
 © 2016, IJCSE All Rights Reserved 217

 International Journal of Computer Sciences and Engineering Open Access

 Research Paper Volume-4, Issue-4 E-ISSN: 2347-2693

Enhanced Load Balanced Min-Min Algorithm in Cloud Computing

RiddhiVarude
1
,

Ishita Shah

2
, Mukesh Bhandari

3*

1,2
Department of Computer Engineering, Vadodara Institute of Engineering and Research,

Gujarat Technological University, India
3
 Vadodara Institute of Engineering And Research, Gujarat Technological University, India

Available online at: www.ijcseonline.org

Received: Mar/23/2016 Revised: Apr /03/2016 Accepted: Apr/19/2016 Published: Apr/30/2016

Abstract— Cloud computing provides the applications and services presented over the Internet. These services are offered from the

data-center all over the world. By using the environments of cloud computing many tasks are requires to be executed by available

resources to achieve best performance, to reduce minimum response time, minimum completion time and utilization of resources etc.

This paper focuses on the task scheduling and load balancing based on the different kinds of services and results .Using the

environments of cloud computing the major problems are task scheduling and load balancing. This paper relates to benefits

improved algorithms under the environment of Static & Dynamic cloud computing. According to the different types of scheduling,

we define here the priority, efficiency and balances between the tasks respectively. Here proposed algorithm increases the resource

utilization and reduces the makespan. In this paper, the experimental results shows the better algorithm from previous and fulfill the

requirements of users.

Keywords- Cloud Computing, Load Balancing, Min-Min Algorithm, Meta Task Scheduling.

I.INTRODUCTION

Cloud computing can be defined as a digital service delivery

over the internet by different applications that are concluded

by computer systems in distributed datacenters and it

provides a high performance computing based on protocols

that allow shared storage and computation over long

distances [1]. Cloud computing is measured as internet based

computing service as long as by various infrastructure

providers on an on-demand basis, so that cloud is subject to

Quality of Service(QOS), Load Balance(LB) and other

constraints which have direct effect on user expending of

resources controlled by cloud infrastructure. Cloud

computing as measured now a days to be a very popular

because of the many benefits provided by the Cloud

infrastructure. Hardware, Software and other services are

accessible to users as a utility under an on-demand basis that

is charged correspondingly to the amount of resources

consumed by them. In some cases, Cloud providers use a

part of their datacenter infrastructure for private resolutions

and provide the rest unused ability as a cloud Service to

public clients. Such setting enables cloud to increase the

complexity of its resources capably and makes providers get

money from such distributions. On the other side of service

providing, the users come to be more comfortable and

valuable as cloud allows them to enjoy performing their

application/service and make them not worry about the

infrastructure necessary and its difficulties assassination for

their services [1,2].

In Fig 1, Cloud computing architecture is presented as

layered model. Cloud layers are logically divided into three

layers, Software as a Service (SaaS), Platform as a Service

(PaaS) and Infrastructure as a Service (IaaS) separately from

top to bottom. From Fig 1, physical cloud resources (System

Level) and middleware abilities form the basis provider of

providing IaaS and PaaS in the form of a group of clearly

datacenters and runtime environment and structure tools

which ease the creation, deployment and execution process

of application in the cloud. Finally, Cloud Application

contains the applications available openly to the end users

consuming SaaS services based on subscription model or

pay-per-use basis [3].

Figure1. Cloud Layered Organization [22].

A Cloud can be public, private, community or hybrid cloud.

For public cloud, the infrastructure of cloud is open for

common public or a large industry group. Public cloud

always is held by cloud services seller. Where, private

operates for a single organization. However, Community

Cloud is shared by various organizations and supports a

exact community. It may be managed by other (third party)

organization. Last type, Hybrid, is a cloud whose

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(217-223) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 218

infrastructure is a mixture of two or more clouds (i.e.

private, community, or public). Hybrid computing is bound

together by identical technology which allows data and

application transportability [9].

II.RELATEDWORKS

Following Job scheduling techniques are currently

established in clouds

A. Opportunistic Load Balancing

OLB allocates each task, in random order, to the next

machine that is expected to be available, regardless of

the task's expected execution time on that machine [4].

The intuition after OLB is to keep all machines as busy

as possible. One benefit of OLB is its easiness, but

because OLB does not consider normal task execution

times, the mappings it finds can result in very poor

makespans.

