

 © 2019, IJCSE All Rights Reserved 233

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-9, Sept 2019 E-ISSN: 2347-2693

An Algorithm to Find the Directed Minimum Spanning Trees

A. Navis Vigilia
1*

, J. Suresh Suseela
2

1
Reg. No: 7374 Manonmaniam Sundaranar University, Tirunelveli, India

2
Department of Mathematics, St. John’s College, Tirunelveli, India

*Corresponding Author: navis.jk@gmail.com, Tel.: +919916855256

DOI: https://doi.org/10.26438/ijcse/v7i9.233239 | Available online at: www.ijcseonline.org

Accepted: 12/Sept/2019, Published: 30/Sept/2019

Abstract— New technologies and the deployment of mobile and nomadic services are driving the emergence of complex

communications networks that have highly dynamic behaviour. This naturally engenders new route-discovery problems under

changing conditions over these networks. Unfortunately, the temporal variations in the network topology are hard to be

effectively captured in a classical graph model. In this paper, we use and extend a recently proposed graph theoretic model,

which helps capture the evolving characteristic of such networks, in order to compute multicast trees with minimum overall

transmission time for a class of wireless mobile dynamic networks. We first show that computing different types of strongly

connected components in this model in NP-Complete, and then propose an algorithm to build all rooted directly minimum

spanning trees in already identified strongly connected components.

Keywords— Wireless networks, mobile networks, multicast, evolving graphs, LEO satellites, minimum spanning trees,

strongly connected components, graph theoretic models, NP-complete.

I. INTRODUCTION

This work deals with communication issues in networks,

henceforth referred to as fixed schedule dynamic networks

(FSDN’s), where the topology dynamics at different time-

steps can be predicted. Note that optimal route discovery

problems in networks are equivalent to standard problems

such as shortest path trees and minimum spanning trees over

the underlying graphs. Literature on routing issues in such

networks usually assume limited or no mobility [12,9] where

link-connectivity changes only very gradually and is

incorporated by a system of updates to the topology graph

with every change. Unfortunately captured in a classical

graph model.

Recently evolving graphs [5] have been proposed as a formal

abstraction for dynamic networks, and can be suited easily to

the case of FSDN’s. Evolving graphs have been defined over

diagraphs to capture the essential directivity of the data

networks and basically aim to formalize a time domain in

graphs. Concisely, an evolving graph is an indexed sequence

(of length T) of subgraphs of a given graph, where the

subgraph at a given index point corresponds to the network

connectivity at the time instant indicated by the index number.

The time domain is incorporated into the model by restricting

paths to never move into arcs which existed only in the past

subgraphs. In this model, it is made clear that between two

subsequent time steps, any changes may happen, with the

possible creation and/or deletion of any number of vertices

and arcs. Algorithms for minimum path trees on FSDN’s

using the evolving graph model have been presented in [5]

which compute the shortest path trees in

  NTMO loglog  time, for FSDN’s corresponding to

evolving graphs with M links and N nodes.

Presently, our focus is on the analysis of connectivity

properties in FSDN’s and the design of algorithms for

building directed minimal spanning trees (DMST’s) to

generate multicast routes in FSDN’s. The DMST problem in

diagraphs was defined in [7] as finding N mimimum weight

trees, or arborescences, in a strongly connected graph with N

vertices. Liu[1], and Tarjan[8] provides an efficient

implementation of the same. Humblet[7] provides a

distributed algorithm for finding DMST’s in strongly

connected diagraphs. Furthermore, minimum energy

multicast trees for wireless networks have been studied for the

static case in [12,9]. In contrast our approach differs from

these in that our algorithm builds DMST’s over evolving

graphs, which are dynamically changing diagraphs.

In this paper, following Humblet [7], we define rooted

DMST’s over strongly connected evolving graphs. This

naturally leads to the question of how to determine if an

evolving graph is strongly connected. We define strongly

connected components (SCC’s) in evolving graphs and

discover that he unique properties of evolving graphs yield

two types of strongly connected components: regular SCC’s

and the more loosely defined open strongly connected

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 234

components (o-SCC’s), as it will become clear later. One of

our results is that unlike in regular diagraphs, finding the

strongly connected components in evolving graphs is not

possible in deterministic polynominal time, unless p=np.

