigate the

dominant security issues like legal and ethical issues, policy

issues, organizational and system related issues, there is a

serious need for database security. They also emphasize the

security challenges that arise in the context of networked

environments, ubiquitous and mobile computing due to the

increase in data sizes.

Mubina Malik et al [3] discussed in their paper about the

techniques used for database security and they state that 84%

companies feel that database security is adequate and 73% of

companies predict database attacks increase day by day, 48%

of attackers are authorized users. They also suggest some

security measures to be adapted like access control policy,

good audit trail in order to avoid privilege abuse attack and

legitimate privilege abuse. To protect the unmanaged

sensitive data the user has to encrypt the sensitive data and

apply the required controls and permissions to the database.

Denial of Service(DoS) attacks can be avoided by hardening

TCP/IP stack by applying the appropriate registry settings to

increase the size of the TCP connection queue, decrease the

connection establishment period and employ the dynamic

backlog mechanisms to ensure that the connection queue is

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 305

never exhausted. They also suggested a network intrusion

system (IDS) to automatically detect and respond to SYN

attacks. In order to control database threats, they suggest

access control methods, Inference policies, user

identification/authentication, accountability/auditing and

encryption techniques. Data encryption becomes one of the

important measures of data protection when the data being at

rest or in transit by using SSL/TLS solutions.

Section 2 elaborates the literature behind this work as

discussed by various authors; section 3 compares the various

encryption techniques adapted in MongoDB database,

section 4 discusses the results of various encryption

measures as suggested by the authors based on the important

parameters and section 5 includes the conclusion and future

works to be carried out on this work.

II. RELATED WORK

In this section, the data protection techniques on open source

NoSQL databases are discussed in detail and the best

countermeasures are compared on the basis of performance

overhead, memory usage, speed and time related parameters.

2.1 Security Aspects in MongoDB

MongoDB has become one of the top players in non-

relational database providers that are available as open

source document based database. MongoDB is built with low

up-front operational cost and suitable for organizations

across retail, financial, healthcare and government entities.

Huge volumes of unstructured data are manipulated easily

with MongoDB database. When user’s confidential data are

handled often to read, write, update and retrieve there is a

demand for high security. For the enterprise editions some

security measures are followed with the best practices

adapted by the database administrators. If the best practices

are not followed carefully, there is a chance of data loss or

threats to the sensitive data of the common users.

Priyadharsini et al[4] studied a data protection system that is

used for encrypting data before storing data into database

repository and the NoSQL injections performed with

javascript and PHP. Table 1 depicts that MongoDB does not

provide data encryption which is the problem that is

discussed in detail here as discussed by the authors.

Table 1 MongoDB status [4]

Category

Status

Recommendations

Data No encryption Encryption is critical

Authentication Unsharded

configuration

Supports proxy

authentication

Authorization Unsharded

configuration

To generate complete

authentication

Auditing Not available Support auditing and

generate audit events

Injection

attacks

JavaScript Malicious user cannot

modify the code

Data in MongoDB database can be encrypted when the data

are at rest or in motion. MongoDB offers some solutions for

encrypting data in motion and at rest. The various proposed

methods of encryption are discussed in the following

sections.

2.1.1 Encryption methods when data is at rest and in

motion

For securing data in motion, all versions of MongoDB

support TLS(Transport Layer Security) and SSL(Secure

Socket Layer) to transfer the data over networks. This type of

encryption technique is commonly used to secure website

traffic and file sharing. While in transit, that is when the data

travels from one point to other, it is unencrypted or ‘in the

clear’. MongoDB provides asymmetric key protocols to

configure and secure the data in motion [12]. One of the

challenges for MongoDB users is that when sensitive

information is added to the database, users have to adapt a

safe strategy of encrypting the sensitive data in the

MongoDB database with a proper key management.

MongoDB Enterprise offers a storage based file symmetric

key encryption called Transparent Data Encryption(TDE) to

encrypt the whole database files at storage level. Version 3.2,

MongoDB utilizes the Advanced Encryption Standard (AES)

256-bit encryption algorithm, an encryption cipher which

uses the same secret key to encrypt and decrypt data. But

data at rest encryption is only available on MongoDB

enterprise and atlas editions using the required Wired Tiger

storage engine.

