

 © 2019, IJCSE All Rights Reserved 310

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-3, March 2019 E-ISSN: 2347-2693

Designing The Code Snippets for Experiments on Code Comprehension of

Different Software Constructs

Leena Jain
1*

, Satinderjit Singh
2

1
Department of Computer Applications, GIMET, Amritsar, PTU Kapurthala, India

2
Department of Computer Applications, GGNIMT, Ludhiana, PTU Kapurthala, India

*Corresponding Author: satty74@gmail.com, Tel.: +91 9814736494

DOI: https://doi.org/10.26438/ijcse/v7i3.310318 | Available online at: www.ijcseonline.org

Accepted: 23/Mar/2019, Published: 31/Mar/2019

Abstract—The concept of Basic control structure (BCS) of software and their cognitive weights have been proposed in theory.

However not much work has been done to validate weights assigned to various programming constructs. One of the primary

reasons for same is that it is difficult to design the experiment to measure the mental effort involved in understanding the effect

of various programming constructs and their interplay. The paper discusses some of the challenge involved in setting up such

psychological experiment. In such experiments we cannot select and compare any random code snippets of various

programming constructs- the variations are endless. We identified different approaches to conduct such experiments. We

explained with example various factors and issues involved in selecting the code snippets which resulted in minimum

variations in code snippets of various programming constructs, other than that is inherent in syntax. The code snippets design

approach proposed here can be used to conduct series of psychological experiments in software studies. We need series of such

experiments not only to validate the cognitive weights of different programming constructs, but also it will go long way in

having robust metrics for software complexities. These types of experiments can be extremely useful in the field of computer

science education in understanding the cognitive load required for learning the concepts of programming languages.

Keywords— Software Complexity;Code complexity;Code Comprehension; Cognitive Weights;Basic control

structure;cognitive metrics;Cognitive load; Software Experimentation; computer science education; Code snippets;human

brain working.

I. INTRODUCTION

Many measures like LOC, Halstead measures, McCabe’s

cyclometric [1] measures were proposed earlier to measure

the complexity hidden inside the software. All these

measures capture some aspect of complexity while ignoring

the others. However, none of these satisfactorily captures the

human aspect of software complexity i.e. mental effort

required to understand the software code. In year 2003 Shao

and wang proposed the measure cognitive weights of 10 BCS

and proposed new measure cognitive functional size to

express the complexity of the software [2]. In 2006 Wang

modified the cognitive weights of the 10 BCS after the series

of psychological experiments conducted on students [3], [4].

Post that slew of metrices were proposed by various

researcher based on the cognitive weights proposed in 2003

and 2006 [5], [6]–[9].

Gruhn and Laue in the year 2007 pointed various flaws in the

psychological experiments conducted by wang [10]. He also

highlighted some of the issues in measuring the cognitive

weights of recursion BCS owing to its peculiar nature. He

also suggested that we must include three more control

structure in the set of BCS – named as lock, exception and

internal exits – into the table set of BCS. He highlighted

some of the precautions which should be covered in

designing the any such experiments. In an unpublished work

(But available in Research Gate website) David Admino in

2015 conducted the same sort of experiments and achieved

quite a different result than wang’s result [11]. There are

other works where researchers have compared various

control structure and their effects in code complexities [12]–

[17]. Interesting work is done in paper by Ajmi etal 2017; in

which they have conducted the experiment and shown that

complexity of code is not only dependent upon control

structure but also on factors like different ways to express the

predicate and different idioms used (in say looping structure)

[18]. In original wang and Shao metrics in 2003, 2006 the

latter factors were not considered in complexity calculation

of software code [2], [3]. Most of complexity metrics based

upon wangs work and even non-cognitive complexity

measures like has also not considered the latter factors [5],

[7]–[9], [19], [20]. So, there is urgent need to not only

validate the cognitive weights proposed by wang and others

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 311

but also to see if some other factors affect the software

complexity. It is surprising that apart from some works

mentioned above there is not much body of work done – in

terms of experimentation, explanatory theory in Brain

science- to validates the weights assigned to the BCS.