B. Minimum Execution Time

In compare to OLB, Minimum Execution Time (MET)

allocates each task, inrandom order, to the machine with

the best expected execution time for that task,

unrelatedly of that machine's availability [4]. The

motivation behind MET is to give each task to its great

machine. This can reason a severe load imbalance

through machines.

C. Minimum Completion Time

Minimum Completion Time (MCT) assigned each task,

in random order, to the machine with the minimum

expected completion time for that task [4]. This causes

some tasks to be assigned to machines that do not have

the minimum execution time for them. The intuition

behind MCT is to combine the profits of OLB and MET,

while escaping the situations in which OLB and MET

perform poorly.

D. Min-min task scheduling algorithm

The Min-min experimental creates with the set U of all

unmapped tasks. Then, the set of minimum completion

times, M, for each tiϵ U, is found. Next, the task with the

whole minimum completion time from M is selected and

assigned to the consistent machine (hence the name

Minmin). Last, the newly mapped task is separate from

U, and the process repeats till all tasks are mapped (i.e.,

U is empty) [8]. Min-min is based on the minimum

completion time, as is MCT. However, Min-min

considers all unmapped tasks throughout each mapping

choice and MCT only considers one task at a time. Min-

min maps the tasks in the order that changes the machine

accessibility status by the smallest quantity that any

assignment could. Let tibe the first task mapped by Min-

min onto an empty system. The machine that completes

tithe earliest, say mj, is also the machine that executes

tithe fastest. For every task that Min-min maps after ti,

the Min-min experimental changes the availability status

of mjby the least possible amount for every assignment.

Therefore, the percentage of tasks allocated to their first

choice (on the basis of execution time) is likely to be

basic for Min-min than for Max-min (defined next). The

probability is that a smaller makespan can be achieved if

more tasks are allocated to the machines that complete

them the earliest and also execute them the fastest.

E. Max-min task scheduling algorithm

The Max-min experimental is very similar to Min-min.

The Max-min experimental also starts with the set U of

all unmapped tasks. Then, the set of minimum

completion times, M, is establish. Next, the task with

the overall maximum completion time from M is

selected and assigned to the reliable machine (hence the

name Maxmin). Last, the recently mapped task is

detached from U, and the process repeats til all tasks

are mapped (i.e., U is empty) [8]. Spontaneously, Max-

min attempts to minimize the penalties incurred from

performing tasks with extended execution times.

Assume, for example, that the metatask being mapped

has many tasks with very short execution times and one

task with a very long execution time. Mapping the task

with the longer execution time to its best machine first

permits this task to be executed concurrently with the

remaining tasks (with shorter execution times). For this

case, this would be a better mapping than a minmin

mapping, where all of the shorter tasks would execute

first, and then the extended running task would execute

while different machines sit idle. Thus, in cases similar

to this example, the Max-min experimental may give a

mapping with a more balanced load through machines

and a better makespan.

F. Resource Aware Scheduling Algorithm

The algorithm, RASA (Resource Aware Scheduling

Algorithm), applies the Max-min and Min-min schemes

alternatively to assign tasks to the resources. The

algorithm creates a matrix C where Cijdenotes the

completion time of the task Tion the resource Rj. If the

number of present resources is odd, the Min-min

strategy is applied to assign the first task, otherwise the

Max-min strategy is applied. The remaining tasks are

allocated to their appropriate resources by one of the

two schemes. For instance, if the first task is assigned

to a resource by the Min-min strategy, the next task will

be assigned by the Max-min strategy. In the next round

the task assignment starts with a strategy different from

the last round. For example if the first round starts with

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(217-223) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 219

the Max-min strategy, the second round will starts with

the Min-min strategy [2]. Experimental results displays

that if the number of existing resources is odd it is

preferred to apply the Min-min strategy the first in the

first round otherwise is better to apply the maxmin

strategy the first. Substitute exchange of the Min-min

and Max-min strategies results in succeeding execution

of a small and a large task on different resources and

hereby, the waiting time of the small tasks in Max-min

algorithm and the waiting time of the large tasks in

Min-min algorithm are ignored. As RASA is contain of

the Max-Min and Min-Min algorithms and have no

time consuming instruction, the time complexity of

RASA is O(mn
2
) where m is the number of resources

and n is the number of tasks (similar to Max-min and

Min-min algorithms).