When TDE is used to encrypt the data, a unique, private key

is generated. Each encrypted database file generates a new

private symmetric key, and all keys in the storage device are

encrypted using a master key. MongoDB never allows the

master key to be stored on the same server as the encrypted

data [21]. The security admin or the database has to identify

a secure storage location for the encryption key. MongoDB

recommends third-party enterprise key management

solutions; however, users have the option to store the key

locally using a key file. But according to the best practices,

storing the key locally is risky, and almost not recommended

for key protection.

2.2 MongoDB Security Mechanisms

Anil Kumar et al[7] proposed an additive homomorphic

asymmetric cryptosystem which is used to encrypt the users

data in MongoDB(CryptMDB) and provides strong user’s

data privacy protection. The authors utilized a common

encrypted tool proposed by Paillier et al.[8] Which is used to

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 306

achieve additive operations over encrypted data. They have

also concluded that cryptMDB could provide strong privacy

protection for user’s data and prevent intruders from gaining

access to the database.

Grim et al [9] studied the performance and security of

NoSQL databases especially in MongoDB by implementing

two types of encryption namely, encryption at rest which is

performed at the server and en-to-end encryption done by the

client. For the latter case they have extended earlier work

done by Alves et al.[10] by adding functionality to their

Python MongoDB connector wrapper. This research shows

that enabling encryption introduces overhead in both the case

of encryption at rest and the case of end-to-end encryption.

MongoLabs natively supports encryption at rest since version

3.2 of their MongoDB Enterprise Advanced edition1. It uses

the OpenSSL library to encrypt pages at application level

using AES256-CBC. This improves performance as only

modified pages need to be encrypted or decrypted [11].

Additionally this research shows that enabling end-to-end

encryption prevents numerous attack vectors at the server

side, with the introduction of significant overhead in

performance and limiting the number of supported queries

[12]. In this work using two benchmarking frameworks,

YCSB and BenchmarkDB, the overhead of doing two types

of encryption on a MongoDB server was estimated. These

benchmarks showed a small overhead for doing encryption at

rest and a relatively big overhead for using the Secure

Mongo framework.

III. ENCRYPTION TECHNIQUES USED IN

MONGODB

MongoDB is mostly written in C++. It is a document kind

database that manages JSON-like documents. Here data can

be nested in complex hierarchies and then also are indexable.

Documents are stored in the form of collections in

collections and are in turn stored in database. It provides high

amount of unity, regularity and the ability to change size[13].

MongoDB offers a set of collection in collection .A

collection can be considered as a table but the table does not

have a schema here, set of fields could be defined as a

document. In this every document consists of an id.

MongoDB is a cluster of nodes where not every node is the

same that is it lacks symmetry.

3.1 Security Measures on NoSQL databases

In this section, the security aspects of MongoDB are studied

in various aspects as discussed by different research

perspectives. The following are the security considerations in

MongoDB:

 In MongoDB the data files are unencrypted in nature and

it does not provide an implementation to encrypt the files

automatically.

 It uses a binary wire level protocol which uses TCP port

27017 by default. It is at high verge of injection attacks

because it uses mostly java script language. Thus, any

attacker can easily acquire the passwords of the data files

of user in a particular database.

 No auditing is allowed here.

 In data communication no encryption is there.

MongoDB has a de-normalized model that basically

contributes in incrementing the query speed. The authors

tested the performance of MongoDB on the basis of inserting

10000 notebooks information data into the database and

found that MongoDB spends less time compared to MySQL

and implied the query efficiency is improved in NoSQL

databases [14]. But on the other side, NoSQL databases are

weak in security measures compared to SQL databases [15].

In order to reduce the injection attacks, the application must

be verified by reasonable input validation measures and

NoSQL databases are m.uch efficient in cloud computing

and more research attention is required in this line [16].

3.1.1 Authentication protocol

Priyadarsini et al[4] propose Kerberos, an authentication

protocol to secure the network which provides authentication

service and mutual authentication between user and server.

Kerberos protocol builds on symmetric key cryptography. It

requires a trusted third party, and it may use cryptography

during authentication.

The Kerberos requirements are scalable, secure, reliable and

transparent. It is a solution for network security problems.

This protocol used the strong cryptography. Clients can

identity to a server across an insecure network connection.