In this paper we discuss some of the issues involved in

setting up the experimentation to measure various BCS

weights. We look at the aspect of how to design the code

snippets for conducting the psychological experiments to

measure BCS. We suggest some of the approaches to design

as homogeneous code as possible where only the intrinsic

difference in BCS are measured and all other differences are

cancelled out as far as possible. We also presented the

sample code snippets pertaining to some BCS along with all

the necessary parameters to clarify our points. We also

discussed the possibility of future scope of this kind of work

and the direction it should take.

The paper is divided into 7 section. In section I we provide

the general background of the topic. Section II provides the

previous cognitive weights and their values in comparative

forms. Section III discuss the experimental works done in

this regards and issues in them. In section IV we discuss the

issues and challenges involved in design of the psychological

experiment to measure the weights of BCS of software. In

section V we specifically concentrate on the issues of design

of code snippet set to conduct these sorts of experiments. In

section VI we further explain one approach to design code

snippets with the help of two examples and analyzing them.

In section VII we conclude by summarizing the discussion

done in previous sections.

II. COGNITIVE WEIGHTS OF BCS

In the year 2003 Yingxu Wang introduced the concept of

cognitive functional complexity of software [2]. In this

metrics the BCS basic control structures are assigned

cognitive weights. BCS are the set of fundamental and

essential flow control mechanisms that are used for building

logical architecture of software.

In this metrics the total cognitive weight of a component is

measured by either adding the weights of a BCS if they are in

series or they are multiplied if they are embedded in another

BCS. The total cognitive weight of a software component,

Wc is defined as the sum of cognitive weights of its q linear

blocks composed in individual BCS’s. Since each block may

consist of m layers of nesting BCS’s, and each layer with n

linear BCS’s, the total cognitive weight, Wc can be

calculated by equation (1).

 ∑ [∏ ∑ (())

]

 (1)

In this metrics the different BCS are assigned the weights as

shown in table 1. These weights are based on the human

effort in comprehending these BCS.

The cognitive functional size (CFS) of a basic software

component that only consists of one method, Sf, is defined as

a product of the sum of inputs and outputs (Ni/o), and the total

cognitive weight, i.e.:

 Sf = Ni/o * WC . (2)

However, in the year 2006, Wang [3] suggested new weights

for various BCS as mentioned in Table 2.

Although the weights for BCS were changed by Wang, but

the method of calculating overall cognitive complexity of the

software remains same. In an unpublished work (But

available in Research Gate website) David Admino in 2015

conducted the same sort of experiments and achieved quite a

different result than wang’s [11]. These are shown in Table

3.

Gruhn and Laue (2007) suggested that we should add three

more BCS other than 10 mentioned in tables above[10]. The

new BCS identified and named by them are lock, exception

and internal exits. There is large body of work done by host

of researchers in refinement of how to calculate complexity

metrics from code [6], [8], [9]. There are also a decent set of

researchers who have proposed complexity metrics in which

they have recognized the concept of BCS but have used their

own weights and complexity calculation method other than

as proposed by Wang and shao [19], [20]. Clearly the well

accepted cognitive weights of BCS are critical issues in here

and without their validation there will always be question

mark on acceptance aspect of various cognition-based

complexity metrics. Apart from this there are still some

troubling questions about Cognitive Metrics which we

discuss in our next section.

III. ISSUES RELATED WITH COGNITIVE METRICS

The objection of Gurhn and Laue [10] and different method

to calculate Complexity metrics apart, there are some other

key concerns regarding Software cognitive Metrics. Some of

the concerns and doubts regarding BCS values are put by

Jain and Singh [21]

1) How authentic the Cognitive weights of BCS are? Can we

verify them experimentally?

2) Do these cognitive weights fit all population?

3) Is it possible to identify various segments of the

population which does not concur with above weights of

BCS but have their own set of cognitive weights?

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 312

These and many more questions and doubts of the same

category are extremely valid and important for the researcher

community.

IV. PREVIOUS WORK IN COGNITIVE WEIGHTS

To the best of our knowledge there are three works which

has been carried out to measure cognitive weights of BCS.

The first one is obviously by wang and shao in 2003, when

they proposed the concept of BCS and their weights [2]. The

second one is when in 2006 wang again published a work

where they modified BCS weights with new values [3]. Then

there is unpublished work of David Adamo Jr (but available

in Research gate website) in 2014 [11], in which he works

out an experiment and reach value quite different from above

two values.

