
 © 2016, IJCSE All Rights Reserved 40

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-2 E-ISSN: 2347-2693

An Algorithm for Mining Frequent Closed Itemsets with Density

from Data Streams

Caiyan Dai
1
 and Ling Chen

2
*

1
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China,

2*
 Department of Computer Science, Yangzhou University, China

www.ijcseonline.org

Received: Jan /23/2016 Revised: Feb/04/2016 Accepted: Feb/18/2016 Accepted: Feb/29/2016

Abstract—Mining frequent closed itemsets from data streams is an important topic. In this paper，we propose an algorithm for

mining frequent closed itemsets from data streams based on a time fading module. By dynamically constructing a pattern tree,

the algorithm calculates densities of the itemsets in the pattern tree using a fading factor. The algorithm deletes real infrequent

itemsets from the pattern tree so as to reduce the memory cost. A density threshold function is designed in order to identify the

real infrequent itemsets which should be deleted. Using such density threshold function, deleting the infrequent itemsets will not

affect the result of frequent itemset detecting. The algorithm modifies the pattern tree and detects the frequent closed itemsets in

a fixed time interval so as to reduce the computation time. We also analyze the error caused by deleting the infrequent itemsets.

The experimental results indicate that our algorithm can get higher accuracy results, needs less memory and computation time

than other algorithm

Keywords—data streams; frequent closed itemsets; data mining; time fading model

I. INTRODUCTION

Today, tremendous amounts of data and potentially infinite

volumes of data streams are generated in many applications

such as network intrusion detection, financial transaction

flows, telephone call records, sensor streams, and

meteorological data. Unlike the finite, statically stored data

sets, a data stream is massive, continuous, temporally

ordered, dynamically changing, and potentially infinite. A

typical example of stream data is the trading of public

securities in the United States. The approximately 50,000

securities generate 100,000 quotes and trades per second.

For the stream data applications, the volume of data is

usually too large to be stored or scanned more than once.

Furthermore, because the data objects can be only

sequentially accessed in the data streams, random data

access techniques are not practical.

.Due to the characteristics of data streams described above,

the mining algorithm must be able to process such data

online in real time and use limited memory space. Therefore,

the mining algorithms on traditional static data sets are not

applicable for stream data.

Mining frequent closed itemsets (FCI) is a fundamental

problem in stream data mining. Recently, an abundant body

of research on mining frequent itemsets in one data stream

emerged [1-9,17]. In many applications, recent data in the

stream is more meaningful. One way to handle such problem

is using sliding window models which ignore the out of date

data and only consider the recent data. Recently several data

mining algorithms over sliding windows [1][2] are proposed.

Sliding window has two typical models: milestone window

and fading window. Li [3] proposed an algorithm named

NewMoment on a transaction-sensitive sliding window to

obtain the FCI in data streams. They also proposed an

efficient method to represent the itemsets by bit sequences

so as to reduce the time and space. Nan Jiang[4] presented

an incremental method for mining FCI in data streams which

can output the current FCI according to the threshold defined

by the user. Chi [5] introduced a compressed data structure

CET to dynamically choose the itemsets in the sliding

window. The selected itemsets contain both FCI and other

itemsets which can be distinguished though a demarcation

line. The change of data streams can be found through the

change of the demarcation line. Fujiang Ao [6] proposed

FPCFI-DS. And in the first window it used a mixed

stratagem FP-tree with single dictionary order to mining the

FCI. When window sliding, the FP-tree and the FCI should

be updated. Wang [7] proposed an algorithm substituting for

top-k FCI mining algorithm. The length of the FCI is not less

than min_l, k is the expect count of the mined FCI, and min_l

is the minimum length among every itemset. An algorithm

TFP with undefined minimum support is used to mine this

kind of itemsets. MOMENT is proposed by Chi[8] which is

a representative algorithm for mining FCI in data streams.

There are two main problems existing in Moment. The first

one is it adopt sliding window mechanism which is hardly to

be used to concern the global change in time. Moment

algorithm uses a precise model so when maintaining and

updating the information frequently, the efficiency is

Corresponding Author: Ling Chen,

 Department of Computer Science., University of Yanzhou, China

yzulchen@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-4(2), PP(40-48) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 41

reduced. Also, the exchange of new and old transactions in

the windows is achieved by two independent operations,

addition and deletion. It may cause data bump. A-

Moment[9] is an improved algorithm of Moment for mining

recent FCI. When a transaction occurs in the data stream, A-

Moment deals it in 4 phases: current window evaluating

phase, counting updating phase, CET maintaining phase and

FCI selecting phase. It uses the time damped window

technique to deal with the reached data, and during the

mining process it also use approximate count method and

distributed updating strategy to get higher mining efficiency.

