

 © 2019, IJCSE All Rights Reserved 251

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Modelling of Knowledge Based Transport Vehicle System using Reliable

Software System

Mohd Ashraf

1*
, Z. Hussain

2
 V. Singh

3

1
 Department of Computer Science & Engg, Maulana Azad National Urdu University, Hyderabad, India
2
 Department of Information Technologies, Maulana Azad National Urdu University, Hyderabad, India

3
Cloud Technologists, Nokia Networks, Gurgaon, India

Corresponding Author: ashraf.saifee@gmail.com, Tel.: +91-9494147875

DOI: https://doi.org/10.26438/ijcse/v7i5.251256 | Available online at: www.ijcseonline.org

Accepted: 12/May/2019, Published: 31/May/2019

Abstract— The technological knowledge and experiences are the key elements in designing the transportation vehicles, thereby

enhancing it’s safe operations. This research paper introduces a model which can be used for developing a safe and reliable

transportation system with smart vehicle design. Requirements in terms of both software implementations and vehicle design

have been proposed in this research paper. Knowledge Base technique is the foundation of technical design reuse.

Implementation of this technique can be relied on the software. Two distinct algorithms are used in this paper to improve upon

the safety, reliability and quality of a system. The difference between the results of the algorithms would help us in concluding

the best technique.

Keywords— Knowledge Engineering, Reliable Software, Ontology, Sensor System, Computer-aided-technology

I. INTRODUCTION

Transportation system is the most useful and integral part of

human life. Everyday technological advances are helping us

achieve a better transportation system. However, there are

still many areas where more interference is required both on

technology and experiential learning’s. The research on

"Knowledge-Based Transport Vehicle System using Reliable

Software System” is another leap in the transportation world,

making your every journey safe, reliable and of the finest

quality. Transport vehicle system has many sub-systems like

as fire control system, protection system, power system, fuel

transmission system, electronic system, sensor system, and

more features are included in it. So that transport vehicle

design can be included in many fields and in multi-faceted

technical knowledge and experience. This technical

knowledge and experience can be effectively included as the

key to increase transport development vehicle capability,

maintainability and quality, It is decreased the time and

economy uses of the development cycle. In the recent

scenario, systems provide the geometric modeling

functionality which facilitates the drafting operations of

transport vehicle design but do not provide designers with

the necessary knowledge to develop good transport vehicle

designs. Therefore, conventional computer-aided design

technology is unsuitable for processing empirical type of

knowledge which is critical in the transport vehicle design

problems. The importance of knowledge engineering in

engineering successful designs has been recognized by the

researchers lately.

Many knowledge management methodologies have been

presented for different design areas. The drafting operations

of transport vehicle design but does not provide designers

with the necessary knowledge to develop good transport

vehicle designs. However, there is no effective and feasible

knowledge management tool to aid the development of

transport vehicle development in the current scenario. In this

paper, a methodology of construction of knowledge-based

engineering platform for a transport vehicle is proposed to

support transport vehicle design. The main design process for

Transport vehicle and its architecture is designed using the

software of the system. The design of the software system is

more reliable for the existing used systems.

So focusing on the construction of various types of the

knowledge base, a case study is presented in this paper which

describes the knowledge base engineering platform for the

transport vehicle and reliable software system. Further, the

design of the armored vehicle is produced based on the

various methodology of knowledge engineering architecture

of the knowledge-based engineering platform and category

of armored vehicle knowledge then the modeling, storage,

and retrieval for each type of knowledge are illustrated. The

ontology is adopted to create the innovative design

knowledge base combing the case-based reasoning (CBR)

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 252

with function-structure mapping method to construct the

reuse design knowledge base. Design process integration

technique is applied to build the typical design problem-

solving knowledge base. KADS’s [5]. Guoxin Wang et. al

discussed the implementation of distinct software in the

vehicle control unit of an automated Vehicle. Each module in

the vehicle control unit which is considered to be safety

critical is performed by two sets of distinct algorithms in

pseudo-parallel (one after the other) in the same

microprocessor. The output of the distinct algorithms detects

common-mode software errors and common mode hardware

failures in the two processors, thus improving the safety of

the vehicle control unit.

