
 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        233 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                            Vol.-7, Issue-9, Sept 2019                                 E-ISSN: 2347-2693 

                 

An Algorithm to Find the Directed Minimum Spanning Trees 
 

A. Navis Vigilia
1*

, J. Suresh Suseela
2
 

 
1
Reg. No: 7374 Manonmaniam Sundaranar University, Tirunelveli, India 

2
Department of Mathematics, St. John’s College, Tirunelveli, India 

 
*Corresponding Author:   navis.jk@gmail.com,   Tel.: +919916855256 

 
DOI:   https://doi.org/10.26438/ijcse/v7i9.233239 | Available online at: www.ijcseonline.org  

Accepted: 12/Sept/2019, Published: 30/Sept/2019 

Abstract— New technologies and the deployment of mobile and nomadic services are driving the emergence of complex 

communications networks that have highly dynamic behaviour. This naturally engenders new route-discovery problems under 

changing conditions over these networks. Unfortunately, the temporal variations in the network topology are hard to be 

effectively captured in a classical graph model. In this paper, we use and extend a recently proposed graph theoretic model, 

which helps capture the evolving characteristic of such networks, in order to compute multicast trees with minimum overall 

transmission time for a class of wireless mobile dynamic networks. We first show that computing different types of strongly 

connected components in this model in NP-Complete, and then propose an algorithm to build all rooted directly minimum 

spanning trees in already identified strongly connected components. 
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I. INTRODUCTION 

 

This work deals with communication issues in networks, 

henceforth referred to as fixed schedule dynamic networks 

(FSDN’s), where the topology dynamics at different time-

steps can be predicted. Note that optimal route discovery 

problems in networks are equivalent to standard problems 

such as shortest path trees and minimum spanning trees over 

the underlying graphs. Literature on routing issues in such 

networks usually assume limited or no mobility [12,9] where 

link-connectivity changes only very gradually and is 

incorporated by a system of updates to the topology graph 

with every change. Unfortunately captured in a classical 

graph model. 

 

Recently evolving graphs [5] have been proposed as a formal 

abstraction for dynamic networks, and can be suited easily to 

the case of FSDN’s. Evolving graphs have been defined over 

diagraphs to capture the essential directivity of the data 

networks and basically aim to formalize a time domain in 

graphs. Concisely, an evolving graph is an indexed sequence 

(of length T) of subgraphs of a given graph, where the 

subgraph at a given index point corresponds to the network 

connectivity at the time instant indicated by the index number. 

The time domain is incorporated into the model by restricting 

paths to never move into arcs which existed only in the past 

subgraphs. In this model, it is made clear that between two 

subsequent time steps, any changes may happen, with the 

possible creation and/or deletion of any number of vertices 

and arcs. Algorithms for minimum path trees on FSDN’s 

using the evolving graph model have been presented in [5] 

which compute the shortest path trees in 

  NTMO loglog  time, for FSDN’s corresponding to 

evolving graphs with M links and N nodes.
 

 

Presently, our focus is on the analysis of connectivity 

properties in FSDN’s and the design of algorithms for 

building directed minimal spanning trees (DMST’s) to 

generate multicast routes in FSDN’s. The DMST problem in 

diagraphs was defined in [7] as finding N mimimum weight 

trees, or arborescences, in a strongly connected graph with N 

vertices. Liu[1], and Tarjan[8] provides an efficient 

implementation of the same. Humblet[7] provides a 

distributed algorithm for finding DMST’s in strongly 

connected diagraphs. Furthermore, minimum energy 

multicast trees for wireless networks have been studied for the 

static case in [12,9]. In contrast our approach differs from 

these in that our algorithm builds DMST’s over evolving 

graphs, which are dynamically changing diagraphs.  