The disadvantage of A-Moment is in the prune operation of

CET maintaining phase, all the itemsets that don’t meet the

support will be deleted, regardless the transaction is new or

old. This may affect the mining accuracy. The selection of

closed itemsets in processed when user required, itemsets

might be too frequent or incomplete. And Liu improved A-

Moment in 2009 to enhance the performance of the

algorithm.

To emphasize the importance of the recent data, there is

another model for frequency measures in data stream which

is called time fading model [10-12]. In this model, data

items in the entire stream are taken into account to compute

the frequency of each data item, but more recent data items

contribute more to the frequency than the older ones. There

are two advantages of the time fading model over the sliding

window model. One is that in the time fading model,

frequency takes into account the old data items in the

history, while the sliding window model only observes

within a limited time window and entirely ignores all the

data items outside the window. This is undesirable in many

real applications. The second is that in the time fading

model, when more data arrive continuously, the frequency

changes smoothly without a sudden jump which may occur

in the sliding window model[13-16].

In this paper, we proposed an algorithm for mining frequent

closed itemsets from data streams based on a time fading

module. Our experimental results indicate that our algorithm

can get higher accuracy results, needs less memory and

computation time than other algorithm. The main

contributions of this paper are as follows: (1) We present an

algorithm for dynamically constructing a pattern tree, and

calculates densities of the itemsets in the tree using a fading

factor. (2) A density threshold function is designed in order

to identify and delete the real infrequent itemsets so as to

reduce the memory cost. We have proved that using such

density threshold function, deleting the infrequent itemsets

will not affect the result of frequent itemset detecting. (3)

We define a time gap for the algorithm to modify the pattern

tree and detect the frequent closed itemsets so as to reduce

the computation time. We also analyze the error caused by

deleting the infrequent itemsets.

II. CONCEPTS AND DEFINITIONS

In this section, we describe a time fading model using an

fading factor λ . To emphasize the importance of recent

data, we use a fading factor (0,1)λ ∈ in calculating the data

itemsets’ support counts. In each time step, the support count

of a data itemset will be reduced by the fading factor λ .

A. Density and fading factor

Definition 1: The density and fading factor of an item

The density of an itemset I at time t is defined as

(,0) 0

(,)
(, 1) (,)

I t
D I t

D I t I t otherwise

δ

λ δ

=
= 

− ⋅ +
 (1)

Here
1 ()

(,)
0

δ


= 


a t contains I
I t

otherwise
, a(t) is the transaction

occurs at time t, and λ (0 1)λ< < is a constant called

fading factor.

Lemma 1: The density of each itemset I satisfies

 1
(,)

1 λ
<

−
D I t . (2)

Proof: If an itemset occurs in every time from time 1 to t, it

will get the highest density

2 1 1 1
1 ...

1 1

λ
λ λ λ

λ λ
− −

+ + + + = <
− −

t
t . Q.E.D.

Due to the effect of fading factor, the density of an itemset is

constantly changing. However, we found that it is

unnecessary to update the density values of all itemsets at

every time step. Instead, it is possible to update the density

of an itemset only when an identical itemset is received from

the data stream. For each itemset, the time when it was last

received should be recorded. Suppose an itemset I is

received at time tn, and the last time when I was received

before is ts (tn>ts), then the density of I can be updated

according to the following lemma.

Lemma 2: Suppose one transaction received at time at

contains item p and the last time p appeared is ct , then the

density of p can be updated by the formula as follows:

(,) (,)* 1a ct t

c a
D I t D I t λ −= +

. (3)

Proof: if >
s

t t and before time t, the last moment received

data set I is ts, obviously that (,) (,)λ −= st t

s
D x t D x t . The

density of the item is continuously changed. However, it is

not necessary to update the density of all data records in each

time step. On the contrary, only when a new data received

from the data stream, the data density should be updated. For

each data item, the moment it receives the latest data need to

be recorded. By this way, the density of the data item can be

updated when the same item is arriving.According to

Lemma 2, the algorithm does not update the density values

of all the itemsets at every time step. Instead, it updates the

density of the itemset only when an identical itemset is

received from the stream. Therefore, tc, which is the last time

 International Journal of Computer Sciences and Engineering Vol.-4(2), PP(40-48) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 42

when the density of an itemset which was updated should be

recorded.

B. Time interval gap for itemset density inspection

In the data stream, density of an itemset changes over

time. A frequent itemset may degenerate to a non-frequent

one if it does not occurs for a long time. On the other hand,

an infrequent itemset can be upgraded to a frequent one

after it appears in some new transactions. Therefore, after a

period of time, density of each itemset should be inspected.