Finally, we give an algorithm to compute DMST over

strongly connected components in evolving graphs, using a

variation of Prim’s algorithm [2] for MST’s. For an evolving

graph with maximum outdegree D, our algorithm builds the

rooted DMST over strongly connected component in an

evolving graph in
 TNDO log

time.

This paper is organised as follows. In the next section we

provide basic definitions for various common graph thery

terms in the context of evolving graphs. Section 3 contains

the algorithm to verify strong connectedness in an evolving

graph and the proof of NP-Completeness for SCC’s and o-

SCC’s.

II. RELATED WORK

Let P be a path in Gi, under the usual definition. Let F(P) be

its source, L(P) be its destination, and P be its length. We

define a path in G between two vertices u and v of VG as a

sequence

PG   ,...,,...,,, 212 kttt tttwithPPPvu
ki

 such

that
it

P , is a path in Gt with     vPLuPF
ktt  ,

1
 and for

all ki  it holds that    
1


ii tt PFPL .

A circuit in G is a path in G, PG, such that L(PG) = F(PG).

However, this would imply that each of the

subgraphs
kttt GGG ,...,,

21
must contain the entire circuit.

Accordingly, We present a weaker definition in terms of cycle

CG(u) in an evolving graph G which is defined as a path

ktttG PPPP ,...,,
21

 such that

    .,...,211 ktt tttforuPLanduPF
k



Corresponding to each other arc in EG we may define an arc

schedule as a set of indices indicating the presence of the arc

in the respective subgraphs in SG. Thus we may alternately

define an evolving graph as a tupleG = (VG, EG), where each

arc in EGhasan arc schedule defined for it.

Two vertices are said to be adjacent in G if only they are

adjacent in some Gi. The degree of vertex in G is defined as

its degree in EG.

As usual, a tree in G is defined as connected induced

subgraph of VG with no circuits in G. Therefore, we define a

valid tree in G as a tree in G where each and all directed paths

in the tree are paths in G. Likewise, a valid rooted tree in G is

a rooted directed tree where all paths from to the root the

leaves are paths in G.

III. STRONG CONNECTED COMPONENTS AND

ARBORESCENCES

We define an evolving graph G to be a strongly connected

graph if there exists a path PG in G between any two vertices

in VG

Strongly connected Component

A strongly connected component (SCC) in an evolving graph

is the maximal set of vertices UGVG such that for any pair

vu, UG, there exists a path from u to v and from v to u

using only arcs in UG UG

Thus, the subgraphG1 induced by considering vertices in the

SCC UG is a strongly connected graph. For example, in Fig 1,

{b,a} forms a SCC since there are paths from a to b and vice

versa which traverse only vertices in the set {a,b}. In this

figure and elsewhere in the paper arcs are labeled with their

respective arc schedule times. Note that, unlike regular graphs,

there can be a path between two vertices in the SCC that

traverses vertices outside UG.

Figure – 1 Open Strongly Connected Component

Thus, it is possible for two vertices vu, UG to establish a

path between them without the constraint that all arcs in the

path must be within UG UG. In the fig, although there exist

paths from b to c and from c to b, {b,c} is not strongly

connected.

An open strongly connected component (0-SCC) is the

maximal set of vertices U VG such that for any pair

Uvu , , there exists a path from u to v and from v to u.

A path between two nodes, Uvu , , might need to

use nodes UhVh iGi  , to maintain strong

connectivity.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 235

The set of such nodes  vuHhi ,}{  are the helping nodes

(h-nodes) for the vertices u,v.

Consequently, an SCC UG is an o-SCC with the additional

requirement that,   GUvuvuH  ,,  . Hence the {b,c}

in Fig 3 forms a 0-SCC with   }{, acbH  since vertex a is

required to form the only path from b to c, thereby

maintaining strong connectivity. Also, since

  },{,, cbcbH  is not an SCC.

IV. COMPUTING STRONG CONNECTED

COMPONENTS IN FSDN’S

Since directed arborescences in evolving graphs are defined

only over o-SCC’s. It would be beneficial to decompose the

evolving graph corresponding to the FSDN into o-SCC’s. In

this section we will first present a modification of the shortest

path algorithm to verify strong connectivity for an FSDN.

