

 © 2022, IJCSE All Rights Reserved 27

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 10, Issue.7, July 2022 E-ISSN: 2347-2693

Debugging Microservices with Pandas, PySpark using Actuators and

Logs at Runtime

Sameer Shukla

Lead Software Engineer, Texas, USA

Author’s Mail ID: sameer.shukla@gmail.com, Tel.: +1-480-754-9793

DOI: https://doi.org/10.26438/ijcse/v10i7.2730 | Available online at: www.ijcseonline.org

Received: 28/Jun/2022, Accepted: 15/Jul/2022, Published: 31/Jul/2022

Abstract— Microservices architecture is distributed in nature and the expectation is the services in the architecture must be

highly available and responsive. Services in the architecture can scale from 1 to 100s and the distributed architecture is

complex, and the chances of failure are higher when services communicate to each other. The main advantage of

microservice architecture is we can easily mix technologies depending upon the nature of service, if the service is CPU or

IO bound then we can develop the service based on the language or framework of our choice, similarly if we have

hundreds of services in our architecture than we can build a proper debugging system for our microservices using any

platform / frameworks two such libraries are Pandas or PySpark. This paper focuses on creating our own debugging tool in

the Microservices architecture using python-based libraries PySpark and Pandas and the concept of Actuators.

Keywords—Microservice, Pandas, Spark, Actuator, SpringBoot, PyActuator, DataFrames

I. INTRODUCTION

Modern world applications are expected to be highly

available and responsive, in the microservices architecture

services are designed using Single Responsibility Principle

and services are expected to have strictly one

responsibility. The various Patterns within the

microservices architecture forces the services to be atomic

at all cost, like one database per microservice [3][4],

Aggregator, CQRS etc. The major advantage which comes

with this complexity is the scalability and faster

development cycles as team can develop services in

isolation. In the microservices architecture most of the time

services communicates to each other, if services are

developed using Choreography SAGA, then one service

will produce an event which other service consumes and

act. Similarly, if the services are REST based then one

service will depends on the response of another. To ensure

all the services in the architecture are alive microservice

[3][4] are mostly comprises of cross-cutting pattern known

as Circuit Breaker [2], the circuit breaker sits between

request and response mechanism as proxy, when the

service experiences failure the circuit breaker trips for

some duration. To avoid the cascading failures in the

architecture services even decorated with Bulkhead

patterns [2] , but what if all the services are up but the

responses are wrong or comprises of incorrect data or we

need to debug why the service is responding with 404 but

the data exists we simply need to take a count of total Not

founds and total number of Ok’s from the service. Or we

need to examine the thread dump from the service

programmatically as it’s not easy to go through the thread

dump manually. Imagine a log file generated by the

individual service comprises of 1 GB in size it’s not easy

to examine the entire log file, we can utilize the PySpark

DataFrame and keep applying filters on the DataFrame to

check whether the specific failure or response code we are

looking for exists or not, this makes debugging a lot easier

we can create a Log Analyzer utility which consists of

such programs and can be executed on-demand basis. If we

want to find how many requests are served successfully by

the service or how many are unable to, we can simply

execute the Actuator endpoint and hand-over the JSON

response to Pandas DataFrame and identify the count

individually. In the up-coming sections we are going to

understand what Actuators are, how to work with Pandas

and PySpark to execute the responses as a DataFrame. If

the

II. RELATED WORK

Our Mission in this paper is to create an efficient

debugging tool for the microservices architecture. The

below figure showcases two services A [3][4][5] and B, A

is dependent on B but for some reason B is returning in-

correct response or not behaving as expected to debug

microservices on the fly we need to rely on either

Actuators or Logs, but debugging should be performed

programmatically. First, we need to understand the concept

of Actuators which comes in built-in with SpringBoot

framework but if your services are written in Python based

frameworks, please explore the library called PyActuators.

 International Journal of Computer Sciences and Engineering Vol.10(7), Jul 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 28

Figure 1. The tool is querying the actuator endpoint

Our microservice debugging tool will be using Actuators,

Pandas, Spark, and simple Log file.