ALOGRITHM:
Step 1: Symmetric key cryptography is used to

authentication Kerberos

Step 2: Kerberos Key Distribution Centre provides

scalability.

Step 3: Secure transport of a session key can provided by

Kerberos ticket.

Step 4: The session key is distribute by Kerberos KDC send

to its client.

Step 5: The use of the entities master keys can be limited by

the Kerberos ticket granting Ticket.

Figure 1. Kerberos Architecture[4]

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 307

The author suggests their proposed model as depicted in

Figure 1, which helps to design and enhance security in

NoSQL databases. It provides the tools of strong

cryptography over the network to secure the information

systems across the entire enterprise[5,6]. Kerberos can be

extended to provide auditing service, thus securing the

NOSQL database.

3.1.2 Asymmetric cryptosystem

ANIL Kumar et al[7] proposed an additive homomorphic

asymmetric cryptosystem in their paper by using CryptMDB,

they utilize a common encrypted tool proposed by Paillier et

al. [8] which can achieve additive operations over encrypted

data.

Pailier Algorithm:

Key generation:

1. Choose two large primes p and q randomly and

independently of each other such that

gcd (pq,(p-1)(q-1))=1.

This property is assured if both primes are of equal length.

2. Compute n=pq and λ=lcm(p-1,q-1).

3. Select random variable g such that g ϵ Zn

2*

4. Ensure n divides the order of g checking the existence

following modular multiplicative

inverse: μ=(L(gλmod n2)-1mod n, where L function

is defined as: L(x)=

5. The public (encryption) key is (n,g)

6. The private (decryption) key is (λ,μ)

Encryption:

1. Let m be the message to be encrypted 0≤m≤n

2. Select random number r, 0≤r≤n

3. Compute ciphertext as: c=gm.rn mod n2

Decryption:

1. Let be the ciphertext to decrypt, where: c ϵ Zn

2*

2. Compute the plaintext message as:

m=L(cλ mod n2).μ mod n

Homomorphic properties:

A notable feature of the Paillier cryptosystem is its

homomorphic properties along with its non deterministic

encryption. As the encryption function is additively

homomorphic, the following identities can be described:

Homomorphic addition of plaintexts: The product of two

ciphertexts will decrypt to the sum of their corresponding

plaintexts

D(E(m1,r1) . E(m2,r2)

mod n2)= m1 + m2 mod n

The product of a ciphertext with a plaintext raising g will

decrypt to the sum of the corresponding plaintexts,

D(E(m1,r1) . gm2 mod n2)= m1 + m2 mod n

Homomorphic multiplication of plaintexts:

An encrypted plaintext raised to the power of another

plaintext will decrypt to the product of the two plaintexts,

D(E(m1,r1)

m2 mod n2)= m1 m2 mod n

D(E(m2,r2)

m1 mod n2)= m1 m2 mod n

as per the method suggested, the encryption will provide a

secure access of the data at the database.

3.2 APPLICATION LEVEL ENCRYPTION

In MongoDB database, data can be encrypted at the

application level itself as proposed by the following authors.

Charmi et al[17] discusses the security features of MongoDB

and proposes an encryption at application level [18]. Figure 2

depicts the application level encryption suggested by the

authors. They proposed the following steps to encrypt the

important fields like address, PAN number etc. The object id

remains the same while updating the data that can be used for

further verification of data.

Step 1: At first step client will log in the system and

authenticate himself using user id and password. Application

server checks for the client’s access permissions and grant

the access of database to the client.

Step 2: After the authentication client can access the

database. He can perform insert the data, update the existing

data or delete the data from database. Client will send the

data to application server in plain text format. And at

retrieval of the data server will provide plain data to client.

Step 3: Application server then apply AES algorithm on data

which is send by the client. On Client’s request for data

retrieval application server fetch the encrypted data from the

database and decrypt that data using AES algorithm and

plain data will send back to client.

Step 4: Application server store the encrypted data into

specific collection of particular database on insertion

operation and retrieve the encrypted data from specific

collections from particular mongo database.

Figure 2. Encrypting data at application level [17]

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 308

Anand Shende et al [19] proposed an application level

encryption methodology to secure the Adhar number of an

individual. This unique Identification number can be used for

secure transactions. Figure 3 is the proposed architecture

used by the authors.