This paper deals with various aspects of the modeling of

knowledge base transport vehicle system. In Section 2, we

discussed the proposed model. Section 3 describes the

algorithm, Section 4 deals the implementation of system, and

section 5 explores conclusion and future scope.
II. PROPOSED MODEL

The proposed model is a combination “Hardware Module”

and “Software Module”. The primary elements of Hardware

module are Glass, Door, Electrical fixatures and Lightings,

Sheeting, Climate control, Wheel, Standard features, Interior

features and exterior features. While, the Software Module is

a combination of Analysis, Requirements, Codes,

Implementation, Testing, Reuse, Validation and

Maintenance. The synergy of the two modules is the key to a

reliable and safe transportation system and of course is

foundation of knowledge-based modeling.

Figure 1: Model of Knowledge based Transport Vehicle System

III. PROPOSED ALGORITHM

The algorithm for knowledge-based transport vehicle is

divided into two modules and is represented in pseudo code.

The output of Module in one of the algorithm is a set of the

bug reports. Each bug report identifies the information about

the failure, the set of input under which failure and module

take the input as a constraint from module one output short

the input constraint that expose in module one.

Module-1

Program p, knowledge data k, output oracle O

Result: failure report f

F-set of (failure, set of variable, sets of input)

The inputs to the algorithm are: a program P and an output

oracle O. The output of the algorithm is a set of bug reports

B for the program P, according to O. Each bug report

contains: identifying information about the failure, the set of

all inputs under which the failure was exposed, and the set of

all path constraints that lead to the inputs exposing the failure

Algorithm:

{

p=set of domain knowledge data;

f=0;

Pc Queue=empty Queue ();

}

Enqueue (pcqueue, emptypathvariable());

The algorithm uses a queue of path constraints. A path

constraint is a conjunction of conditions on the program’s

input parameters. The queue is initialized with the empty

path constraint

{

While not empty (pcQueue) and not time Expired()

}

Do

{

Path Variable=dequeue (Pc Queue);

The algorithm uses a constraint solver to find a concrete

input that satisfies a path constraint taken from the queue

}

Input=solve (Path Variable);

{

if input + k Then

}

The program is executed concretely on the input and tested

for failures.

Output=execute (p.input);

Failures=get Failures (f.output);

The path constraint and input for each detected failure are

merged into the corresponding bug report

{

For each f in failures

Next, the program is executed symbolically on the same

input

do
merge {f, path Variable, input} into f;

The result of symbolic execution is a path constraint, Vni=1

ci, that is fulfilled if the given path is executed (here, the path

constraint reflects the path that was just executed). The

Glass Door
Electrical &

Lighting
Sheeting

Exterior Feature

Climate

Control

Analysis

Testing

Implementation

Reuse

Coding

Validate

Requirement

Maintenance

Interior Feature

Standard Feature Wheel

Hardware Module

Software Module

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 253

algorithm then creates new test inputs by solving modified

versions of the path constraint

}

c1^….cn=execute (p,input);

For each prefix of the path constraint, the algorithm negates

the last conjunct (line 15

{

for each i=1,…..,n

}

do
newPC=c1^……ci-1^ci;

enqueue (Pc Queue, newPC);

Return f;

Module-2

Parameters: program p, oracle o,bug report b

Result: short path constraint that expose b.failure

For a given bug report b, the algorithm first intersects all the

path constraints exposing b.failure (line1).