A. Actuators: Actuators[8][9] are the endpoints with-in the

service that helps in monitoring the application, in nutshell

Actuators helps in identifying what’s going on with the

service. With Actuators we will be able to check

application health status, Metrics of all sorts, etc. Imagine

we have a Cache in a service and we need to check the

status of Cache like how much memory is free, how much

is occupied, uptime etc or if we want to evict the data from

the cache etc. The /cache endpoint provides the access to

application cache, in a similar way there are many such

useful actuator endpoints that helps in monitoring, some of

them are /httptrace that provides information about HTTP

request-response exchanges and /heapdump provides a

heap dump from the JVM. Keep in mind these important

information we get at runtime by directly making a REST

calls to the actuators. The screenshot represents the

information retrieved using /httptrace endpoint, where each

section represents a meaningful detail, the “request”

section gives details about the Type of rquest whether it is

‘GET’, ‘PUT’, ‘POST’ or ‘DELETE’, it also consists of

‘timetaken’ in the exchange which is extremely important,

status gives info on response status like 200, 404, 420 etc.

Figure 2. Sample /httptrace actuator response

B. Pandas: Pandas is a Data Analysis Library which is

fast as it’s uses numpy [8], convinient and contains

collections of lot of useful functions for data analysis

purposes. Pandas efficiently handles large dataset and

we can very efficiently customize or analyze the data

from the dataset. In the debugging tool we are going to

invoke an Actuator Endpoint and the response will be

handed over to Pandas to analyze the response. Imagine

a service is running in production and we need to

analyze the http request-response exchange of entire

day, it’s not going to be easy to do it manually but with

Pandas we need to perform the analysis on the

DataFrame but not on the data.

C. PySpark: PySpark is an interface for Apache Spark

[6] in Python, it’s an open source framework [1] which

is distributed [14] in nature and it’s a library for real-

time and used heavily for large data-set processing.

PySpark is robust and can perform operations on

billion records of rows in distributed clusters and it

performs 100X times faster than anyother framework.

In our Debugging tool we are going to invoke the

Actuator for downloading the log file and handing over

the entire logfile to PySpark for further processing. Our

debugging tool we will be filtering all the ‘404 NOT

FOUND’ responses as well as filtering the clients

which are calling our service, for ex: identifying how

many requests received by the service from the

‘localhost’ or identifying how many of them is invoked

from other Host.

III. MEHODOLOGY

In the paper we are going to explore two use-cases with the

help of two kinds of actuators the /httptrace and /logfile,

the request-response exchange analysis [10] we will be

done using Pandas and the entire logfile analysis will be

done using PySpark as the logfile will be much heavy in

size.

Debugging Service using Actuators and Pandas: The

/httptrace provides details about HTTP request / response

exchanges and this information we are going to give it to

Pandas for further response analysis but programmatically,

the other advantage working with Pandas is certain plotting

libraries like Matplotlib seamlessly integrated with Pandas

and we can visualize our dataset received from /httptrace.

The service is running locally which returns a valid

response and status as 200 if the data found.

Figure 3: Successful call to a service returning data

 International Journal of Computer Sciences and Engineering Vol.10(7), Jul 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 29

If data not found, then it returns 404 with Data Not Found

message.

Figure 4: Successful call but not data found

Below is the Python program which evaluates the dataset.

The above code is simple more can be done it, we can even

plot this data for better analysis and visualization, below

code depicts that

Figure 5: Request/Response exchange Data Visualization

Debugging Service using Actuators, PySpark and Log

file: This use case is PySpark [6] specific, again the

approach remains the same in this use case /logfile actuator

endpoint will be used. The /logfile provides access to the

details of the application’s log file. The /logfile endpoint

upon invocation gives the contents of the log file and we

are going to give this file PySpark.

Figure 6: PySpark log analysis program

The application name is “Microservices Logs Analyzer”

once the DataFrame is created we are ready to apply filters

to analyze our logs. First, let’s view the top 5

‘NOT_FOUND’ responses in a service

Figure 7: Block of code filtering 404 NOT_FOUND

 Figure 8: Response returned by the filter

Other analysis is to explore the requests from ‘LocalHost’

Figure 9: Filtering request received by localhost

Requests received by the service other than Local host.

Figure 10: Filtering request received not by localhost

 International Journal of Computer Sciences and Engineering Vol.10(7), Jul 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 30

IV. RESULTS AND DISCUSSION

The Actuators [8] provides lot of useful information, for

example the /httptrace actuator is extremely handy it also

gives us an ability to check the performance of every

request and in case if we want to check the number of

requests that are successful, but the performance is not up to

the mark, say identify the number of requests taking more

than a second to respond

number_of_requests = 0

for data in df.items():

 performance = []

 for traces in data[1]:

 timeTaken = traces['timeTaken']

 if(timeTaken > 1000):

 number_of_requests = number_of_requests + 1

print('Number of Requests taking more than a second

to respond:', number_of_requests)

The /httptrace endpoint has an important parameter

‘timeTaken’ clubbed with every request and response

which returns the time taken by that specific request. In the

above program all we are doing is parsing the information

and identifying how many requests have taken more than a

second to respond. Program seems simple but the number

of request/response exchanges handled by the service will

be huge, but it’s made extremely efficient by Pandas.