 

In this paper, following Humblet [7], we define rooted 

DMST’s over strongly connected evolving graphs. This 

naturally leads to the question of how to determine if an 

evolving graph is strongly connected. We define strongly 

connected components (SCC’s) in evolving graphs and 

discover that he unique properties of evolving graphs yield 

two types of strongly connected components: regular SCC’s 

and the more loosely defined open strongly connected 



   International Journal of Computer Sciences and Engineering                                     Vol. 7(9), Sept 2019, E-ISSN: 2347-2693 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        234 

components (o-SCC’s), as it will become clear later. One of 

our results is that unlike in regular diagraphs, finding the 

strongly connected components in evolving graphs is not 

possible in deterministic polynominal time, unless p=np. 

Finally, we give an algorithm to compute DMST over 

strongly connected components in evolving graphs, using a 

variation of Prim’s algorithm [2] for MST’s. For an evolving 

graph with maximum outdegree D, our algorithm builds the 

rooted DMST over strongly connected component in an 

evolving graph in 
 TNDO log

time.  

 

This paper is organised as follows. In the next section we 

provide basic definitions for various common graph thery 

terms in the context of evolving graphs. Section 3 contains 

the algorithm to verify strong connectedness in an evolving 

graph and the proof of NP-Completeness for SCC’s and o-

SCC’s.
 

 

II. RELATED WORK 

 

Let P  be a path in Gi, under the usual definition. Let F(P) be 

its source, L(P) be its destination, and P  be its length. We 

define a path in G  between two vertices u and v of VG as a 

sequence 

PG   ,...,,...,,, 212 kttt tttwithPPPvu
ki

  such 

that 
it

P , is a path in Gt with     vPLuPF
ktt  ,

1
 and for 

all ki  it holds that    
1


ii tt PFPL .  

 

A circuit in G is a path in G, PG, such that L(PG) = F(PG). 

However, this would imply that each of the 

subgraphs
kttt GGG ,...,,

21
must contain the entire circuit. 

Accordingly, We present a weaker definition in terms of cycle 

CG(u) in an evolving graph G which is defined as a path 

ktttG PPPP ,...,,
21

 such that 

    .,...,211 ktt tttforuPLanduPF
k


 

 

Corresponding to each other arc in EG we may define an arc 

schedule as a set of indices indicating the presence of the arc 

in the respective subgraphs in SG. Thus we may alternately 

define an evolving graph as a tupleG = (VG, EG), where each 

arc in EGhasan arc schedule defined for it. 

 

Two vertices are said to be adjacent in G if only they are 

adjacent in some Gi. The degree of vertex in G is defined as 

its degree in EG.  

 

As usual, a tree in G is defined as connected induced 

subgraph of VG with no circuits in G. Therefore, we define a 

valid tree in G as a tree in G where each and all directed paths 

in the tree are paths in G. Likewise, a valid rooted tree in G is 

a rooted directed tree where all paths from to the root the 

leaves are paths in G. 

 

III. STRONG CONNECTED COMPONENTS AND 

ARBORESCENCES 

 

We define an evolving graph G to be a strongly connected 

graph if there exists a path PG in G between any two vertices 

in VG 

 

Strongly connected Component 

A strongly connected component (SCC) in an evolving graph 

is the maximal set of vertices UGVG such that for any pair 

vu, UG, there exists a path from u to v and from v to u 

using only arcs in UG UG 

 

Thus, the subgraphG1 induced by considering vertices in the 

SCC UG is a strongly connected graph. For example, in Fig 1, 

{b,a} forms a SCC since there are paths from a to b and vice 

versa which traverse only vertices in the set {a,b}. In this 

figure and elsewhere in the paper arcs are labeled with their 

respective arc schedule times. Note that, unlike regular graphs, 

there can be a path between two vertices in the SCC that 

traverses vertices outside UG. 

                          
Figure – 1 Open Strongly Connected Component 

 

Thus, it is possible for two vertices vu, UG to establish a 

path between them without the constraint that all arcs in the 

path must be within UG UG. In the fig, although there exist 

paths from b to c and from c to b, {b,c} is not strongly 

connected.  