Table 1: Cognitive Weights of different BCS-Wang 2003.

Category BCS
Cognitive weights

(Wc)

Sequence
Sequence 1

Branch
If then else 2

Case 3

Iteration

For-loop 3

Repeat-loop 3

While-loop 3

Embedded
Component

Function call 2

Recursion 3

Concurrency
Parallel 4

Interrupt 4

The first work of wang and shao [2] do comes out with

weights and claims that the weights have been calculated as

the direct relationship to the time consume in working out

output in the code snippets of various BCS. But the paper

does not explain the details of the experiment conducted. So

Gurhn and Laue (2007) correctly stated that academic value

of that work cannot be taken seriously [10].

In second paper wang [3] do provide the detail of the

experiment layout. In an experiment consisting of 122

undergraduate and post graduate students, certain code

snippets were given to them in Java language. The students’

response time were measured and based on the time

calculated for each BCS, the cognitive weights are calculated

by dividing the BCS time with the sequential BCS time.

Gurhn and Laue (2007) pointed out three faults in

experimental layout [10]. First that there is syntax problem

with the java code snippets. Second that there is too much

variance in code length (in terms of LOC) of various code

snippets pertaining to various BCS. The argument is that

since we are only measuring time and code must be read

before interpreted, so it only fair that code length should be

almost same if not exactly same. In the paper of wang [3] the

two snippets had 7 and 22 LOC, thereby rendering the result

quite questionable. The third fault pointed out by Gurhn and

Laue is that wang had not used the correctness feature of the

result. In-fact paper does not provide any information about

the correctness percentage of the answer. Basili and others

had suggested this as important indicator in the code

comprehending experiments[12], [22], [23].

Table 2: Cognitive Weights of different BCS- Wang 2006

Third work in this area is done by David Adamo Jr [11]. This

work does take into consideration the limitations of wang

work [3] and tries to incorporate the suggestion by Gurhn

and Laue [10]. It tries to eliminate the difference due to

varying LOC of code snippets. However, two limitation of

David

Adamo [11] cannot be ignored. the first is that it works out

BCS weight value of only 9 BCS – excluding interrupt BCS.

The second more important limitation is that experiment is

conducted on only 14 undergraduate students. The number

we feel is too small especially considering the result it

arrived at -variant both in values but also in rank order of

various BCS. We also believe that one aspect is missed by all

the previous work in this field. In the choice of the code

snippets the mathematical and logical operators are too

varying. Since we are using time and correctness parameters

to work out cognitive values, we believe that there must be

homogenization in operator numbers and type within the

Category BCS
Cognitive weights

(Wc)

Sequence
Sequence 1

Branch
If then else 3

Case 4

Iteration

For-loop 7

Repeat-loop 7

While-loop 8

Embedded
Component

Function call 7

Recursion 11

Concurrency
Parallel 15

Interrupt 22

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 313

various code snippets as far as possible. This should cancel

out the effect of complexity arising out of operator variance.

None of the previous work had taken this into consideration.

More about this will be discussed in coming sections.

Table 3: Cognitive Weights of different BCS -David Admino 2015

Category BCS
Cognitive weights

(Wc)

Sequence
Sequence 1

Branch
If then else 2

Case 2

Iteration

For-loop 11

Repeat-loop 10

While-loop 6

Embedded
Component

Function call Not Calculated

Recursion 7

Concurrency
Parallel Not Calculated

Interrupt Not Calculated

In addition to these works there has been other experiments

done not based on BCS but based on some specific aspect of

the code. Mynatt [14] conducted experiments to measure

which one is psychologically more complex -Recursion or

iteration- or which data structure is more complicated -

Arrays or link list. Iselin [15] conducted an experiment to

study the effect of positive/negative condition and its

interaction with true /false condition. Ajami etal [18]

conducted experiment to show that ‘for’ loop is complex to

comprehend than ‘if’ statement. Also, other findings are that

some logical negation does affect the predicate in more

complex way than otherwise and counting-down in loop is

harder than counting-up. However, the feature of these types

of experiments is that no weights are developed; only

qualitative assessment is done of complexity hidden on

certain aspect of code.