G .Improved Max-min Algorithm in Cloud Computing

Max-min algorithm allocates task Ti on the resource

Rjwhere large tasks have maximum priority rather

than smaller tasks. For example, if we have one long

task, the Max-min could execute many short tasks

concurrently while executing large one. The total

makespan, in this case is determined by the execution

of long task. But if metatasks contains tasks have

relatively different completion time and execution

time, the makespan is not determined by one of

submitted tasks. We try to minimize waiting time of

short jobs through assigning large tasks to be

executed by slower resources. In additional, execute

small tasks concurrently on fastest resource to finish

large number of tasks during confirming at least one

large task on slower resource. Based on these cases,

where meta-tasks have standardized tasks of their

completion and execution time, they suggested a

considerable development of Max-min algorithm that

indicates to improve of Max-min efficiency.

Proposed improvement increases the chance of

simultaneous execution of tasks on resources.

The algorithm computes the estimated completion

time of the submitted tasks on every resource. Then

the task with the overall maximum expected

execution time is assigned to a resource that has the

minimum whole completion time. Finally, this

scheduled task is removed from meta-tasks and all

calculated times are updated and the processing is

repetitive til all submitted tasks are executed. The

algorithm minimizing the total makespan which is

the total complete time in large distributed

environment. The proposed algorithm produces

mapping scheme similar to RASA in such

concurrency executing tasks and minimization of

total completion time necessary to finish all tasks.

Selecting task with maximum execution time points

to select largest task should be executed. While

selecting resource consuming minimum completion

time means selecting slowest resource in the current

resources. Thus distribution of the slowest resource

to longest task allows to access of high speed

resources for complete other small tasks

concurrently. Also, we get shortest makespan of

submitted tasks on current resources nearby

concurrently. Not as original Max-min which

proposed to be used if and only if submitted tasks is

heterogeneous in their completion time and execution

time, by means, there are clearly large tasks and

small tasks [9].

"Select task with maximum execution time then

assign to be executed by resource with minimum

completion time" would be changed to “Select task

with maximum completion time then assign to be

executed by resource with minimum execution time".

H. LBMM

In this algorithm starts by executing the steps in Min-

Min strategy first. It first identifies the task having

minimum execution time and the resource producing it.

Thus the task with minimum execution time is scheduled

first in MinMin. After that it considers the minimum

completion time since some resources are scheduled

with some tasks. Since Min-Min chooses the smallest

tasks first it loads the fast executing resource more

which leaves the other resources idle. So LBMM

executes Min-Min in the first round. In the second round

it chooses the resources with heavy load and reassigns

them to the resources with light load. LBMM identifies

the resources with heavy load by choosing the resource

with high makespan in the schedule produced by Min-

Min. It then considers the tasks assigned in that resource

and chooses the task with minimum execution time on

that resource. The completion time for that task is

calculated for all resources in the current schedule. Then

the maximum completion time of that task is compared

with the makespan produced by Min-Min. if it is less

than makespan then the task is rescheduled in the

resource that produces it, and the ready time of both

resources are updated. Otherwise the next maximum

completion time of that task is selected and the steps are

repeated again. The process stops if all resources and all

tasks assigned in them have been considered for

rescheduling. Thus the possible resources are

rescheduled in the resources which are idle or have

minimum load.

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(217-223) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 220

III.PROBLEM DEFINITION

Due to the NP-completeness nature of the mapping problem,

the developed approaches try to find acceptable solutions

with reasonable cost considering many trade-offs and special

cases. In this study, the proposed algorithms have been

developed under a set of assumptions:

• The applications to be executed are composed

of a collection of indivisible tasks that have no

dependency among each other, usually referred

to as metatask.

• Tasks have no deadlines or priorities

associated with them.

• Estimates of expected task execution times on

each machine in the HC suite are known.

These estimates can be supplied before a task

is submitted for execution, or at the time it is

submitted.

• The mapping process is to be performed

statically in a batch mode fashion.

• The mapper runs on a separate machine and

controls the execution of all jobs on all

machines in the suite.

• Each machine executes a single task at a time

in the order in which the tasks are assigned

(First Come First Served - FCFS).

• The size of the meta-tasks and the number of

machines in the heterogeneous computing

environment is known.

In static heuristics, the accurate estimate of the expected

execution time for each task on each machine is known a

priori to execution and is contained within an ETC

(expected time to compute) matrix where ETC (ti ,mj) is the

estimated execution time of task ion machine j.