 

An open strongly connected component (0-SCC) is the 

maximal set of vertices   U VG   such that for any pair 

Uvu , , there exists a path from u to v and from v to u. 

A path between two nodes, Uvu , , might need to 

use nodes UhVh iGi  , to maintain strong 

connectivity. 
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The set of such nodes  vuHhi ,}{   are the helping nodes 

(h-nodes) for the vertices u,v. 

Consequently, an SCC UG is an o-SCC with the additional 

requirement that,   GUvuvuH  ,,  . Hence the {b,c} 

in Fig 3 forms a 0-SCC with   }{, acbH  since vertex a is 

required to form the only path from b to c, thereby 

maintaining strong connectivity. Also, since 

  },{,, cbcbH  is not an SCC. 

 

IV. COMPUTING STRONG CONNECTED 

COMPONENTS IN FSDN’S 

 

Since directed arborescences in evolving graphs are defined 

only over o-SCC’s. It would be beneficial to decompose the 

evolving graph corresponding to the FSDN into o-SCC’s. In 

this section we will first present a modification of the shortest 

path algorithm to verify strong connectivity for an FSDN. 

Then we will prove that the decomposition of a FSDN into 

SCC components is NP-Complete. 

 

E NETWORK MODEL  

We model a FSDN as a series of networks 

,...,,..., 11  ttt RRRR  over time. An FSDN could be seen 

as a dynamic network which has a presence matrix 

  ivuPE ,, , indicating whether (u,v) is present at time step 

ti for each link (u,v) of R, and another presence matrix 

 iuPV , , indicating whether u is present at time step ti for 

each node u of R. The network at 1time ti is then represented 

by the subnetwork ,RofR
it

which is obtained by taking the 

nodes and links of R for which their corresponding P[i]’s 

indicate they are to be present.  

 

In order to model a fixed schedule dynamic network by an 

evolving graph, it suffices to be given a time window W of 

size T, and to work with  

 
Wi FSDNWiURG ,

 

 
Figure – 2 Overlapping SCC’s 

Assume packet based networks – so transmitting one piece of 

data equals transmitting one packet over an arc. Link 

transmission time between nodes in the network may allow 

for the transmission of a packet over several links before a 

change in the network topology. Correspondingly in the 

model, considering time between two successive subgraphs in 

an evolving graph as unity, the time taken to cross an arc (u,v) 

is expressed as a positive cost   1, vuw . We also 

implicitly assume conservation of information i.e in case a 

node in the network fails, then upon rejoining the network, it 

will retain all the information that it had received before the 

failure. 

 

VERIFICATION OF STRONG CONNECTIVITY IN 

FSDN’S 

Given an FSDN network, we must determine if it is strongly 

connected. It is equivalent to the following proposition over 

corresponding evolving graph. 

Preposition 1: Given an evolving graph G with N nodes and 

M links over a sequence of length T, it is possible to 

determine if it is strongly connected or not in 

  NTNMO loglog  time steps. 

Proof: The transitive closure of G is defined as the graph 

RG  REV , , where    :,{ jiR vvE PG(vi,vj)}. We can 

now say that G is strongly connected if RG is a complete 

graph. Alternately, the adjacency matrix of the transitive 

closure AG  must be all 1’s matrix. The verification is executed 

simply and efficiently by forming the shortest paths tree for 

each node in the network using the algorithm mentioned in 

[5]. InitializeAG to the all zeros matrix. For each node the 

algorithm finds out the minimum distance tree in 

  NTMO loglog  operations. If starting from a node u 

as root, the shortest paths tree on G contains a node v, then set 

AG  vu, to one. For Nnodes the algorithm is repeated N 

times, taking an overall time of   NTNMO loglog   
 

DECOMPOSITION INTO SCC’S 

Tarjan’s algorithm[2], based on the concept of forefathers in a 

depth-first search tree over a graph, is used to decompose 

regular graphs into SCC’s. However SCC’s in evolving 

graphs have the following unique properties, which make it 

impossible to use Tarjan’s algorithm. 
 