 Amount of the work done in this field of software

engineering is surprisingly less. One reason is that it is

difficult to set up the experimentation where only thing

measured is corresponds to complexity inherent in BCS

structure and not any other aspect of the code. The variation

in minutest of the code snippet can be endless. But this point

also must be noted that we must conduct multiple of these

psychological experiments before we go on to develop better

complexity metrices or validate the values of BCS if there

exists any unique one. In next section we talk about the

challenges and issues in designing the layout for conducting

psychological experiments of these kinds.

V. GUIDELINES FOR THE LAYOUT OF THE

EXPERIMENTS

To the researcher community – both in the field of software

and otherwise- validating the BCS cognitive weights is of

outmost importance. One of the reasons that too little work

has been done on this side is the difficulty in conducting the

Psychological experiment of this kind on the software code.

Ajami etal [18] has suggested two problem with the

experimental setup. The first is the fact that according to

them there are too many variables and factors hidden in code

snippets that to single out each is tedious job. Second, they

opined that considerable complexity of code lies out of the

bounds of BCS as in composition of condition statement, use

of programming idioms etc. Gurhn and Laue [10] have given

following guidelines for conducting the experiments of these

types. These include

 Non-variance of code length, variables-Number,

types and names.

 Multi-language experiments.

 Different level of respondents in terms of

experience.

 Enough replications.

 Following the strict approach of experimental study.

 In the remaining portion of this section we suggest in similar

sense some new points and some possible refinement of the

above said points.

1. On the issue with idea of same code length for all

snippets to be compared, we believe that strict

adherence to that may not be that prudent thing.

Firstly, because different language may show

different LOC of code length for same logic

expression. Secondly, it is in the inherent structure

of various BCS that LOC variations are there. For

example, in comparable code snippets of sequential

and if-else BCS LOC will be different because if-

else will have at least one condition statement and

possible pair of curly braces; thereby increasing the

LOC of later. Ajami etal [18] has shown that in

comparison to single logical expression in condition

statements, the same logic when implemented

through nested if-else takes less time to solve than

latter, although nested if-else has lot many higher

LOC than single compound logical expression. It’s

not that we are suggesting complete abdication of

this code length factor. All we are suggesting that

this cannot be binding principles for conducting

such experiments, yet we continue to hold that LOC

of code snippets should not vary widely.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 314

2. In the same spirit the number and types of operators

can also vary across the BCS. In case of looping and

control BCS, it is imperative that we have in

conditional statement relational/ logical operators as

a part of code structure of these BCS. In fact, not

having these relational /logical operators in looping

and conditional BCS would enhance the code

complexity of these BCS most likely.

3. What should be non-variant in these experiments

involving comparing code snippets results is that

number of mathematical operators which the

respondents used to calculate output from given

input. The number and types of variables (int, float,

char etc) and operators should be same. By doing

that we tend to eliminate the variation which result

in calculation of different operators.

4. Since code comprehension experiments involved

measuring the timing and accuracy parameters for

each BCS, care should be taken of proper coverage

of BCS code. This can be done for example by

giving a set of input that all nested part of if-else or

all cases of switch statement including the default

case are executed and their time and accuracy is

measured.

5. Following the same principal as stated above in case

of looping structure, the experiments should involve

loop portion in code snippets to run multiple

number of times- including minimum number of

times (0 or 1). It is further suggested that in

comparing looping structures – for, while, do-while

and even recursion- all the corresponding code

snippets must have the loop run for same number of

times just to cancel out the effect of different

number of runs.

6. The variation in code snippets as the control factor

is at the heart of such Psychological experiments.

This is true whether we are measuring the BCS

effect or even other features of coding. Ajami etal

[18] has suggested that variations in simplest of

code are endless, and many factors are at play, so

meaningful experimental design may be tricky in

such experiments. Although there are many

permutations and combination possible, we suggest

that following broad snippet design approaches

should be considered.

a) Code snippets with same number of LOC,

operators and variables.

b) Code snippets with same number of variables

and non-inherent operators.

c) Code snippets with same variables and same

number of effective non-inherent operators.

d) Code snippets with same logic only.

 In an ideal world the design approach (a) would be perfect.