A key decision is the length of the time interval for itemset

inspection. It is interesting to note that the value of the time

interval gap cannot be too large or too small. If gap is too

large, dynamical changes of data streams will not be

adequately recognized. If gap is too small, it will result in

frequent computation and increase the time complexity.

When such computation load is too heavy, the processing

speed may not match the speed of the input data stream. We

propose the following strategy to determine the suitable

time interval gap.

Let the error bound of the density value beε . Suppose one

itemset is frequent and its density is
1 λ−

S
 and after time mt

it will be less than
1

ε
λ

−
−

S . Then we have
1 1

λ ε
λ λ

≤ −
− −

mt
S S .

Therefore tm must satisfies:
(1)

logλ

ε λ− −
≥

m

S
t

S
. We choose

gap to be small enough so that any change of a itemset from

frequent to infrequent can be detected. Thus, we set:

gap= (1)
logλ

ε λ− −S

S
.

C. Density threshold function

A serious challenge for the frequent itemset detecting is the

large number of candidates, especially for high-dimensional

data. In our implementation, we allocate memory to store

the potential frequent itemsets, and delete the real

infrequent itemsets. When the density of an item is less than

Dl =
1

S
ε

λ
−

−
with time changes, this item is considered

infrequent. Thre are two types of such infrequent itemsets:

one is the itemsets which really occur in the stream, the

other is the itemsets which occurred frequently in the past,

but as time goes on, the density is reduced by the fading

factor. We should delete the former to reduce the memory

cost, and keep the later to ensure the accuracy of the results.

In order to distinguish the two types of infrequent itemsets,

we define the density threshold function as follows.

Definition 2: Density threshold function

Suppose the last update time of an itemset I is tg, then at time

tc (tc > tg), the density threshold function is:

1

min

0

(1)
(,)

1

λ
λ

λ

−− −

=

−
= =

−
∑
c gc g

t tt t
i

g c

i

S
D t t S (4)

Lemma 3 Density threshold
min

(,)
g c

D t t has the following

properties.

(1) If
1 2 3

≤ ≤t t t ，then

 3 2

min 3 min 1 2 min 2 3
(,) (,) (1,);λ −= + +t t

t
D t t D t t D t t

(2)
min 1 1

(,) =D t t S ,

(3)
min

lim (,)
1

c
t

S
D t t

λ→∞
=

−
,

(4) If
1 2
t t≤ , then

min 1 min 2
(,) (,)

c c
D t t D t t≥ for any

1 2
,

c
t t t≥ .

Proof:

(1)
3 1 3 1 3 2

3 2

1

min 1 3

0 0

(,)
t t t t t t

i i i

i i t t i

D t t S S Sλ λ λ
− − − −

= = − =

= = +∑ ∑ ∑

 =
3 22 1

3 2

1

0 0

t tt t
t t i i

i i

S Sλ λ
− −−

− +

= =

+∑ ∑

= 3 2

min 1 2 min 2 3
(,) (1,)

t t
D t t D t tλ − + +

(2)
0

min 1 1

0

(,)
i

i

D t t S Sλ
=

= =∑

(3)
1 1

min 1

1
lim (,) lim

1 1

t t

l
t t

S
D t t S D

λ

λ λ

− +

→∞ →∞

−
= = =

− −

(4) Suppose
1 2
t t t= − ∆ ，then

1 2 2 2

2

min 1

0 0 0 1

(,)
c c c c

c

t t t t t t t t t t

i i i i

c

i i i i t t

D t t S S S Sλ λ λ λ
− − +∆ − − +∆

= = = = − +

= = = +∑ ∑ ∑ ∑

=
2

2

min 2 min 2

1

() (,)
c

c

t t t

i

c c

i t t

D t t S D t tλ
− +∆

= − +

− + >∑ Q.E.D.

We use
min

(,)
g c

D t t to detect real infrequent itensets. For an

itemset I, if (,)
g c

D t t <
min

(,)
g c

D t t , I can be considered as an

infrequent itemset and it can be deleted from the memory.

Since
min

(,)
g c

D t t can adaptively change its value according

to ct , it is able to distinguish the newer and older itemsets,

and can be used to identify two different types of infrequent

itemsets. When an itemset has not occured for a long time,

its density threshold will increase and its density will

possibly be less than the threshold. But when an itemset

occurs recently, its density threshold will become smaller,

therefore it will not be deleted as an infrequent itemset.

It should be noted that once an infrequent itemset is

deleted, its density is in effect reset to zero since it is not be

stored in the memory. A deleted itemset may be added back

to the memory if it occurs later, but its previous density is

discarded and will restarts from zero. Such a dynamic

mechanism maintains a moderate size of memory used,

saves computing time.