Figure 3 Client side encryption and Decryption [19]

Here SSL protocol is used to transfer the data and the server

uses JSP and is connected to the database via a JDBC.

Whenever the data is taken, the data it is encrypted and is

represented by ‘%’. The unencrypted or plain text is

represented by ‘*’. The S stands for the query.

SSL protocol builds a secure tunnel based communication

interface between the client and the server. Here the SSL is

used in the grid network to resolve the load over the network

after the authentication of both sender and receiver. The

stage of SSL protocol are as follows:

i. To establish the key of safety communication.

ii. Server authentication.

iii. Client authentication.

iv. End stage

When the client tries to retrieve data, it sends the query. The

query is then encrypted by SSL Client and is decrypted by

SSL Server. The decrypted query is sent to the Server. The

Server then returns the documents requested by the Client.

The algorithm which the paper [20] proposes is an ETSFS

algorithm. This algorithm is modified by this authors [19] in

the following method:

Algorithm for Encryption –

1. The string entered is converted into an array of

integers. This is a 2-dimensional array of 4 rows and

4 columns.

The above is the plotting of the string ‘ENcrypt7’ in a 2D

array form.

2. Transpose.

We just move around the elements of the array in the way

shown by the arrows.

3. Substitution.

In the substitution phase, the values of the characters are

substituted by other values. This adds to the security.

Substitution is a three step process- 1. Characterizing

2. Keys formation 3. Operation. During the first phase, the

character is categorized into small caps (a-z), capital

alphabets (A-Z), digits (0-9) and symbols (! @#$%*).

Characterizing gives the value of ‘M’. For alphabets (i.e.

small and capital) M is 26. While for digits it is 10 and for

symbols it is 7. Three user given keys are convert into 12

keys. Next the character’s values are taken in its numeric

form. For example, A is replaced by 1, C by 3, Y by 25. Now

we add the keys and take modulus with M. Consider the

character as ‘E’, its numeric is 5. The key element is suppose

23. Then adding 23 and 5 will give 2. Which is the character

‘B’.

4. Folding.

The matrix is mirrored about the left diagonal first and then

the right diagonal. All the elements along the diagonal are

only interchanged. Now for the rest of the elements the

matrix is mirrored about the horizontal centre and then the

vertical centre. Now the rest of the elements are

interchanged.

5. Shifting.

 This shifts the rows upwards by 1. The upper row is

added down at the end.

The above method as suggested by the authors could be used

to provide encryption on the data stored in NoSQL databases

which can be used to securely handle the confidential data.

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 309

IV RESULTS AND DISCUSSION

Data security becomes one of the main requirements for any

type of database chosen by the users. Especially in NoSQL

databases, huge volumes of unstructured, document oriented

data are manipulated. Initially, security was not given

importance on the built of these NoSQL databases like

MongoDB, Cassandra, Redis, Hypertable etc. But, dealing

with the sensitive data of the users in the domain like

healthcare and financial sectors, there is a need for protecting

the data in the databases. Data encryption is one of the

solutions for protecting the data in the database, when the

data is in the motion or at rest.

Encrypting the data at rest or in transit are some of the best

measures of securing the data in MongoDB databases. Since

these NoSQL databases handle unstructured data available in

the form of documents, there are more chances of security

breaches on the private data that are to be handled

confidentially. Since MongoDB does not follow any

encryption technique at the lower editions, there is a need for

adapting some encryption methods either at database level or

at application level. Some of the security measures for the

data at rest and in transit are discussed and the proposed

solutions are compared based on their performance.

Application level encryption was proposed with the help of

the AES algorithm and SSL protocol. Before accessing the

data at the database, encryption method starts at the

application level itself. According to the authors[17], AES

algorithm is the best among the other algorithms such as

DES, 3DES, CASTS, MARS, IDEA, BLOWFISH and RC6

based on scalability. AES algorithm proved to be secure,

utilizes less storage space, fast and effective encryption

algorithm as shown in Figure 4.

Figure 4. Comparisons of algorithms based on scalability

[17]

From their work the object id remains the same while the

other sensitive data like PAN number, personal address are

encrypted at the application level. With the help of the

proposed method, this application level encryption makes the

MongoDB data secure for the users.

Another encryption technique at application level proposes

an algorithm named, ETSFS algorithm which is an improved

version of the older versions as suggested by the authors

[19]. The three level encryption methods are shown in the

figure 5.