Not only it will adhere to guidelines of same LOC as

suggested by Gurhn and Laue [10] but it imposes another

condition of same number and types of operators and

variables. By doing this we eliminate the variation which can

come about due to varying LOC and due to different

operators and different varying variables type. Since we

believe – based on experience- that not all operators are

same, and they do have varying complexity. It would be

interesting for future research work if someone works out the

order or ratio of the complexities associated with various

operators. But for now, we have tried to eliminate that

variation by suggesting code snippets with same set of

operators and variables. However, one possible limitation of

such design scheme is that in the rigidity of design we may

miss the essence of the BCS itself -whose cognitive weights

we intend to measure. For example, it is natural to have at

least one relational operator in if-else structure. Now if the

design scheme (a) is to be followed then either we must

introduce relational operator in Sequence BCS or we must

remove the relational operator from condition part of ‘if-else’

structure. In both the case we are distorting the essence of

either of BCS. Another issue that pertains to design (a) is

same number of LOC of various code snippets in design may

not be constant across languages. This sameness may vanish

if we translate code snippet into some other language.

The rigidity inherent in scheme (a) made us suggest design

approach b). Wangs [3] and later David Adamo [11]

experiment was partially (not fully) based upon this

approach. Although we agree with Gurhn and Laue [10]

objection of too much variation between LOC of code

snippets. The idea here is not to be too rigid with code length

or operators used, but in same breadth not to lose overall

sight of these two important factors and allowing variation

only when needed to retain the essence of BCS differences.

By non-inherent operators we mean those operators which

are not part of BCS itself. For example, in ‘while’ BCS at

least one conditional operator is inherent in structure of BCS.

So, it will not be counted, and remaining operators became

the non-inherent operators.

The fourth approach of having a code snippet set with same

problem but applied with different logic suited to various

BCS. Ajami etal [18] followed this design approach in

working out various parameters involved in code

complexities. The only problem it seems is that it may be

tricky to find the problem and different logics to solve it. Yet

all BCS may not be captured in various code snippets

generated through this design approach.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 315

The third approach to design code snippets is novel one. To

the best of our knowledge this has never been implemented

before to conduct any experiments of this sort. The simple

philosophy here is that since we are measuring the

respondents of code snippets in terms of time and correctness

measurement in psychological experiments, so we must

ensure that mathematical/logical operators must be same in

terms of type and numbers. For example, a switch BCS

having three cases – two simple and one default case- must

have for all three cases same operation on same type of

variables. Of course, the order of operator usage and variable

value should differ to avoid sameness effects in various code

snippets. By this we may have code length roughly three

times that of sequence BCS. Ajami etal [18] has already

shown that LOC is not a strict indicator of code complexity

in certain cases. Also, we propose that if overall all the code

snippet is of short size (Less than 20 LOC) then this variation

of LOC in various code snippets may not be that crucial

factor.

The very nature BCS is such that it suggests selecting the

specific part of code for further processing – both in computer

and in human mind. Our endeavour here is to keep that

processing part same and assume that what is left out to

calculate is the inherent complexity in the structure of BCS.

In the following section we show some code snippets

designed using this approach.

VI. CODE SNIPPETS EXAMPLES

In this section we will give example of code snippet to be

designed by this new approach -category c) of previous

section. Gurhn and Laue [10] highlighted the point the that

LOC of various code snippet should be of same size, but they

missed the point that in psychological experiments of such

kind-where we are measuring time and accuracy- the number

of mathematical/logical operators are more important than

LOC factor. Also, the LOC of code snippet may vary

depending upon language to language. In this new approach

we gave more importance to mathematical/logical operators

encountered in a processing of input to output than LOC of

code snippets. We believe that with small code snippets (less

than 20 LOC) the variation in size can be ignored in favour

of experimental accuracy and retaining the true essence of

various BCS.

Example 1: Below in table 4 we gave an example of code

snippets for four BCS – ‘while’, ‘sequential’, ‘for’,

‘function’- that follows new design approach. The code is in

C language. The table also provides information lines of code

(LOC) and character strength (without space). Table 5

provides the operator analysis for the code snippets in table

4. We are interested in number of variables, number of

operators in code snippet, number of operator inherent in

BCS, number of variable used in mathematical/logical

processing output from input (excluding the one which is

inherent in BCS) and number of mathematical / logical

operator encountered in processing-out output - both for

human and computer.