Then we will prove that the decomposition of a FSDN into

SCC components is NP-Complete.

E NETWORK MODEL

We model a FSDN as a series of networks

,...,,..., 11  ttt RRRR over time. An FSDN could be seen

as a dynamic network which has a presence matrix

  ivuPE ,, , indicating whether (u,v) is present at time step

ti for each link (u,v) of R, and another presence matrix

 iuPV , , indicating whether u is present at time step ti for

each node u of R. The network at 1time ti is then represented

by the subnetwork ,RofR
it

which is obtained by taking the

nodes and links of R for which their corresponding P[i]’s

indicate they are to be present.

In order to model a fixed schedule dynamic network by an

evolving graph, it suffices to be given a time window W of

size T, and to work with

 
Wi FSDNWiURG ,

Figure – 2 Overlapping SCC’s

Assume packet based networks – so transmitting one piece of

data equals transmitting one packet over an arc. Link

transmission time between nodes in the network may allow

for the transmission of a packet over several links before a

change in the network topology. Correspondingly in the

model, considering time between two successive subgraphs in

an evolving graph as unity, the time taken to cross an arc (u,v)

is expressed as a positive cost   1, vuw . We also

implicitly assume conservation of information i.e in case a

node in the network fails, then upon rejoining the network, it

will retain all the information that it had received before the

failure.

VERIFICATION OF STRONG CONNECTIVITY IN

FSDN’S

Given an FSDN network, we must determine if it is strongly

connected. It is equivalent to the following proposition over

corresponding evolving graph.

Preposition 1: Given an evolving graph G with N nodes and

M links over a sequence of length T, it is possible to

determine if it is strongly connected or not in

  NTNMO loglog  time steps.

Proof: The transitive closure of G is defined as the graph

RG  REV , , where    :,{ jiR vvE PG(vi,vj)}. We can

now say that G is strongly connected if RG is a complete

graph. Alternately, the adjacency matrix of the transitive

closure AG must be all 1’s matrix. The verification is executed

simply and efficiently by forming the shortest paths tree for

each node in the network using the algorithm mentioned in

[5]. InitializeAG to the all zeros matrix. For each node the

algorithm finds out the minimum distance tree in

  NTMO loglog  operations. If starting from a node u

as root, the shortest paths tree on G contains a node v, then set

AG  vu, to one. For Nnodes the algorithm is repeated N

times, taking an overall time of   NTNMO loglog 

DECOMPOSITION INTO SCC’S

Tarjan’s algorithm[2], based on the concept of forefathers in a

depth-first search tree over a graph, is used to decompose

regular graphs into SCC’s. However SCC’s in evolving

graphs have the following unique properties, which make it

impossible to use Tarjan’s algorithm.

Property 1: Two different SCC’s can have common vertices

For example, consider the graph given in Fig.3, where arcs

are labeled with the respective arc schedule times. From the

definition of SCC’s we see that there are two such

components a,c,d and b,c,d which have common vertices c, d

between them.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 236

Property 2: For any two vertices in the SCC (respectively o-

SCC) there may be paths connecting them which use vertices

outside the SCC (respectively o-SCC).

This stands directly from property1. As an example consider

in Fig.2, the path d a c which uses vertex a that is

outside the SCC{b,c,d}.

The main problem calls for decomposing the evolving graph

into all possible SCC’s.

Component: Given an evolving graph G = (VG, EG) if there

is an integer k such that there is SCC of size k

We shall subsequently demonstrate that COMPONENT is

NP-complete, thereby precluding a polynomial time

algorithm for the decomposition problem, unless P=NP.

Theorem 1: COMPONENT is in NP

Proof:Given a subset VG
1 of VG and the integer k, we must

have a means of verifying in polynomial time if VG
1 is

indeed a SCC of size k. First, verify that
kV 1G . Next,

consider the subgraphG1 induced by VG
1 on G and verify G1

is strongly connected which is possible in polynomial time

from Proposition. Thereafter, for each vertex
vG/G1

, add v

toVG
1 and add all arcs to EG

1 which begin in VG
1 and end in

v and vice versa. We can now verify using Proposition 1 that

this modified graph is not strongly connected. This verifies

the maximality of VG
1 and completes the verification that

VG
1 is a SCC of size k. Thus, given an arbitrarily chosen

subgraph in G, it is possible to say whether it is SCC in

polynomial time.