Figure 5. Three level encryption methods[19]

Their proposed algorithm encryption at application level is

adapted and implemented in MongoDB database. They

proposed an improved ETSFS algorithm to encrypt the adhar

number of users and thus encrypting the sensitive data.

From the literature survey, there are some encryption

algorithms proposed by the authors to secure the data stored

in the MongoDB database at application level. There are

some database level encryption methods that are proposed by

the authors[7] called CryptMDB in order to achieve privacy

protection of user’s data. They use an additive homomorphic

asymmetric cryptosystem to encrypt the data which prevents

adversaries from the illegal access of the database.

Figure 6. Total running time(s).

(a) For the different number of inserted data.

(b) For the different number of queried data [7]

From the Figure 6, user’s record are inserted in MySQL and

MongoDB from 10000 to 100000. As per the results,

CryptMDB has high insertion speed compared to MySQL.

For example, when the number of inserted data reach

100000, the CryptMDB only takes 21.513s to complete

inserted operations while MySQL needs 111.025 to finish the

same operations as per the proposed technique applied by the

authors. Similarly, Fig. 6.(b) shows that the running times

with different number of queried data, from the picture it is

obvious that the CryptMDB has stronger queried ability

compared with MySQL.

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 310

Figure 7: Running time(s).

 (a) For the different number of updated data.

(b) For the different number of removed data.

(c) For the different number of data need to summation [7]

From the Figure 7, with the increase of user’s data, compared

with MySQL, cryptMDB achieve large scale data access, For

example, when the number of updated data reach 100000,

MySQL need 133.821s to execute all the sql requests but

CryptMDB only takes 22.513s to achieve the same tasks. As

shown in Fig. 6.(b), removal of the users’ data from 10000

to 100000 orderly, it is not difficult to find that CryptMDB

has higher performance to remove user’s information,

especially when users’ data are huge. Fig. 6.(c) shows that

the running times with different number of data need to

summation, because the strong ability of distributed data

processing, it is undoubted that the CryptMDB has lower

running time to achieve same operations compared with

MySQL as validated by the authors.

From the results of the above proposed mechanism as

suggested by various authors, NoSQL databases need a

strong encryption method to protect the sensitive data of the

user’s. MongoDB enterprise editions built with security

measures as they improved in the later versions.

Unstructured data storage requires a high data security when

they are accessed in open while we use the open source

databases like MongoDB. The data stored in the MongoDB

are to be secured by a strong encryption techniques either at

rest or in transit. The data could be secured at application

level or at database level and need some more improved

methods which minimize the time and increase the speed of

access.

V CONCLUSION AND FUTURE SCOPE

In this paper various encryption algorithms are compared

based on their methods of securing the data from the external

attacks that are made intentionally or unintentionally on the

NoSQL databases. MongoDB database is analyzed based on

the security measures adapted at database level or at

application level either the data is at rest or in transit. The

proposed intermediate algorithms that are used to encrypt the

data at application level and at database level meets some of

the performance enhancements like in terms of speed and

time. Compared to relational databases like MySQL,

MongoDB manipulates the huge volumes of unstructured

data in a fast and open source format. But there is a

streamlined security measurement is to be adapted by the

database administrators in order to save the sensitive data

that are stored in the NoSQL databases. Some of the

proposed algorithms improved the performance of the

database secure access as suggested by the authors.

But every encryption technique has to be adapted with

additional efforts that are to be strictly followed by the

database administrators that makes the process tedious and

could take extra checklists to be followed in a controlled

manner. In future, the NoSQL databases can concentrate

more on the security considerations like encryption at the

built itself that makes the database as a high secured one to

be adapted by the common users.

REFERENCES

[1]. P.R.Hariharan & Dr. K.P. Thooyamani , Various Schemes for

Database Encryption - A Survey”, International Journal of

Applied Engineering Research ISSN 0973-4562 Volume 12,

Number 19 (2017) pp. 8763-8767, Research India Publications.

[2]. Jef Van Loon, Prof. Dr. C-C. Kanne, Ch. Sturm, “Database

Security - Concepts, Approaches”, Article in IEEE Transactions

on Dependable and Secure Computing · Seminar in Database

Systems, University of Zurich, Department of Informatics,

Autumn Term 2008, DOI: 10.1109/TDSC.2005.9 · Source: IEEE

Xplore.