 International Journal of Computer Sciences and Engineering Vol.-4(2), PP(40-48) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 43

D. Complete density function

Although deleting infrequent itemsets is critical for the

efficient performance of our algorithm, an important issue

for the correctness of this method is whether the deletions

affect the results. In particular, since an infrequent itemset

may occur later and become a frequent one, we need to

know if it is possible that the deletion prevents this itemset

from being correctly detected as a frequent one. We have to

prove that the density threshold function we defined and the

deletion rules can ensure that a frequent itemset will never

be falsely deleted due to the removal of infrequent ones. To

investigate this problem, we first define the concept of

complete density function.

Consider an itemset I, whose density at time t is D(g, t).

Suppose that it has been deleted several times before t (the

density is reset to zero each time) because its density is less

than the density threshold function at various times.

Suppose these density values are not cleared and all historic

data are kept, we call this density of I the complete density.

Definition 3 Complete density function of an itemset

Suppose from the beginning to the current time ct , an

itemset I occurs at times mttt ,...,, 21 , then the complete

density function (,)
a c

D I t of I at time tc is defined as the

summation of all the densities of occurrences of I (include

the deleted densities) , just as (,)
a c

D I t =
1

c i

m
t t

i

λ −

=

∑ .

From definition 3, it can be found that complete density

function (,)
a c

D I t is more accurate than (,)
c

D I t to reflect

the density of itemset I.

Theorem 1: Suppose the last time an itemset I is deleted is

m
t and the last time I occurs is

g
t (

g
t >

m
t). If at current

time
c

t , the density of I satisfies : (,)
c

D I t < (,)
g c

D t t , then

we have
min

(,) (1,)
1

a c c l

S
D I t D t D

λ
< < =

−
. (5)

Proof: Suppose itemset I has been previously deleted for the

periods of),1(),....,,1(),,0(1211 mm ttttt ++ −
, then the deleted

density during),1(1 ii tt +− satisfies
min 1

(,) (1,)
i i i

D I t D t t−< + ,

i=1,…,m. Thus, if all these previous densities of itemset I

are not deleted, the complete density function satisfies

1

min 1 min

1 1

(,) (,) (,) (1,) (1,)c i c i

m m
t t t t

a c i c i i g c

i i

D I t D I t D I t D t t D t tλ λ− − +

−
= =

= + < + + +∑ ∑

Because
g

t >
m

t and property (4) in Lemma 3, we know

that
min min

(1,) (1,)
g c m c

D t t D t t+ < + . Thus we have

1

min 1 min

0

(,) (1,) (1,)c i

m
t t

a c i i m c

i

D I t D t t D t tλ − +

−
=

< + + +∑

Therefore, by property (1) in Lemma 3, it can be found that

min
(,) (1,)

a c c l
D I t D t D< < . Q.E.D.

Theorem 1 shows that deleting an itemset by density

threshold function
min

(,)
g c

D t t will not cause frequent itemset

to be falsely deleted. . It shows that, if I is deleted at time t,

since
min(,) (,)

g c
D I t D t t< , then even if all the previous

deletions have not occurred, it is still infrequent since

(,)
a c l

D I t D< .

From definition 1, it is easy to find that the complete density

function of an itemset satisfies (,) (,)
a c c

D I t D I t> . We use

(,)
c

D I t as the density of itemset I instead of its real density

(,)
a c

D I t , does it affect the result of frequentness of I? The

following theorems estimate the error of the results using

(,)
c

D I t , and show that it will not affect the result of

frequent itemset detecting.

Theorem 2: Suppose (,)
c

D I t , the density of itemset I at

time
c

t , satisfies (,)
c l

D I t D< , then

(,) ()
a c l t c

D I t D t< + ∆ . Here lim ()
c

t c
t

t
→∞

∆ =0.

Proof: Suppose itemset I has been previously deleted for the

periods of),1(),....,,1(),,0(1211 mm ttttt ++ −
, then its

complete density function (,)
a c

D I t at time ct is

1

min 1

1 1

(,) (, ,) (,) (1,) c i

m m
t t

a c r i c c i i l

i i

D I t D I t t D I t D t t Dλ − +

−
= =

= + < + +∑ ∑

Let 1 1

min 1 min 1

1 1

() (1,) (1,)c i c i

m m
t t t t

t c i i i i

i i

t D t t D t tλ λ λ− + − +

− −

= =

∆ = + = +∑ ∑ ,

then we have lim () 0
c

t c
t

t
→∞

∆ = and (,) ()
a c l t c

D I t D t< + ∆ .

 Q.E.D.