We now define a strong reachability graph for an evolving

graph G as an undirected graph SG = (VG, ES)

where
 },{ jiS vvE 

if and only if

    ijji vvvv ,, RG, the transitive closure graph of G.

To prove the NP-Completeness of COMPONENT we reduce

the CLIQUE problem to COMPONENT, CLIQUE is

formally defined as follows: Given a graph  EVG , ,

and an integer k, is there a clique of size k in G. A clique is a

subset of vertices of an undirected graph such that every two

distinct vertices in the clique are adjacent; that is its induced

subgraph is complete.

Lemma1: Finding an SCC in G is equivalent to finding a

maximal clique in SG, the strong connectivity graph of G.

Proof: Directly from the definitions of strong reachability,

SCC and maximal clique, we see that the SCC in G is

equivalent to finding the maximal clique in SG.

Figure – 3 – Construction for Theorem – 2

Theorem 2: CLIQUE can be reduced to COMPONENT in

polynomial time.

Proof: Given a graph
 EVG ,

and the integer k, we

construct an evolving graphG = (VG,EG) as follows:

1. For each
Vui  create a

 NiViVv Gi ,1,
;

2. For each edge
  Euu ji ,

, create arcs

 
ji vv ,

and
 

ij vv ,
in EG with arcs schedule time

.jit ji 

We shall subsequently prove that finding an SCC in G is the

same as finding a clique of same size in G. From the

construction above it can be shown that there exists a strong

connection between two vertices vi and vj in G if and only if

there is an edge
  ., Euu ji 

 From the construction it is

obvious to see that if
  Euu ji ,

, then vi vj and

vj vi thus making a strong connection between vi and vj.

Conversely, consider without loss of generality that
ji 

and that vertices ji vandv
are strongly connected even

though
  ., Euu ji 

It is easy to have a path

vi vp vj since
.pjpi 
But it is not possible

to have any vj vq vi since
qiqj 

and

therefore
.iqjq tt 
Thus, the strong reachability graph SG is

isomorphic to G. From Lemma 1, finding an SCC in G is

equivalent to finding a max-clique in SG and therefore in G.

Thus solving COMPONENT over G solves CLIQUE in G.

The construction above is in
 EVO 

time steps. Thus

we have reduced CLIQUE to COMPONENT in polynomial

time.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 237

 Figure – 4 - Construction for Theorem – 5

Theorem 3; COMPONENT is NP-Complete

Proof: We know that CLIQUE is NP-Complete. So, from

Theorem 1 and Theorem 2, COMPONENT is NP-Complete.

DECOMPOSITION INTO O-SCC’S

o-COMPONENT: Given an evolving graph G and an integer

k>3, there is a o-SCC of size k

Although SCC’s are a special case of o-SCC’s, the NP-

Completeness of COMPONENT does not directly imply,

that o-COMPONENT is NP-Complete as well. This is

because a possible polynomial time algorithm for o-

COMPONENT need only answer the above decision

problem and not identify the o-SCC of size k, thus making it

difficult to verify if at least one o-SCC of size k is an SCC as

well (in other words if the set of h-nodes is empty or not for

a particular o-SCC of size k). Also, the same graph G may

contain both an SCC (of indeterminate size) and an o-SCC of

size k, so o-COMPONENT would always return “yes”,

ignoring the presence or absence of a SCC of size k, thereby

leaving COMPONENT unsolved. Moreover, since SCC’s are

a special case of o-SCC’s proving o-COMPONENT to be

NP-Complete does not directly imply that COMPONENT is

NP-Complete as well. This entails for an independent proof

for the NP-Completeness ofo-COMPONENT.

Theorem 4: o-COMPONENT is in NP

Proof: Same as the proof for Theorem 1

THEOREM 5: CLIQUE CAN BE REDUCED TO O-

COMPONENT IN POLYNOMIAL TIME.

Proof: Given an undirected graph G = (V, E) and the integer

k>3, we construct an evolving graph G = (VG, EG) as follows:

1. For each
Vui  create a Gi Vv 

;

2. For each edge
  Euu ji ,

, do

(a) Create a node
jih VG ,

(b) Create arcs
   jijjii hvhv ,,,

 with arc

schedule time 0,

(c) Create arcs
 iji vh ,

and
 jji vh ,

with arc

schedule time 1.