The main aim of the scheduling algorithm is to minimize the

makespan. Using the ETC matrix model, the scheduling

problem can be defined as follows: Let task set T = t1, t2, t3,

…. ,tn be the group of tasks submitted toscheduler and

Let Resource set R = m1, m2, m3, …. , mk

Be the set of resources available at the time of task arrival

Makespan produced by any algorithm for a schedule can be

calculated as follows: makespan = max (CT (ti, mj))

CTij= Rj+ETij

Where CT --> completion time of machine

ETij--> expected execution time of job i on resources

Rj--> resources

ready time or availability time of resource j after completing

the previously assigned jobs.

The Enhanced Load Balanced Min-Min algorithm is

developed to work for the above stated problem.

IV.ELBMM

A unique modification of Load Balanced Min-min algorithm

is proposed.

In the Second Phase, Load Balanced Min-Min Algorithm

selects the task with minimum completion time and assigns it

to the corresponding resource, it sometimes doesn‟t produce

better makespan and doesn‟t utilize resources effectively. So

the idea is to select the task with maximum completion time

and assign it to the corresponding resource to produce better

makespan and utilize resource effectively.

Phase 1: Applying Min-min Strategy

For all tasks Ti

For all resources

Cij= Eij+ rj// Finding Completion time of Task „i‟ on Resource „j‟ do

until all tasks are mapped

for each task find the earliest completion time and the

 resource that obtains it

find the task Tkwith the minimum earliest completion time

assign task Tkto the resource Rlthat gives the earliest completion

time delete task Tkfrom list

update ready time of resource Rl

update Cilfor all I

end do

Phases 2: Rescheduling Phase of ELBMM

for all resources R

Compute makespan = max(CT(R)) End for

for all resources for all tasks

find the task Ti that has maximum ET in Rj

find the MCT of task Ti // MCT=Maximum completion time

if MCT <Makespan

Reschedule the task Ti to the resources that produces it

update the ready time of both resources

End if

End for

End for

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(217-223) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 221

`

\

Step 1: Applying Min-min Strategy

In min-min strategy first select the minimum task. All the

tasks assign to the both resources using Minmin strategy.

When task T4 assign to the R1 it takes comparatively more

time than to R2 and same condition applied for all tasks.

Thus, all tasks are carried out by R2 & R1 remained unused.

V. AN ILLUSTRATIVE EXAMPLE

Example of ELBMM, here tasks are 4 respectively T1, T2, T3
& T4. Resources are 2 respectively R1 & R2.

Table1. List of Tasks

Table2. List of Resources

Calculate Expected Execution Time of all tasks on each

Resource

Table3. Expected Execution Time of Tasks

Task R
1

R
2

T
1

81.78 23.36

T
2

112.95 32.27

T
3

121.09 34.59

T
4

61.07 17.45

Flowchart:

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(217-223) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 222

Figure2. Applying Min-Min strategy

Step 2: Applying ELBMM Strategy

Makespan by applying ELBMM - 84.31second

Figure3. Applying ELBMM Strategy

For Load balancing strategy the tasks which are taking

maximum time are assign to the other resources. Here task

T1 are assign to resource R1.when assigning task from R2 to

R1 the makespan of R1 should be equal to or less than R2.

VI. RESULTS AND DISCUSSION

Below Figure represents that the Makespan (Total

Completion Time of all tasks in Meta-tasks) by applying

ELBMM algorithm is less as compared to LBMM and

Minmin.

Figure4. Comparison between algorithms

VII.CONCLUSIONS AND FUTURE WORK

Load Balanced Min-Min Algorithm selects the task with

minimum completion time and assigns it to the

corresponding resource, it sometimes doesn‟t produce better

makespan and doesn‟t utilize resources effectively while

Enhanced Load Balanced Min-min selects the task with

maximum completion time and assigns it to the

corresponding resource.

Theoretical Result Analysis of LBMM and ELBMM shows

that ELBMM produces better makespan and utilization of

resources as compared to LBMM.

This study can be further extended by implementing

ELBMM algorithm in cloudSim which is java based

simulation toolkit that enables modelling, simulation and

experimenting on designing cloud computing infrastructures

to prove this concept.

VIII.REFERENCES

[1] Salim Bitam, “Bees Life algorithms for job scheduling

in cloud computing”, International Conference on

computing and Information Technology, 2012.

[2] Saeed Parsa and Reza Entezari-Maleki, “RASA: A New

Grid Task Scheduling Algorithm”, International Journal

of Digital Content Technology and its Applications,

Vol.3, pp. 91-99, 2009.