Theorem 3: If (,)
c l

D I t D> , then (,)
a c l

D I t D> .

Proof: According to definition 3 it is obviously

that (,) (,)
a c c

D I t D I t≥ , therefore (,)
a c l

D I t D> . Q.E.D.

Theorem 3 shows that using),(ctID as a density measure

for itemset I can ensure that all the itemsets detected are

frequent ones.

III. PATTERN TREE AND ITS CONSTRUCTION

ALGORITHM

A. Data structure

In the algorithm a pattern tree, a head table and a frequent

closed itemsets table are used.

1. Pattern tree. In the pattern tree, each node represents an

item with the form as follows:

Here, node_item is the item the node represents, node_dens

is the current density of the item, ct is the last time the node

was modified and node_link is the pointer to its paerant in

the tree. In the pattern tree, each path from the root to a leaf

node represents an itemset, and each of its sub-path also

represents an itemset. Children of a node represent different

node_item node_dens ct node_link

 International Journal of Computer Sciences and Engineering Vol.-4(2), PP(40-48) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 44

items. Nodes on each path from root to leaf are arranged in a

descend order of their node_dens. The real density of the

node in current time t is node_dens * ct tλ −
.

2. Head table. In the pattern tree, identical items form a

chain. The heads of those chains form a head table. Each

entry of the head table is as follows:

Here, item is the item of the entry, dens is the current density

of the item, ct is the last time the entry was modified and

link is the pointer to the first node of the chain in the pattern

tree. The real density of the item in current time t is dens

* ct tλ −
.

3. Frequent Closed Itemsets Table (FCIT). In our algorithm,

a frequent closed itemsets table is used to store the frequent

closed itemsets detected.

Here, itemset is the itemset of the entry, dens is the current

density of the itemset, ct is the last time the entry was

modified. The entries are arranged in a descend order of their

dens values. The entries with the same dens value are

arranged in the lexical order.

B. Framework of the Algorithm

Algorithm: FCI_Mining(D)

Input: D: the data Stream;

Output: FCIT: the frequent closed itemset table;

Begin:

1. Create an empty tree as the initial pattern tree：

 ;
a

T t= Φ = 1；

2. while not of the end of the stream D do

3. Receive a new transaction t from the stream;

4. AddTrans(,T t);

5. if mod 0
a

t gap = then

6. Perform pruning operation on the infrequent

nodes;

7. Mining FCIT (T)

8. end if;

9.
a a

t t= +1 ;

10. end while ;

End

In this algorithm, lines 3-4 receive a transaction from the

stream and insert it to the pattern tree. Lines 5-6 perform

running operation on the infrequent nodes. Lines 7 searches

on the pattern tree to identify all the frequent closed itemsets

and inserts them into frequent closed itemsets table. The

procedure AddTrans(,T t) in line 4 inserts the new

transaction t to the pattern tree. Details of AddTrans (,T t)

are described as follows.

Algorithm: AddTrans (,T t)

Input: T : pattern tree;

 t : New transaction received from the stream;

Output: T： the updated pattern tree;

Begin:

1. Sort the items in the new transaction t according to

their last times received form the stream;

2. Let (|),t b B b= is the first item of t ;

3. if root of T has a child x that node_item(x) = b

then

4. node_dens(x) = node_dens(x) * a c
t tλ −

 + 1

5. node_
c

t (x) =
a

t ;

6. else create a new node x as a child of root T ;

7. node_item(x) = b ;

8. node_dens(x) = l;

9. node_
c

t (x) =
a

t ;;

10. end if

11. if B is not empty then

12. AddTrans(,x B);

13. end if

End

In algorithm AddTrans (,T t), lines 3-5 process the first item

b in the new transaction t. If there is a child x of the root

identical to b, the algorithm updates its values of node_dens

and node_
c

t accordingly. If there is no such child of the root

identical to b, lines 6-10 create a new node x for b as a child

of the root, and record the values of node_dens and

node_
c

t of the node. If there is an itemset B after the first

item b in the new transaction t, line 12 recursively calls

AddTrans(,x B) to process the set of the rest items in t.

Whenever a new transaction is inserted into the pattern tree,

the algorithm recalculates density of the nodes involved and

prune the ones with destiny less than the threshold.

IV. FREQUENT CLOSED ITEMSETS MINING

A. Property of the pattern tree

For the the pattern tree constructed by talgorithm AddTrans,

we have the following lemma.

Lemma 4: In the pattern tree T generated by FCI_Mining

algorithm, nodes in the path from the root to the leaf are

arranged in the descending order of their node_dens values.

Proof: We prove the lemma by mathematical inductive

method on time t. When t=1, since there is only one

transaction on the only path in the tree, and densities of all

the items are 1, the conclusion is obviously correct.