By the construction, for all
  ,, Evu ji  vi vj and

vj vi thus making them strongly connected. However

any path of the type vi vp vj is not possible due to

the design of the arc schedule times (see Fig.6). Thus for

every edge
  ,, Euu ji 

there are edges

   jiiji hvvv ,,,
and

 jij hv ,
in the strong reachability

graph SG. However the degree of each jih
is 2 and so they

cannot be part of any clique of size greater than 3. Thus from

Lemma 1 there is a clique of size
3k

in G, if and only if

there a clique of size k in SG. Thus if o-COMPONENT can be

solved, CLIQUE can be decided for k>3. Hence, CLIQUE

reduces to o-COMPONENT for k>3.

Theorem 6: o-COMPONENT is NP-COMPLETE

Proof: We know that CLIQUE is NP-Complete. So from

Theorem4 and Theorem 5, o-COMPONENT is

NP-Complete.

COMPUTING THE DIRECTED MINIMUM

SPANNING TREES

Considering a strongly connected evolving graph G, the

object is to find GVN 
rooted directed minimum

spanning trees rooted at each of the nodes GVr
. Our

algorithm is a modification of the Prim-Dijkstra algorithm

[2] for finding MST’s in undirected regular graphs. The

algorithm proceeds by building a fragment which is a subset

of the DMST starting from the root r. The property of the

fragment f(r) is that it consists of those edges by which

information transmitted at the beginning of the time interval

from the root r will travel in the shortest time to the vertices

included already in the fragment. Having defined a fragment

as such, it is easy to see how the algorithm for the DMST

proceeds. In the following algorithm we chose from among

the set of arcs outgoing from the fragment f(r), the arc with

the smallest arc schedule time such that it can form a valid

path starting from the root. A number vt is associated with

each vertex GVv
denoting the minimum time required for

that vertex to receive the information given that the root r

originates the information.

Since each node can transmit information only after it has

received it, the information cannot pass simultaneously

through two edges. Recall that the time required for

transmission over one arc id denoted as an arbitrary weight,

  1, vuw
.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 238

Algorithm

1. Start with
  rf

and a set fV
containing

vertices already considered in fragment
 rf

.

2.
1},{  rf trV

3. While GVV f  do

(a) Let fT
be the set of all arcs

 ii vu ,
such that

fifi VvVu  ,
. For each

  fii Tvu ,
,

choose the smallest arc schedule time

   iiuiia vuwtvuf
i

,, 
.

(b) Choose arc
 

jj vu ,
where

    iiiiai vuwvufj ,,min 1  

.

(c) If
   

jjujja vuwtvuf ,,, 
 then

 
jjav vuft

j
,

,

(d) Else if

   },{1, jjjja vuofschedulearcvuf 

, then
 

jjuv vuwtt
jj

,
,

(e) Else,
   

jjjjav vuwvuft
j

,1, 

(f) Add jv
to fV

and
 

jj vu ,
to

 rf
.

In the above algorithm, an arc schedule time I indicates the

presence of the link from time
1i

 to i. Note that two cases

might arise depending on whether

   
jjujja vuwtvuf ,,, 

or

   
jjujja vuwtvuf ,,, 

. For the first case, the

information reaches the node exactly at the time
 

jja vuf ,
.

For the other case, if the arc is present both at times

  1, jja vuf
and

 
jja vuf ,

, since
  1, jj vuw

, the

packet will reach jv
in

 iiu vuwt
i

,
. If. However, the arc

is not present at time
  1, jja vuf

, then the transmission

process itself starts at the
 th

jja vuf ,
step (i.e from time

  1, jja vuf
to time

 
jja vuf ,

), thus reaching jv
 by

time
   iijja vuwvuf ,1, 

.

We remark that a rooted directed tree can also be computed

over an o-SCC 1G
V

. As a modification for that purpose,

GV
must be replaced by 1G

V
and correspondingly, Step 3 of

Algorithm should be modified to fVV 1G since the

fragment can also contain the h-nodes for the vertices in

1G
V

and the loop can stop once all the vertices are covered.