Some points to clarify the information in table 4 and table 5

is as given below:

 The code snippets vary in terms of size; both in terms of

LOC or character strength (without space). For an

obvious reason the smallest code snippet is 1.2 –

Sequential BCS- and the largest code snippet is 1.3 –

‘for’ BCS, although 1.4 – ‘function’ BCS- matches 1.3

in character strength but not on LOC. It is in the very

nature of various BCS -syntax and design- that lack of

similarity in code snippet size is almost inherent. And, if

we try to make code snippets of same size then we may

end up undermining the essence of some BCS.

Table 4: Code Snippet – Example 1.

S.No. BCS Code snippet Var LOC
Char

(ws)

1.1 While

int a=9, b =4, c=0;

while(a>1)
{

c=c+b*2;
a=a-3;

}

printf("\n%d" , c);

3
{a,b,c}

7 58

1.2 sequential

int a= 9, b =4,c;
b=b-2;

c= a+b*3;

printf('\n%d",c);

3

{a,b,c}
4 44

1.3 if-else

int a=5,b=6, c;

if (a>b)
{

b= b -a;

c=a+b*7;
}

else

{
a=b*a+7;

c=a-b;

}
printf("\n %d", c);

3

{a,b,c}
12 73

1.4 Function

int funct (int a,int b)

{
b= 3*b+2;

return (a-b)

}
int c;

c= funct(7,2);

printf('\n %d" , c);

3

{a,b,c}
8 75

 Table 5: Operator analysis of Code snippets (Table 4)

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 316

Mathematical/

logical
Operators

Operators
Inherent

in BCS

Non-
Inherent

operators

Operators
encountered
in execution

while
4

{+ , - , * , >)
1 { < }

3
{ +, -, * }

3 { +, -, * }

sequential
3

{+ , - , * }
nil

3
{ +, -, * }

3 { +, -, * }

if-else

7
{ +(2) , -(2),

*(2), > }
1 { < }

6
{ +(2) , -

(2), *(2) }
3 { +, -, * }

function
3

{+ , - , * }
nil

3
{ +, -, * }

3 { +, -, * }

 Another small point to mention here is that we have

deliberately picked the value of variable ‘a’ and ‘b’ as

single digit number. All operation in code snippets have

single digit operands. We have deliberately avoided

multiplication with 10. All this is done to make

mathematical operations simple and basic. Similar

precautions need to be taken in case of division and

remainder operations.

 The number of variables used in all code snippets of

Table 4 is three. It is important that we use the same

numbers and types of variables (int, float etc.) in

various code snippets to control any result deviation

coming out of the variation of the variables. It’s not

necessary that we should use same variables name

(although we have here), but it is suggested that all

variables names are neutral and meaningless. Esther et al

[5] has used the different variable weight of meaningful

named variable (MNV) than arbitrarily named variable

(ANV) in overall complexity calculations.

 The crucial part is number of logical/mathematical

operators in various code snippets. As the table 5 shows,

the number of mathematical/logical operators in the code

snippets vary for each BCS. Most of code snippets vary

in number of the operator it used. It is important to note

that we are only considering mathematical/ logical

operators and not say assignment or comma operator.

The idea here is to cover the mathematical or logical part

of code processing only.

 In Table 5, we also make provision of operator that are

inherent in BCS of code snippet – code 1.1 and 1.3. The

idea is that these operators are inherent in BCS and are

not used in output calculation but rather in selecting the

code part to be executed. So, we eliminate that in our

effective number of operators’ calculation. This single

adjustment allows us to have different types and

numbers operators in various BCS code snippet -as is

inherent in their structure- yet can be compared.

 The last column in Table 5 provides actual number of

mathematical and logical operators encountered in path

of the code in calculating output from input. Again, we

are not counting same operators when a loop runs

through portion of code again and again. The idea again

is that this factor is inherent in BCS structure of loop and

thus the calculation of operators should not be repeated.

The last column shows the constant value of effective

non-inherent operators used- which is whole purpose of

code snippet design.