C1^……^cn: =intersect (b.pathConstraints);

Pc: =true;

This eliminates irrelevant constraints, and a solution for a

shorter path constraint is often a smaller input The minimizer

systematically removes one condition at a time

{

For each i=1…..n do

Pci:=c1^…..ci-1^ci+1^…..cn;

}

Input:=solve(pci);

If input / then

Output:=execute Concrete (p.input);

Failures;=get Failure(o,output);

If b.failure/failures then

Pc:=pc^ci

Inputpc:=solve(pc);

If inputpc/ then

Outputpc:=execute Concrete(p,inputpc);

If b.failure ϵ failurespc then

Return pc;

Return shortest (b.pathConstraint)

A solution, if it exists, to such an alternative path constraint

corresponds to an input that will execute the program along

with a prefix of the original execution path, and then take the

opposite branch. The path constraint minimization algorithm

is used here. This method intersects, returns conjunction

containing the conditions that are present in all given path

constraints. A While the method, shortest, returns the path

constraint with fewest conjuncts. The other auxiliary

functions are the same as in Figure 1. The failure detection

algorithm returns bug reports for different failures. Each bug

report contains a set of path constraints leading to inputs and

exposing the failure. Previous dynamic test generation tools

presented the whole input to the user without an indication of

the subset of the input responsible for the failure. As a

postmortem phase, our minimizing algorithm attempts to find

a shorter path constraint for a given bug report. If one of

these shorter path constraints does not expose b.failure, then

the removed condition is required for exposing b.failure. The

final path constraint is the conjunction of all such required

conditions. From the minimized path constraint, the

algorithm produces a concrete input that exposes the failure.

The algorithm does not guarantee that the returned path

constraint is the shortest possible that exposes the failure.

However, the algorithm is simple, fast, and effective in

practice. Each failure might be encountered along with

several execution paths that might partially overlap. Without

any information about the properties of the inputs, delta

debugging minimizes only a single input at a time, while our

algorithm handles multiple path constraints that lead to a

failure

Figure 2: Diagram for Bug finding process

IV. IMPLEMENTATION

The application methods that are used as software in vehicle

design is to identify which elements of the specification were

used in safety gaps. All software users require safety gap

elements in the software. The ordinary generation of motion

control commands is not considered to be safety

measurements. However, the need for those motion control

commands is for emergency, safety and critical situation.

These motion control rules are used in immediate response

emergency stopping system. The motion control laws are

dependent upon speed and position of the vehicle. The speed

and position of the vehicle are counted by odometer pulse

from the wheels. The counting is done in a preprocessor for

every wheel and every main processor.

Bug Report

DB Manager

Interpreter

Executer DB Environment

Bug Repository

Minimizer

Bug finder

Program

User

input

Driver

Value Generator

Constraint

solver

Input Generator

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 254

The error detection is calculated by an extra pulse detection

algorithm. The back-up of the error detection is done through

the main processor with cross axle drift analysis for

centerline speeds of the wheel pair combinations. A

combination of the differential pulse count and the

differential latched time count is multiplied by a calibration

factor to get the measured centerline speed. The first

algorithm for hardware measurement error detection and

speed detection compares the speed measured for every cross

axle wheel pairs, through the wheel by wheel check for

differential pulse count. The rate of change and ranges are

checked for the calibration factors and a check of the

condition of the circumstances under the calibration factor is

also calculated.

These Fault detection algorithms are used to satisfy the

requirement of proposed software redundant which can be

constantly improved.