[3] Rajiv Ranjan, RajkumarBuyya, Cesar A.F.De Rose,

Anton Beloglazov, Rodrigo N. Calheiros, “CloudSim:

A Toolkit for Modeling and Simulation of Cloud

Computing Environments and Evaluation of Resource

Provisioning Algorithms”, unpublished.

[4] Tracy D. Braun, Howard Jay Siegel and Noah Beck ,

“A Comparison of Eleven Static Heuristics for

Mapping a Class of Independent Tasks onto

Heterogeneous Distributed Computing Systems”,

0

107.67

73.08

40.81

17.45

R
1

R
2

0

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(217-223) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 223

Journal of Parallel and Distributed Computing 61, 810-

837 (2001)

[5] Thomas A. Henzinger , Anmol V. Singh, Vasu Singh,

Thomas Wies, “Static Scheduling in Clouds”.

[6] T.Casavant and J.Kuhl, “A Taxonomy of Scheduling in

General Purpose Distributed Computing Systems”,

“IEEE Trans. On Software Engineering”, vol.14, no.3,

February 1988,pp.141-154.

[7] M.Arora, S.K.Das, R.Biswas, “A Decentralized

Scheduling and Load Balancing Algorithm for

Heterogeneous Grid Environments”.

[8] Henri Casanova, Arnauld Legrand, DmitriiJagorodnov

and Francine berman, "Heuristics for scheduling

parameter Sweep Applications in Grid Environments".

[9] O. M. Elzeki, M. Z. Reshad and M. A. Elsoud,

"Improved Max-Min Algorithm in Cloud Computing",

International Journal of Computer Applications (0975 –

8887).

[10] FatosXhafa, Ajith Abraham, “Computational models

and heuristic methods for Grid scheduling problems”,

“Future Generation Computer Systems 26”, 2010,

pp.608-621.

[11] Shu-Ching Wang, Kuo-Qin Yan *(Corresponding

author), Wen-Pin Liao and Shun-Sheng Wang,

“Towards a Load Balancing in a Three-level Cloud

Computing Network”, Institute of Electrical and

Electronics Engineers - 2010.

[12] Hak Du Kim and Jin Suk Kim, “An On-line Scheduling

Algorithm for Grid Computing Systems”, Electronics

and Telecommunications Research Institute, Taejon,

Korea, November 2003.

[13] D.Maruthanayagam and Dr.R.Umarani, “Enhanced Ant

Colony Algorithm for grid scheduling”, International

Journal Comp.Tech.Appl, Vol 1 (1) 43-53, November

2010.

[14] Saeed Parsa and Reza Entezari-Maleki, “RASA: A New

Grid Task Scheduling Algorithm”, International Journal

of Digital Content Technology and its Applications,

Vol.3, pp. 91-99, 2009.

[15] T.Kokilavani, Dr. D.I. George Amalarethinam,”Load

Balanced Min-min Algorithm for Static Meta-task

Scheduling in Grid Computing", International Journal

of Computer Application (0975-8887),

Volume 20- No.2,April-2011.

[16] RajkumarBuyya, Rajiv Ranjan, Rodrigo N. Calheiros,

“Modeling and Simulation of Scalable Cloud

Computing Environments and the CloudSim Toolkit:

Challenges and Opportunities”, International

Conference on High Performance Computing and

Simulation, HPCS2009, pp.1-11, 2009.

[17] Ghalem, B., Fatima Zohra, T., and Wieme, Z.

“Approaches to Improve the Resources Management in

the Simulator CloudSim” in ICICA 2010, LNCS 6377,

DOI: 10.1007/978-3-642-16167-4_25, pp. 189–196,

2010.

[18] L. Wang, G. Laszewski, M. Kunze and J. Tao, “Cloud

computing: a perspective study, J New Generation

Computing”, 2010, pp. 1-11

[19] Sun Microsystems, “Introduction to cloud computing

architecture”. White Paper, Sun Microsystems, June

2009.

[20] MythryVuyyuru, Pulipati Annapurna, K. Ganapathi

Babu, A.S.K Ratnam, "An Overview of

Cloud Computing Technology", International Journal

of Soft Computing and Engineering (IJSCE) ISSN:

22312307, Volume-2, Issue-3, July 2012.

[21] Salim Bitam, “Bees Life algorithms for job scheduling

in cloud computing”, International Conference on

computing and Information Technology, 2012.

[22] www.google.co.in