Table 6: Code Snippet – Example 2

S.No. BCS Code snippet Var LOC
Char

(ws)

2.1
do-

while

int m=87, n=7,p=0;
do

{

m=m/n;
p=p*10 +m%n;

} while(m>0);

printf ("\n %d", p);

3

{m,n,p}
7 66

2.2 for

int m, n=6,p=0;

for{
m=53;m>0;m=m/n)

{

m=m%n;
p=(p+m)*10 ;

}

printf ("\n %d", p);

3

{m,n,p}
7 65

Table 7: Operator analysis of Code snippets (Table 6)

BCS

Mathematical/

logical

Operators

operators

inherent

in BCS

Balance

Non-

inherent

operators

Operators

encountered

in execution

while
5

{+ , / , * , % , >)
1 {>}

4
{ +, / , * , %}

4
{ +, / , * , %}

for
5

{+ , / , * , % , >)
1 { >}

4
{ +, / , * , %}

4
{ +, / , * , %}

Example 2: In example 2 of code snippet design we provide

a slightly more complex code snippet for two BCS – “for”

and “do-while” BCS in Table 6 and Table 7. Notice that

there are just 3 variables in code snippets -just like example

1- however one variable is assigned two-digit number, and

another single digit. Number of non-inherent operators works

out to be 4 (as compared to 3 in example 1). Also, note that

that in both snippets there is one multiplier by 10. We

assume multiplier by 10 as easier to calculate than any other

number, so either include in all the code snippets or exclude

from all snippets (In this case we include it in both snippets).

It is interesting to note that LOC and character strength of 2.1

and 2.1 are less than 1.3 and 1.4. But they have larger

number and different types of operators in calculations

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 317

needed to come out with output from input. These factors

along with BCS inherent complexity may be the reason

which may enhances the complexity for 2.1 and 2.2 than 1.3

and 1.4.

VII. FUTURE SCOPE AND CONCLUSION.

There is very little work done in terms of conducting the

psychological experiments to measure the code complexity

of the software. One reason for that could be difficulty in

designing the code snippets so that we can measure the

different aspect of the code including the control structure

and its effect on complexity. Four-way classification of code

snippet design approach has been explained in paper

including the novel approach of equal effective non-inherent

operators. Two small examples have been given to

demonstrate how code snippets are designed and what factors

need to be taken care for proper design under the novel

approach.

Going further we suggest that large body of code snippets in

various language are designed at various complexity level

(number of operators, variables etc) so that body of work can

be used by future researchers to conduct various experiments

and many entangled questions -pertaining to cognitive

weights of BCS- can be answered. We also believe that such

work of generating code snippets can perhaps be automated

in near future. This will go long way in developing and

validating the truly acceptable software complexity measure.

One reason why we have not been able to develop generally

accepted software complexity measure or not validate the

cognitive weights of BCS is because we know so little of

how our brains work – How they process, retain and use

internal and external information. Software, perhaps more

than any other field, involves this understanding of human

brain. By conducting such experiments on software code

snippets or preparing a layout for any such experiments, we

may well be helping in understanding the working of human

brain. This may benefit us not only with better software

complexity measure but in many other ways. it can be useful

to mankind in generating a better Brain understanding in

general but more specifically this can also help us make

better AI machine.

REFERENCES

[1] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng.,

vol. SE-2, no. 4, pp. 308–320, 1976.

[2] J. Shao and Y. Wang, “A new measure of software complexity

based on cognitive weights,” Can. J. Elect. Comput. Eng., vol. 28,

no. 2, pp. 1–6, 2003.

[3] Y. Wang, “Cognitive Complexity of Software and its

Measurement,” in 5th IEEE International Conference on Cognitive

Informatics, 2006, pp. 226–235.

[4] Y. Wang and S. Patel, “IJSSCI-1201-CogFundSE.pdf,” Int. J.

Softw. Sci. Comput. Intell., vol. 1, no. June, pp. 1–19, 2009.

[5] O. Esther, O. Stephen, O. Elijah, A. Rafiu, T. Dimple, and Y.

Olajide, “Development of an Improved Cognitive Complexity

Metrics for Object- Oriented Codes,” Br. J. Math. Comput. Sci.,

vol. 18, no. 2, pp. 1–11, Jan. 2016.

[6] A. K. Jakhar and K. Rajnish, “A new cognitive approach to

measure the complexity of software’s,” Int. J. Softw. Eng. its

Appl., vol. 8, no. 7, pp. 185–198, 2014.