Figure 3: Process of Implementation of transport Vehicle system

Identification Phase

Identify Problem

Identify Resource

Identify Goal

Prototype Evaluation

Phase

Re-conceptualize

Renormalize

Testing & Evaluation Phase

Test Evaluation Result

Evaluate Result

Development Prototype

Evaluation

Computational Phase

Diagram Concept

Diagram Relation

Formalization phase

Identity Selection space

Formalized Model

System Design Phase

Identify Design Phase

Determine Storage

device

System Development Phase

Code

Check Logic

Compiled File

Requirement

Knowledge Concept

Structure

Specification

Program

Redesign

Renormalize

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 255

However, a better approach is to compare the total measure

of the speed with the original output which results in the total

measure collected by the differential pulse counts, a fixed

time differential and an ideal wheel Alignment factor. An

average of the differential pulse counts from all four wheels

which are replaced one by one and the two measures of cross

axle pairs. The disparity detector must allow for the

uncertainty or jitter introduced so that the sanity of the

primary speed measure is verified. This method provides a

simple confidence check of the speed measurement and an

indirect confidence check of the calibration factor used for

position calculation. The other major element used by the

control laws is the calculated commanded speed. The

differences between the commanded, and measured speed is

that the position dictates the torque commands to the

propulsion and brake systems. The complexity and fine-

tuning are built into commanded speed algorithms which

would limit a backup algorithm to just change the order of

computation and rescaling. To avoid this limitation, the

scope of the backup has been restricted to that part of the

commanded speed logic which is used only in an emergency

stop. A worst case study of the profile of speed under

emergency conditions has shown that safety is assured if the

measured deceleration rate of the vehicle remains within the

range of a fixed emergency deceleration rate.

The deceleration rate which is expected under emergency

conditions is not fixed, but the jerk is limited for safety

reasons. To make the backup check work, the measured and

fixed deceleration comparison is held off until; the time for

worst case jerk profiling has passed. The differential of the

measured speed would do a direct comparison between

differential and desired deceleration rate, which would force

the tolerance to be too large to assure a safe stopping

distance.

The solution is to use a running average of the differential

after the jerk time elapsed and use a diminishing tolerance in

the comparison. The jitter in the measured deceleration

should sum to zero over time, so that the average measured

deceleration rate should quickly approach the expected value.

And the diminishing tolerance approaches zero. If the

measured deceleration breaches the ceiling of the expected

value plus tolerance, then the open-loop braking system

would be activated in time to assure the safe stopping

distance. Sometimes there is some defective information

collected in the system in gathering of all the data.

V. CONCLUSION AND FUTURE SCOPE

To support the transport vehicle design and reliability of the

software, a transport vehicle of knowledge-based engineering

is constructed which is the foundation of this research. Three

unique steps have been formulated i.e., innovation design

knowledge, reuse design knowledge, solving process

knowledge and failures in software that is proposed. This is

how we have classified the design knowledge of transport

vehicle. The most robust system of the entire design is the

software since it provides the maximum protection in an

operable system. The features are designed and divided to

first detect anomalies in the hardware, second, to protect

against common mode hardware failures and software errors.

While the third feature assures that failure will be detected by

the first two features before a second failure has time to

occur. Unity is the most powerful equation to solve reliability

issues. Reliability is the probability that an item will perform

a required function under stated conditions for a stated period

of time. Unity is the addition of Probability of Survival and

Probability of Failure. Satisfactory and Unsatisfactory

operation (failure) both frame the required function in the

stated period of time.

REFERENCES

[1] J. Vijaya Sagar Reddy & G. Ramesh “Failure Detection Algorithm

for Testing Dynamic Web Applications Department of CSE”,

International Journal of Computer & Communication Technology,

Volume-5,Issue-4,pp 42-46, 2016.

[2] Gilb, Tom, "Distinct Software" ACM SIGSOFT, Software

Engineering Notes, Vol. 6, No. 2, p. 17 1981

[3] Fischler, M. A., 0. Firschein, D. L. Drew “Distinct Software: An

Approach to Reliable Computing” in proceeding Second USA-

JAPAN Comnference, pp 573-579, 1975

[4] R. Solanki, “Principle of Data Mining”, McGraw-Hill Publication,

India, pp. 386-398, 1998.

[5] Wang, Guoxin & Yan, Yan & Hu, Lichen & Zhang, Xiang &

Wang, Lu. (2009). Construction of knowledge based engineering

platform for armored vehicle. IEEM 2009 - IEEE International

Conference on Industrial Engineering and Engineering

Management. 10.1109/IEEM.2009.5372938. IEEM 2009

[6] Y. J. Chen, Y. M. Chen, H. C. Chu and H. Y. Kao, “On

technology for functional requirement-based reference design

retrieval in engineering knowledge management,” Decision

Support Systems, vol. 44, no. 4, pp. 798-816, 2007.