Algorithm is a greedy algorithm that always chooses the arc

that transmits in minimum time. The proof of its correctness

is the same as the proof of the Prim-Dijkstra algorithm [2]. If

the maximum outdegree of each vertex is D, then each step

of increasing the fragment will take
 TNDO log

time and

the fragment will increase N times adding up to a total

execution time of
 TDN 2 logO

steps.

V. CONCLUSION AND FUTURE SCOPE

The two important results in this paper are the intractability

of the decomposition into (open) strongly connected

components in FSDn’s and the construction of DMST’s over

an already existing strongly connected components.

The first result implies that although it is not possible to

identify a subset of nodes in the network that is stringly

connected, there is a way quickly determining if a collection

of mobile agents are strongly connected to each other. Thus,

it is possible to lead a non-strongly connected network

towards strong connectedness by adding links. For the case

of wireless networks it would mean the addition of one or

more intermediary agents (corresponding to hinodes in the

evolving graph) to serve as hops between two nodes that are

out of range from each other.

REFERENCES

[1]. Y. J Chu amd T H. Liu. On the shortest arborescence of a directed

graph. Science Sincia, 14:1396- 1400, 1965

[2]. T. Cormen, C. Leiserson and R. Rivest. Introduction to Algorithms.

The MIT Press, 1990

[3]. C.Scheideler. Models and techniques for communication in

dunamic networks. In In H. Alt and A. Ferreira, editors,

Proceedings of the 19
th
 International Symposium on Theoretical

Aspecys of Computer Science, volume 2285, pages 27-19.

Springer-Verlag, March 2002.

[4]. E. Ekici, I. F Akyildiz, and M. D. Bender. Datagram routing

algorithm for LEO satellite networks. In IEEE infocom, pages

500-508,2000.

[5]. Ferreira, on models and algorithms for dmanic communication

networks: The case for evolving graphs. In Proceedings of 4
e

rencontres francophnes sur les Aspects Algorithmiques des

Telecommunications (ALGOTEL ’2002), Meze, France, May

2002.

[6]. Fereira, J. Galtier, and P. Penna. Topological design, routing and

handover in satellite networks. In I. Stojmenovic, editor,

Handbook of wireless Networks and Mobile Computing, pages

473-493, John Wiley and Sons, 2002.

[7]. P. A Humblet. A distributed algorithm for minimum weight

directed spanning trees. IEEE transactions on communications,

COM-31(6): 756-762, 1983.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 239

[8]. R. E. Tarjan. Finding optimum branching. Networks, pages 25-35,

1977.

[9]. P.-J. Wan, G, Calinescue, X. Li, and O. Frieder. Minimum-energy

broadcast routing in static ad hoc wireless networks. In Proc. IEEE

infocom, pages 1162-1171, Anchorage Alaska, 2001.

[10]. M. Werner and G. Maral. Traffic flows and dynamic routing in leo

intersatellite link networks. In In Proceedings 5
th
 International

Mobile Satellite Conference (IMSC ’97), Pasadena, California,

USA, June 1997.

[11]. M. Werner and F. Wauquiez. Capacity dimensioning of ISL

networks in broadband LEO satellite systems. In sixth

International Mobile Satellite Conference : IMSC ’99, pages 334-

341, Ottawa, Canada, June 1999.

[12]. J. Wieselthier, G. Nguyen, and A. Ephremides. On the

construction of energy-efficient broadcast and multicast trees in

wireless networks. In proc. IEEE infocom, pages585-594, Tel

Aviv, 2000

Authors Profile

A.Navis Vigilia pursued Bachelor of Science

and Master of Science from Sarah Tucker

College,Tirunelveli-India in 1990-1995 . She

has been working as Lecturer in Department

of Mathematical Sciences, Jyoti Nivas

College, Bangalore since 2007. She is

currently pursuing Ph.D. She has attended many conferences

among which

i)1
st
and 2

nd
 National Conference on Emerging Trends in

Fluid Mechanics and Graph Theory in Christ University

Bangalore.

ii)National Conference on Mathematical Modeling: A Socio

Scientific Approach organised by Tumkur University and

Karnataka Higher Education Council

are acknowledgeable. Her area of interests are Graph Theory

and Networking.She has published three research papers

which are available online. She has 17 years of teaching

experience and 6years of Research Experience.