[7] D. De Silval and N. Kodagoda, “Improvements to a Complexity

Metric : CB Measure,” in IEEE 10th International Conference on

Industrial and Information Systems, ICIIS 2015, 2015, pp. 401–

406.

[8] S. Misra, A. Adewumi, L. Fernandez-Sanz, and R. Damasevicius,

“A Suite of Object Oriented Cognitive Complexity Metrics,” IEEE

Access, vol. 6, no. January, pp. 8782–8796, 2018.

[9] S. Misra, A. Adewumi, R. Damasevicius, and R. Maskeliunas,

“Analysis of Existing Software Cognitive Complexity Measures,”

Int. J. Secur. Softw. Eng., vol. 8, no. 4, pp. 51–71, Oct. 2017.

[10] V. Gruhn and R. Laue, “On Experiments for Measuring Cognitive

Weights for Software Control Structures,” in 6th IEEE

International Conference on Cognitive Informatics, 2007, no.

September 2007, pp. 116–119.

[11] D. J. Adamo, “An Experiment to Measure the Cognitive Weights of

Code Control Structures.” pp. 1–16, Jul-2014.

[12] M. E. Hansen, A. Lumsdaine, and R. L. Goldstone, “An

experiment on the cognitive complexity of code,” in Proceedings of

the Thirty-Fifth Annual Conference of the Cognitive Science

Society, 2013.

[13] H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory

experimental studies comparing online and offline programming

performance,” Communications of the ACM, vol. 11, no. 1, pp. 3–

11, Jan-1968.

[14] B. T. Mynatt, “The effect of semantic complexity on the

comprehension of program modules,” Int. J. Man-Machine Stud.,

vol. 21, pp. 91–103, 1984.

[15] E. R. Iselin, “Conditional statements, looping constructs, and

program comprehension: an experimental study,” Int. J. Man.

Mach. Stud., vol. 28, no. 1, pp. 45–66, Jan. 1988.

[16] B. Curtis, “Substantiating Programmer Variability,” in

Proceedings of the IEEE, 1981, vol. 69, no. 7, p. 846.

[17] M. Klerer, “Experimental study of a two-dimensional language vs

Fortran for first-course programmers,” Int. J. Man. Mach. Stud.,

vol. 20, pp. 445–467, 1984.

[18] S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax,

Predicates, Idioms - What Really Affects Code Complexity?,” in

2017 IEEE/ACM 25th International Conference on Program

Comprehension (ICPC), 2017, vol. 24, no. 1, pp. 66–76.

[19] D. I. De Silva, N. Kodagoda, S. R. Kodituwakku, and A. J.

Pinidiyaarachchi, “Analysis and enhancements of a cognitive

based complexity measure,” in 2017 IEEE International

Symposium on Information Theory (ISIT), 2017, pp. 241–245.

[20] U. Chhillar and S. Bhasin, “A New Weighted Composite

Complexity Measure for Object-Oriented Systems,” Int. J. Inf.

Commun. Technol. Res., vol. 1, no. 3, pp. 101–108, 2011.

[21] L. Jain and S. Singh, “A journey from cognitive metrics to

cognitive computers,” IJARET, vol. 4, no. 4, pp. 60–66, 2013.

[22] V. R. Basili, “The role of experimentation in software engineering:

past, current, and future,” in Proceedings of IEEE 18th

International Conference on Software Engineering, 1996, pp. 442–

449.

[23] V. Rajlich and G. S. Cowan, “Towards standard for experiments

in program comprehension,” in Proceedings Fifth International

Workshop on Program Comprehension. IWPC’97, 1997, pp. 160–

161.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 318

Authors Profile

Ms Leena Jain is Associate Professor & Head(MCA)in

Global Institute of Management and Emerging Technologies,

Amritsar. She has done her doctrate in Computer Science and

engineering from Punjabi University Patiala. Her doctoral

thesis on ‘Industrial scope of 2D packaging’. She has gided

one Doctorate thesis under her guidance and is guiding four

more students . besides this she She has 15 years of teaching

experience and 10 years of Research Experience.

Mr Satinderjit Singh is working as a Associate professor and

Head , Department of computer Applications GGNIMT,

Ludhiana. He is research scholar in PTU, Kapurthala,

Punjab, India. He is persuing his Ph.d in computer Science

and Engginering. He has a 18 years of teaching experience.
.