 

Property 1: Two different SCC’s can have common vertices 

For example, consider the graph given in Fig.3, where arcs 

are labeled with the respective arc schedule times. From the 

definition of SCC’s we see that there are two such 

components a,c,d and b,c,d which have common vertices c, d  

between them. 
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Property 2: For any two vertices in the SCC (respectively o-

SCC) there may be paths connecting them which use vertices 

outside the SCC (respectively o-SCC). 

 

This stands directly from property1. As an example consider 

in Fig.2, the path       d a c which uses vertex a that is 

outside the SCC{b,c,d}. 

The main problem calls for decomposing the evolving graph 

into all possible SCC’s.  

 

Component: Given an evolving graph G = (VG, EG) if there 

is an integer k such that there is SCC of size k 

We shall subsequently demonstrate that COMPONENT is 

NP-complete, thereby precluding a polynomial time 

algorithm for the decomposition problem, unless P=NP. 

 

Theorem 1: COMPONENT is in NP 

Proof:Given a subset VG
1 of VG  and the integer k, we must 

have a means of verifying in polynomial time if VG
1 is 

indeed a SCC of size k. First, verify that 
kV 1G . Next, 

consider the subgraphG1 induced by VG
1  on G and verify G1 

is strongly connected which is possible in polynomial time 

from Proposition. Thereafter, for each vertex 
vG/G1

, add v 

toVG
1  and add all arcs to EG

1 which begin in VG
1 and end in 

v and vice versa. We can now verify using Proposition 1 that 

this modified graph is not strongly connected. This verifies 

the maximality of VG
1   and completes the verification that 

VG
1  is a SCC of size k. Thus, given an arbitrarily chosen 

subgraph in G, it is possible to say whether it is SCC in 

polynomial time.  

We now define a strong reachability graph for an evolving 

graph G as an undirected graph SG = (VG, ES) 

where
 },{ jiS vvE 

if and only if 

    ijji vvvv ,, RG, the transitive closure graph of G. 

To prove the NP-Completeness of COMPONENT we reduce 

the CLIQUE problem to COMPONENT, CLIQUE is 

formally defined as follows: Given a graph  EVG , , 

and an integer k, is there a clique of size k in G. A clique is a 

subset of vertices of an undirected graph such that every two 

distinct vertices in the clique are adjacent; that is its induced 

subgraph is complete. 

 

Lemma1: Finding an SCC in G is equivalent to finding a 

maximal clique in SG, the strong connectivity graph of G. 

Proof: Directly from the definitions of strong reachability, 

SCC and maximal clique, we see that the SCC in G is 

equivalent to finding the maximal clique in SG. 

 
Figure – 3 – Construction for Theorem – 2 

 

Theorem 2: CLIQUE can be reduced to COMPONENT in 

polynomial time. 

Proof: Given a graph  
 EVG ,

and the integer k, we 

construct an evolving graphG = (VG,EG) as follows: 

1. For each 
Vui  create a 

 NiViVv Gi ,1,
; 

2. For each edge 
  Euu ji ,

, create arcs 

 
ji vv ,

and 
 

ij vv ,
in EG with arcs schedule time 

.jit ji 
 

We shall subsequently prove that finding an SCC in G is the 

same as finding a clique of same size in G. From the 

construction above it can be shown that there exists a strong 

connection between two vertices vi and vj in G if and only if 

there is an edge 
  ., Euu ji 

  From the construction it is 

obvious to see that if
  Euu ji ,

, then vi vj  and 

vj vi  thus making a strong connection between vi and vj. 

Conversely, consider without loss of generality that 
ji 

 

and that vertices ji vandv
are strongly connected even 

though 
  ., Euu ji 

It is easy to have a path 

vi vp vj  since 
.pjpi 
But it is not possible 

to have any vj vq vi since 
qiqj 

and 

therefore 
.iqjq tt 
Thus, the strong reachability graph SG is 

isomorphic to G. From Lemma 1, finding an SCC in G is 

equivalent to finding a max-clique in SG and therefore in G. 