[3]. Mubina Malik and Trisha Patel, “DATABASE SECURITY -

ATTACKS AND CONTROL METHODS”, International Journal

of Information Sciences and Techniques (IJIST) Vol.6, No.1/2,

March 2016.

[4]. S. Priyadharshini, R. Rajmohan, “Analysis on Database Security

Model Against NOSQL Injection”, International Journal of

Scientific Research in Computer Science, Engineering and

Information Technology © 2017 IJSRCSEIT | Volume 2 | Issue 2

| ISSN : 2456-3307

[5]. Suna Yin, Dehua Chen, Jiajin Le,China, 2016 IEEE,"STNOSQL

Creating NOSQL Database on the SensibleThings Platform.

[6]. Boyu Hou, Kai Qian, Lei Li, Yong Shi, Lixin Tao, Jigang Liu,

USA, 2016 IEEE 3rd International Conference on Cyber Security

and Cloud Computing ,"Mongo Database NOSQL Injection

Analysis and Detection".

[7]. Anil Kumar, Harsha H L, B. Swaroop Reddy, K.Sunil Kumar

Reddy, Krishna N, “Homomorphic Encrypted MongoDB for

Users Data Security”, International Journal of Engineering

Research in Computer Science and Engineering (IJERCSE) Vol

5, Issue 6, June 2018.

[8]. https://en.wikipedia.org/wiki/Paillier_cryptosystem M.W. Grim,

A.T. Wiersma, F. Turkmen, “Security and Performance

Analysis of Encrypted NoSQL Databases”, February 12, 2017.

[9]. Alves, Pedro. A framework for searching encrypted databases. In

Anais do XVI Simpsio Brasileiro em Segurana da Informao e de

Sistemas Computacionais (SBSeg 2016), 2016.

[10]. Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. “Benchmarking cloud serving

https://en.wikipedia.org/wiki/Paillier_cryptosystem

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 311

systems with YCSB”, In Proceedings of the 1st ACM symposium

on Cloud computing, pages 143{154. ACM, 2010.

[11]. At-test encryption in MongoDB 3.2: features and performance.

https://www.mongodb.com /blog/post/at-rest-encryption-in-

mongodb-3-2-features-and-performance.Accessed: 2017-01-23.

[12]. Vidushi Jain, Aviral Upadhyay, , “MongoDB and NoSQL

Databases”,International Journal of Computer Applications

(0975 – 8887) Volume 167 – No.10, June 2017

[13]. Zhu Wei-ping, Li Ming-xin- Using MongoDB to Implement

Textbook Management System instead of MySQL IEEE2011

[14]. Lior Okman, Nurit Gal-Oz, Yaron Gonen, Ehud Gudes, Jenny

Abramov - Security Issues in NoSQL Databases IEEE2011

[15]. Tianyu Jia, Xiaomeng Zhao, Zheng Wang, Dahan Gong and

Guiguang Ding - Model Transformation and Data Migration

from Relational Database to MongoDB IEEE 2016.

[16]. Charmi Pariawala, and Ravi Sheth,” Encrypting Data of

MongoDB at Application Level”, Advances in Computational

Sciences and Technology, Volume 10, Number 5 (2017) pp.

1199-1205

[17]. Karan Patel, Kirti Sharma, Mosin Hasan. “Encrypting MongoDB

Data using Application Level Interface”. Discovery, 2015,

46(214), 164-169

[18]. Anand Shende1, Omkar Gurav2, Swapnil Shirode3, Piyush

Govekar 4, S.N.Zaware 5, “Secure Unique Identification using

Encrypted Storage in NoSQL Database”, International Journal of

Advanced Research in Computer and Communication

Engineering Vol. 5, Issue 4, April 2016

[19]. Hanan A. Al-Souly, Abeer S. Al-Sheddi, Heba A. Kurdi;Fast,

Lightweight Symmetric Encryption Algorithm for Secure

Database. (IJACSA) International Journal of Advanced

Computer Science and Applications, Special Issue on Extended

Papers from Science and Information Conference 2013.

[20]. https://docs.mongodb.com/manual/core/security-encryption-at-

rest.

https://www.mongodb.com/