V. CONCLUSION AND FUTURE SCOPE

In this paper, the debugging is wired with the help of

Actuators, but the tool can be enhanced to a greater extent.

The paper also showcased a sample request / response

exchanged can be visualized using the bar and graph charts.

The ideal scenario would be to analyse the heap dump and

thread dump programmatically as Pandas and PySpark

DataFrame object provides various convenient functions for

analysis purposes. The tool can be enhanced even further,

In the microservice [3] we can also add a custom metrics

like Gauge, Counter and Timer these are Prometheus

specific metrics, the Gauge helps us in identifying the

number of running threads within the application, the

number of messages sitting inside a queue. The Counter

metrics provided the information on fields like Total, the

total number of requests processed, total number of items

processed by service and Time provides information on the

time taken by the method for request execution, these are all

helpful metrics which should be analysed time and again.

The tool is dependent on the endpoints, and it is completely

decoupled, and it never sends a request to the business

endpoint, but it sends a request to the actuator endpoint.

Tool has endless possibilities for extension

ACKNOWLEDGMENT

I would like to express sincere appreciation to all those who

contributed developing the Actuators / Pandas toolkit.

Grateful for spring.io team for providing such valuable help

and resources online which simplifies application creation

to a great extent.

REFERENCES

[1] Badidi, E. (2013) “A Framework for Software-As-A-Service

Selection and Provisioning”. In: International Journal of

Computer Networks & Communications (IJCNC), 5 (3): 189-

200, 2013.

[2] F. Montesi and J. Weber, “Circuit Breakers, Discovery, and API

Gateways in Microservices,” ArXiv160905830 Cs, Sep. 2016

[3] Kratzke, N. (2015) “About Microservices, Containers and their

Underestimated Impact on Network Performance”. At the

CLOUD Comput. 2015, 180, 2015.

https://arxiv.org/abs/1710.04049

[4] Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M.,

Bailey, J., and Linkman, S. (2009). Systematic literature reviews

in software engineering–a systematic literature review.

Information and software technology, 51(1):7–15, 2009.

[5] Zimmermann, O. (2009). An architectural decision modeling

framework for service oriented architecture design. PhD thesis,

Universitat Stuttgart. 2009.

[6] Nick Pentreath, Machine Learning with Spark, Beijing, pp. 1-

140, 2015.
[7] Bryant, P. G. and Smith, M (1995) Practical Data Analysis:

Case Studies in Business Statistics. Homewood, IL: Richard D.

Irwin Publishing: 1995.

[8] K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines for

conducting systematic mapping studies in software engineering:

An update. Information and Software Technology, 64:1–18,

2015.

[9] C. Wohlin. Guidelines for snowballing in systematic literature

studies and a replication in software engineering. In Proceedings

of the 18th International Conference on Evaluation and

Assessment in Software Engineering, pages 38:1–38:10, New

York, NY, USA, 2014. ACM

[10] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, ¨ and

A. Wesslen. ´ Experimentation in Software Engineering.

Computer Science. Springer, 2012.

[11] B. A. Kitchenham and S. Charters. Guidelines for performing

systematic literature reviews in software engineering. Technical

Report EBSE-2007-01, Keele University and University of

Durham, 2007

[12] P. Kruchten. What do software architects really do? Journal of

Systems and Software, 81(12), 2008

[13] Kornacker, M. et al. Impala: A modern, open-source SQL

engine for Hadoop. In Proceedings of the Seventh Biennial

CIDR Conference on Innovative Data Systems Research,

Asilomar, CA, Jan. 4–7, 2015

[14] Isard, M. et al. Dryad: Distributed data-parallel programs from

sequential building blocks. In Proceedings of the EuroSys

Conference (Lisbon, Portugal, Mar. 21–23). ACM Press, New

York, 2007.

AUTHORS PROFILE

Sameer Shukla has done Masters in

Computers from Bangalore University,

India in 2004. He is having 15 years of

experience in Software Design and

Development, Currently Working as a

Lead Software Engineer in USA and

his current expertise/interests are

Distributed Computing, Data

Analytics, Microservices, Functional Programming, Cloud

Computing, Deep Learning, SQL, NoSQL, Big Data,

Spark, Data Science