Thus solving COMPONENT over G solves CLIQUE in G. 

The construction above is in 
 EVO 

time steps. Thus 

we have reduced CLIQUE to COMPONENT in polynomial 

time. 
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               Figure – 4 - Construction for Theorem – 5 

 

Theorem 3; COMPONENT is NP-Complete 

Proof: We know that CLIQUE is NP-Complete. So, from 

Theorem 1 and Theorem 2, COMPONENT is NP-Complete. 

 

DECOMPOSITION INTO O-SCC’S 

o-COMPONENT: Given an evolving graph G and an integer 

k>3, there is a o-SCC of size k 

Although SCC’s are a special case of o-SCC’s, the NP-

Completeness of COMPONENT does not directly imply, 

that o-COMPONENT is NP-Complete as well. This is 

because a possible polynomial time algorithm for o-

COMPONENT need only answer the above decision 

problem and not identify the o-SCC of size k, thus making it 

difficult to verify if at least one o-SCC of size k is an SCC as 

well (in other words if the set of h-nodes is empty or not for 

a particular o-SCC of size k). Also, the same graph G may 

contain both an SCC (of indeterminate size) and an o-SCC of 

size k, so o-COMPONENT would always return “yes”, 

ignoring the presence or absence of a SCC of size k, thereby 

leaving COMPONENT unsolved. Moreover, since SCC’s are 

a special case of o-SCC’s proving o-COMPONENT to be 

NP-Complete does not directly imply that COMPONENT is 

NP-Complete as well. This entails for an independent proof 

for the NP-Completeness ofo-COMPONENT.  

 

Theorem 4: o-COMPONENT is in NP 

 

Proof: Same as the proof for Theorem 1 

THEOREM 5: CLIQUE CAN BE REDUCED TO O-

COMPONENT IN POLYNOMIAL TIME. 

Proof: Given an undirected graph  G = (V, E) and the integer 

k>3, we construct an evolving graph G = (VG, EG) as follows: 

1. For each 
Vui  create a Gi Vv 

; 

2. For each edge 
  Euu ji ,

, do  

(a) Create a node 
jih VG ,

 

(b) Create arcs 
   jijjii hvhv ,,,

 with arc 

schedule time 0, 

(c) Create arcs
 iji vh ,

and 
 jji vh ,

with arc 

schedule time 1. 

By the construction, for all 
  ,, Evu ji  vi vj and 

vj vi   thus making them strongly connected. However 

any path of the type vi vp vj  is not possible due to 

the design of the arc schedule times (see Fig.6). Thus for 

every edge 
  ,, Euu ji 

there are edges 

   jiiji hvvv ,,,
and

 jij hv ,
in the strong reachability 

graph SG. However the degree of each jih
is 2 and so they 

cannot be part of any clique of size greater than 3. Thus from 

Lemma 1 there is a clique of size 
3k

in G, if and only if 

there a clique of size k in SG. Thus if o-COMPONENT can be 

solved, CLIQUE can be decided for k>3. Hence, CLIQUE 

reduces to o-COMPONENT for k>3. 

 

Theorem 6: o-COMPONENT is NP-COMPLETE 

 

Proof: We know that CLIQUE is NP-Complete. So from 

Theorem4 and Theorem 5, o-COMPONENT is                  

NP-Complete. 

 

COMPUTING THE DIRECTED MINIMUM 

SPANNING TREES 

Considering a strongly connected evolving graph G, the 

object is to find GVN 
rooted directed minimum 

spanning trees rooted at each of the nodes GVr
. Our 

algorithm is a modification of the Prim-Dijkstra algorithm 

[2] for finding MST’s in undirected regular graphs. The 

algorithm proceeds by building a fragment which is a subset 

of the DMST starting from the root r. The property of the 

fragment f(r) is that it consists of those edges by which 

information transmitted at the beginning of the time interval 

from the root r will travel in the shortest time to the vertices 

included already in the fragment. Having defined a fragment 

as such, it is easy to see how the algorithm for the DMST 

proceeds. In the following algorithm we chose from among 

the set of arcs outgoing from the fragment f(r), the arc with 

the smallest arc schedule time such that it can form a valid 

path starting from the root. A number vt is associated with 

each vertex GVv
denoting the minimum time required for 

that vertex to receive the information given that the root r 

originates the information. 