Assume when
a

t =t, the conclusion is correct, namely all the

nodes in each path from the root to the leaf are arranged in

the descending order of their node_dens values. Since only

the densities of the nodes on the path related to the new

added transaction are updated, we need only to prove the

item dens ct link

itemset dens ct

 International Journal of Computer Sciences and Engineering Vol.-4(2), PP(40-48) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 45

nodes on this path are arranged in the descending order of

their node_dens values.

Let the new transaction be
1 2

(, ,...,)
k

I I I , the path densities

of the nodes
0 1 2
, , ,...,

k
I I I I of two types of paths should be

updated. One type is the path of
0 1 2
, , ,...,

k
I I I I , the other

type consists of the paths sharing common prefix with

0 1 2
, , ,...,

k
I I I I .

(1) The first type: On this type of path, nodes can be

partitioned into two parts: one part consists of the nodes

which already exist in the tree before the new transaction

arrives; the other part consists of the new nodes inserted

when processing the new transaction. Suppose nodes in the

first part are
0 1 2
, , ,..., (0)

j
I I I I j k≤ ≤ , and those in the

second part are
1 2
, ,...,

j j k
I I I+ + . Since the path from

1
I to

j
I exist before the new transaction arriving, their densities

are in the descending order by the induction hypothesis. Let

the density of
j

I be dens(
i

I)， and the last time of its

occurrence be ()
c i

t I . Then we have：dens(
i

I)>dens(
1+i

I)

Since the items in a path are arranged according to their last

times they are received from the stream, we also have :

1
() ()

c i c i
t I t I +>

Therefore, their updated densities satisfy:

dens(
i

I)*
()

1λ − +a c it t I
 > dens(

1+i
I) * 1()

1λ +− +a c it t I
.

Namely, nodes in the path
0 1 2
, , ,...,

j
I I I I are arranged in the

descending order of their node_dens values.

Since nodes
1 2
, ,...,

j j k
I I I+ + in the second part are newly

inserted into the tree, their densities are all equal to 1.

Noticing that dens(
j

I)*
()a c jt t I

λ
−

+1 > dens(
j

I +1
)=1, nodes

in the path
1

, ,...,
j j k

I I I+ are also arranged in the descending

order of their node_dens values.

(2) The second type: This type of paths have common

prefix with
1 2

...
k

I I I . Let the path be
0 1 2 1

... ' ... '+j j k
I I I I I I ,

where
1 2 ...

j
I I I is the common subpath. Similar to the proof

in the first type, we can prove that nodes in the

subpath
0 1 2 ...

j
I I I I are arranged in the descending order of

their modified node_dens values. Since densities of nodes

1
' ... '+j k

I I are not modified, their densities are in the

descending order by the induction hypothesis. Therefore, we

know that nodes in the path
0 1 2 1

... ' ... '+j j k
I I I I I I are arranged

in the descending order of their node_dens values. Q.E.D.

B. The algorithm for mining FCI

According to the above definitions and lemmas, the

algorithm for mining the frequent closed itemsets is as

follows:

Algorithm MiningFCI(T)

Input: T: A pattern tree rooted at T;

 FCIT : Frequent closed itemset table;

Output: the updated FCIT

begin

1 i=0

2 while not end of the stream do;

3 i=i+1;

4 if I mod gap=0 then TreeMining(', ,ΦT I);

5 end while

End

In every gap times, line 4 in the algorithm calls procedure

TreeMining(, ,T Iα) to mine the frequent closed itemsets.

Procedure of TreeMining(, ,αT I) is described as follows.

Algorithm TreeMining(, ,αT I)

Input: T: root of the pattern tree;

α is the subpattern;

FCIT : Frequent closed itemset table;

Output: the updated FCIT;

Begin:

1 if T contains a single path p then

2 for each node in β route p which appears in
i

I do

3 generate FI β αU ；

4 its density is equal to the smallest density

among β ；

5 InsertFCIT(β αU)；

6 else

7 for each
i

α which contains in
i

I and appears in the

head table do

8 generate itemset
i

β α α= U ；

9 the density is equal to the density of
i

α ；

10 construct the conditional pattern tree of β which

only contains the nodes in
i

I ;

11 Suppose the root of this tree is
1

T ;

12 if
1

T ≠ Φ then

13 TreeMining(
1
, ,T Iβ);

14 end if

15 end for

16 end if

End

Lines 4-5 implement procedure InsertFCIT to insert the new

arriving transaction into the frequent closed itemset table.

Algorithm InsertFCIT is described as follows.