[7] Y. J. Chen, Y. M. Chen and H. C. Chu, “Enabling collaborative

product design through distributed engineering knowledge

management,” Computer in Industry, vol. 59, no.4, pp. 395-409,

2008.

[8] C. K. Mok, K. S. Chin and H. Lan, “An Intirnate-based intelligent

design system for injection moulds” Robotics and Computer-

Integrated Manufacturing, vol. 24, no. 24, pp. 1-15, 2008.

[9] L. F. Lai, “A knowledge engineering approach to knowledge

management,” Information Sciences, vol. 177. no.177, pp. 4072-

4094, 2007.

[10] S. C. Brandt, J. Morbach, M. Miatidis, M. Theiben, M. Jarke and

W. Marquardt, “An ontology-based approach to knowledge

management in design processes,” Computers and Chemical

Engineering, vol. 32, no. 32, pp. 320-342, 2008

[11] R. I. M. Young, A. G. Gunendran, A. F. Cutting-Decelle and M.

Gruninger, “Manufacturing Knowledge Sharing In Plm: A

Progression Towards The Use Of Heavy Weight Ontologies”

International Journal of Production Research, vol. 45, no. 7, pp.

1505-1519, 2007

[12] F. Gailly, W. Laurier, G. Poels, “Positioning and formalizing the

REA enterprise ontology” Journal of information systems, vol. 22,

no. 2, pp. 219-248, 2008.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 256

[13] D. Baxter, J. Gao and K. Case. “A framework to integrate design

knowledge reuse and Requirements management in engineering

design” Robotics and Computer-Integrated Manufacturing, vol.

24, no. 4, pp. 585-593, 2008

[14] K. C. Ku, A. Wensley, H. P. Kao, “Ontology-based knowledge

management for joint venture Projects” Expert Systems with

Applications, vol. 35, no. 1-2, pp. 187-197, 2008.

[15] K. Mohan, R. Jain, B. Ramesh, “Knowledge networking to support

medical new product development” Decision Support Systems,

vol. 43, no. 4, pp. 1255-1273, 2007

Authors Profile

Dr. Mohd Ashraf pursed Bachelor of

Technology in Computer Engineering from

Gobind Bhallabh Pant University of Agriculture

& Technology, Pantnagar (UK) in year 2004

and Master of Technology in Computer Science

& Engineering , Aligarh Muslim University,

Aligarh India in year 2009. He completed his

Ph.D in the field of Computer Science & Engineering from Gautam

Budhha University in year 2014. and currently working as

Associate Professor in Department of Computer Science &

Engineering, Maulana Azad National Urdu University , Hyderabad

since 2015. He has published more than 40 research papers in

reputed international journals including Thomson Reuters (SCI &

Web of Science) and conferences including IEEE and it’s also

available online. His main research work focuses on Optimization

Algorithms, Network Reliability, Soft Computing, Fuzzy logic. He

has 14 years of teaching experience and 5 years of Research

Experience.

Dr. Md. Zair Hussain pursued bachlor and

master degree in . He completed his Ph.D in the

field of Information Technology from NIT

Patna. He is currently working as a associate

professer in the department of Information

Technology, Maulana Azad National Urdu

university Hyderabad.. He has published more

than 15 research papers in reputed international journals including

Thomson Reuters (SCI & Web of Science) and conferences

including IEEE and it’s also available online. He has more than 20

years of teaching experience .

Ms. Vrinda Singh is a MTech in VLSI and

B.Tech in Electronics and Communications.

She completed her integrated course in the year

2015. Currently, she is working as Cloud

Technologist in Nokia networks, Delhi. Her

research area are cloud computing Network

security, IOT etc. She is having more than 4 year research

experiences.