 

Since each node can transmit information only after it has 

received it, the information cannot pass simultaneously 

through two edges. Recall that the time required for 

transmission over one arc id denoted as an arbitrary weight, 

  1, vuw
. 
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Algorithm 

1. Start with 
  rf

and a set fV
containing 

vertices already considered in fragment 
 rf

. 

2. 
1},{  rf trV

 

3. While GVV f  do 

(a) Let fT
be the set of all arcs 

 ii vu ,
such that 

fifi VvVu  ,
. For each 

  fii Tvu ,
, 

choose the smallest arc schedule time 

   iiuiia vuwtvuf
i

,, 
. 

(b) Choose arc 
 

jj vu ,
where 

    iiiiai vuwvufj ,,min 1  

. 

(c) If 
   

jjujja vuwtvuf ,,, 
 then 

 
jjav vuft

j
,

, 

(d) Else if 

   },{1, jjjja vuofschedulearcvuf 

, then 
 

jjuv vuwtt
jj

,
,  

(e) Else, 
   

jjjjav vuwvuft
j

,1, 
 

(f) Add jv
to fV

and 
 

jj vu ,
to 

 rf
. 

In the above algorithm, an arc schedule time I indicates the 

presence  of the link from time 
1i

 to i. Note that two cases 

might arise depending on whether 

   
jjujja vuwtvuf ,,, 

or 

   
jjujja vuwtvuf ,,, 

. For the first case, the 

information reaches the node exactly at the time 
 

jja vuf ,
. 

For the other case, if the arc is present both at times 

  1, jja vuf
and 

 
jja vuf ,

, since 
  1, jj vuw

, the 

packet will reach jv
in 

 iiu vuwt
i

,
. If. However, the arc 

is not present at time 
  1, jja vuf

, then the transmission 

process itself starts at the 
 th

jja vuf ,
step (i.e from time 

  1, jja vuf
to time 

 
jja vuf ,

), thus reaching jv
 by 

time 
   iijja vuwvuf ,1, 

. 

We remark that a rooted directed tree can also be computed 

over an o-SCC 1G
V

. As a modification for that purpose, 

GV
must be replaced by 1G

V
and correspondingly, Step 3 of 

Algorithm should be modified to fVV 1G since the 

fragment can also contain the h-nodes for the vertices in 

1G
V

and the loop can stop once all the vertices are covered.  

Algorithm  is a greedy algorithm that always chooses the arc 

that transmits in minimum time. The proof of its correctness 

is the same as the proof of the Prim-Dijkstra algorithm [2]. If 

the maximum outdegree of each vertex is D, then each step 

of increasing the fragment will take 
 TNDO log

time and 

the fragment will increase N times adding up to a total 

execution time of 
 TDN 2 logO

steps. 

 

V. CONCLUSION AND FUTURE SCOPE  

                                 

The two important results in this paper are the intractability 

of the decomposition into (open) strongly connected 

components in FSDn’s and the construction of DMST’s over 

an already existing strongly connected components. 

 

The first result implies that although it is not possible to 

identify a subset of nodes in the network that is stringly 

connected, there is a way quickly determining if a collection 

of mobile agents are strongly connected to each other. Thus, 

it is possible to lead a non-strongly connected network 

towards strong connectedness by adding links. For the case 

of wireless networks it would mean the addition of one or 

more intermediary agents (corresponding to hinodes in the 

evolving graph) to serve as hops between two nodes that are 

out of range from each other.  
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