Algrithm InsertFCIT(α)

Input: FCIT: frequent closed itemset table;

α : the candidate frequent itemsets to be inserted;

Output: the updated FCIT;

Begin:

1 if α is already in FCIT then update its ,
c

dens t ;

2 else if there is no superset β of α in FCIT satisfying

() ()dens densβ α= then

3 add α into FCIT;

4 for every subset γ of α in FCIT do

 International Journal of Computer Sciences and Engineering Vol.-4(2), PP(40-48) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 46

5 if dens (γ) ≤ dens(α)then

6 delete γ from the table；

7 end if

8 end for

9 end if

10 end if

11 Recalculate the densities of the entries in FCIT,

delete the infrequent ones;

End

It is necessary to prune the nodes with low density to reduce

the memory cost. Due to the effect of the fading factor, the

density of an itemset will decrease if it does not occur for a

long time period, and such frequent itemset could become an

infrequent one. In every gap times, the algorithm

recalculates the densities of itemsets in the table and deletes

the ones whose density is less than the density threshold.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment setting

We evaluate the quality and efficiency of algorithm
FCI_Mining and compare it with A-Moment [9] in the
values of delete error, the average time of processing each
transaction and the number of frequent closed itemsets
detected. All of our experiments are conducted on a PC with
2.8 GHz CPU and 1G RAM memory. We have implemented
FCI_Mining in Visual studio C++ 6. 0.

B. Test Data

Test data sets used in the experiments are generated by the
IBM synthetic data generator in Linux system. Four
parameters are used in the generator: the maximum length
transaction, T; the average length of transactions, I; average
maximum length of patterns, P; the total number of
transactions in data set D. We set T=20, I=5, P=4 and D=20k.
In the experiment, value of the fading factor is set as 0.9999
so that the number of the final retained transactions is
roughly 10K. .

C. The influence of delete error ε on performance of the

algorithm

Let S∈ (0,1) be the threshold of density, and delete error

.Sε δ= , here δ ∈(0,1). We tested with different values of δ.

Figures 1, 2 and 3show the influence of .Sε δ= on the

number of frequent closed itemsets detected, the memory
cost, and the computation time respectively.

Fig.1. Number of the frequent closed itemsets

Fig.2. Memery costs using different values of error .Sε δ=

Fig.3. Computation times using different values of
error .Sε δ=

It can be seen from the figures that the mining results is
optimal when the value of δ is between 0.3 and 0.4.
Therefore, we set the error 0.35Sε = in the following

experiments.

D. The running time of the algorithm

We test the average time for processing a single transaction

by FCI_Mining and compare it with algorithm A-Moment.

Figure 4 shows the testing results.

Fig.4. Average time for processing one transaction

It can be seen from Figure4 that algorithm FCI_Mining is

faster than A-Moment. Therefore, FCI_Mining has stronger

ability to detect the changes in data stream than A-Moment.

The reason is that FCI_Mining detects the frequent itemsets

on every gap times, instead of performing it at every time

step.

 International Journal of Computer Sciences and Engineering Vol.-4(2), PP(40-48) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 47

We also test the number of frequent closed itemsets detected

by FCI_Mining and compare it with algorithm A-Moment.

The experimental result is shown in Figure 5.

Fig. 5. Number of the frequent closed itemsets

It can be seen from Figure 5 that the number of frequent

closed itemsets detected by FCI_Mining is close to that of

A-Moment. When the value of the minimum density is

between 100 and 500, FCI_Mining detects more closed

itemsets than A-Moment. The reason is that FCI_Mining

deletes the infrequent itemsets on every gap times so as to

retain more closed itemsets. This result suggests that

FCI_Mining can obtain higher accuracy results and

efficiency.

VI. CONCLUSION

We have proposed an algorithm for mining frequent closed

itemsets from data streams based on a time fading module.

The algorithm dynamically constructs a pattern tree, and

calculates densities of the itemsets in the tree using a fading

factor. The algorithm deletes real infrequent itemsets from

the pattern tree so as to reduce the memory cost. A density

threshold function is designed in order to identify the real

infrequent itemsets which should be deleted. Using such

density threshold function, deleting the infrequent itemsets

will not affect the result of frequent itemset detecting. The

algorithm modifies the pattern tree and detects the frequent

closed itemsets in a fixed time interval so as to reduce the

computation time. We also analyze the error caused by

deleting the infrequent itemsets. Our experimental results

indicate that our algorithm can get higher accuracy results,

needs less memory and computation time than other

algorithm. In our further work, we will study how to further

reduce the memory cost by using the hash function in storing

the frequent closed itemsets in the pattern tree. Also it is still

a problem how to further reduce the computation time.

ACKNOWLEDGMENT

Firstly, I want to grant my teacher Ling Chen, without his

help, I can’t finfish this work on time. Then I would like to

express my thanks to my friends, when I have puzzle, they

help me try their best. And at last, I should thank my family,

I can do this work so patiently under their support.

REFERENCES

[1] Y.H. Pan, J.L. Wang, and C.F. Xu, “State-of-the-art on

frequent pattern mining in data streams, ” Acta

Automatica Sinica, Vol.32, Issue-4, 2006, pp.594-602.

[2] Y.Y. Zhu, S.S. Dennis, “StatStream: statistical monitoring

of thousands of data streams in real time [A]”,

Proceedings of the 20th International Conference on Very

Large Data Bases[C]. Hong Kong, China, 2002, pp. 358-

369.

[3] H.F. Li, C.C. Ho and S.Y. Lee, “Incremental updates of

closed frequent itemsets over continuous data streams”,

Expert Systems with Applications, Vol.36, 2009, pp.

2451-2458.

[4] J. Nan and G. Le, “Research issues in data stream

association rule mining”, SIGMOD Record, Vol.35,

Issue-1, 2006, pp. 14-19.

[5] Y. Chi etal, “Catch the moment: Maintaining closed

frequent itemsets over a data stream sliding window,”

Knowledge and Information Systems, Vol.10, Issue-3,

2006, pp. 265-294.

[6] F.J. Ao etal, “An Efficient Algorithm for Mining Closed

Frequent Itemsets in Data Streams,” IEEE 8th

International Conference on Computer and Information

Technology Workshops, 2008, pp. 37-42.

[7] J.Y. Wang etal, “TFP: An Efficient Algorithm for Mining

Top-K Frequent Closed Itemsets,” IEEE

TRANSACTION ON KNOWLEDGE AND DATA

ENGINEERING, Vol.17, 2005, pp. 652-664.

[8] Y. Chi etal, “MOMENT: Maintaining closed frequent

Itemsets over a stream sliding window [A]”, Proceedings

of the 2004 IEEE International Conference on Data

Mining[C], Brighton, UK: IEEE Computer Society Press,

2004, pp. 59-66.

[9] X. Liu etal, “An Algorithm to Approximately Mine

Frequent Closed Itemsets from Data Streams”, ACTA

ELECTRONICA SINICA, Vol.35, Issue-5, 2007, pp.

900-905.

[10] X. Ji, J. Bailey, “An Efficient Technique for Mining

Approximately Frequent Substring Patterns”, Data Mining

Workshops, ICDM Workshops Seventh IEEE

International Conference, 2007 , pp. 325-330.

[11] S. Zhong, “Efficient stream text clustetring[J]”, Neural

Networks, Vol.18, Issue-6, 2006, pp.790-798.

[12] H. F. Li, Z. J. Lu, H. Chen, “Mining Approximate Closed

Frequent Itemsets over Stream,” Software Engineering,

Artificial Intelligence, Networking, and

Parallel/Distributed Computing, Ninth ACIS International

Conference, 2008, pp. 405-410.

[13] H. Yan, Y.S. Sang, “Approximate frequent itemsets

compression using dynamic clustering method,”

Cybernetics and Intelligent Systems, IEEE Conference,

2008 , pp. 1061-1066.

 International Journal of Computer Sciences and Engineering Vol.-4(2), PP(40-48) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 48

[14] Z. N. Zou etal, “Mining Frequent Subgraph Patterns from

Uncertain Graph Data,” Knowledge and Data Engineering,

Vol.22, Issue-9, 2010, pp. 1203 -1218.

[15] C. Andrea, P. Rasmus, “On Finding Similar Items in a

Stream of Transactions,” Data Mining Workshops

(ICDMW), IEEE International Conference, 2010 , pp.

121-128.

[16] X. N. Ji, J. Bailey, “An Efficient Technique for Mining

Approximately Frequent Substring Patterns,” Data Mining

Workshops, Seventh IEEE International Conference, 2007,

pp. 325-330.

[17] B. Bakariya and G.S. Thakur. “Effectuation of Web Log

Preprocessing and Page Access Frequency using Web

Usage Mining”, Vol.1 , Issue-01, 2016, pp.1-5.

Authors Profile

Caiyan Dai, Ph.D. of College of Computer Science and

Technology, Nanjing University of Aeronautics and

Astronautics ,China. Engaged in the research of data

mining.

Ling Chen, Doctoral tutor of College of Computer

Science and Technology, Nanjing University of

Aeronautics and Astronautics, member of the Institute of

computer IEEE. Engaged in the research of computer

software, artificial intelligence, data mining, more than

100 papers published in international and domestic

journals and conferences, including more than 40 papers

are extracted in SCI, EI.

