
 © 2016, IJCSE All Rights Reserved 213

 International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access

 Survey Paper Volume-4, Issue-4 E-ISSN: 2347-2693

Survey on Continuous Integration, Deployment and Delivery in

Agile and DevOps Practices

K. Sree Poornalinga1*, P. Rajkumar2

1,2 INFO Institute of Engineering,

Coimbatore, Tamil Nadu, India

Available online at: www.ijcseonline.org

Received: Mar/23/2016 Revised: Apr /03/2016 Accepted: Apr/19/2016 Published: Apr/30/2016

Abstract—Innovations pick up the leap and customers desire quick change, business turning out to be progressively more
responsive. Ready end product delivery to market is the solution, and to smooth the progress of the overall business
aspiration, software life cycle process needs to be fast. Over the years the transition from waterfall model to agile
methodology has come into the era. Progressions of these development operations are moving towards the downstream
with the evolution of DevOps. Deployment of software applications in a trustworthy, repeatable, and reliable approach
meet up the demands of an agile development which can only be completely achieved by embracing automation. Several
DevOps main beliefs are supported by Amazon Web Services (AWS) which every IT departments can profit fromand thus
business agility is improved. In this paper, we focus on delivering the principles of DevOps and Continuous Integration,
Deployment and Delivery practices supported by them.

Keywords—Amazon Web Service, Continuous Integration,Continuous Deployment, Continuous Delivery, DevOps,
Software Life Cycle.

I. INTRODUCTION

Earlier days in the software industry, one of the most
challenging and tense moment during project development
phase was integration. By last few years, integration has
largely disappeared as a source of pain for developers,
lessening to a non-event. The principle of this revolution is
the practice of integrating the code often and continuously.

Continuous integration (CI) is a software engineering
practice which reduces the blind spots of software
development and leads to the process of building and
delivering the software in rapid. At first, a daily build
existed as standard. At present, each team member has to
submit their work on daily basis and intended for a build to
be accompanied with each significant alteration. When CI
used by the book, provides constant feedback on the status
of the product development. For the reason that CI
discovers short ages initially during development process,
defects are normally less significant, less complex and
stress-free to resolve.

The continuous integration, deployment and delivery is
inevitably multifaceted, across the development, testing,
staging and production environments. This run-through
assist the software development team in evading or noticing
compatibility glitches in prior. CIDD is a development
practice that calls for developers to integrate their own code
keen on a shared repository more than a few times a day.
Every single check-in is then tested by an automated build,
letting developing teams to become aware of every
problems so often and earlier.

CIDD is considered to be one of the best practice in
supporting software development team throughout the
production environment. “Continuous Integration doesn’t
get liberatedfrom bugs, however it makes them radically
easier to discover and eliminate.” On the other hand,
Continuous Deployment is closely associated with
Continuous Integration which bring up the process of
deploying the product code across different software
development environment that reduces the time from days
to hours and hours to minutes. Also, Continuous delivery is
another practice that dictates the fast delivery of the product
to the production line. Essentially, “it is the practice of
releasing every good build to users,” as in [3]. Organization
by embracing the Continuous Integration, Deployment and
Deployment, it not only lessens the risks and catches the
bugs quickly, but then also travel quickly towards the
working product. By means of low-risk releases, one can
promptly turn out to be comfortable to business necessities
and user requirements.

This agree to for better team work between operation and
delivery, operating real change in every single software
organization, and spinning product release practice into a
greater advantage. As Continuous Integration, Deployment
and Delivery (CIDD) in manual is a messy process, i.e.
error prone. AUTOMATION is the key to cutting this task
down to size; it enables the team to help deliver code faster.
Number of tools for Automating CIDD practice is available
in the market using which every organization should adapt
for continuous product integration, deployment and
delivery. But due to the lack of knowledge in CIDD tools
and its new environment, the value of these practices is not
widely recognized. We propose to dig the importance of the

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(213-216) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 214

CIDD adoption for Agile and DevOps culture. For which
we tend to demonstrate by creating a newly structured
infrastructure called “CICI” that automates the Continuous
Integration (CI) practice in a Cloud Infrastructure (CI) for
the improvement of software quality and productivity. This
infrastructure provides a complete environment for the
developing team to build their product in an efficient
manner.

II. LITERATURE REVIEW

DevOps is a growing term that chiefly spotlights on
healthier teamwork, communication, and incorporation
sandwiched between software developers and IT operators.
Formerly, many organizations works with broken
infrastructure for integrating the code end to end throughout
the software development life cycle.Principally, developers
are likely to build software and make frequent changes to it,
whereas the focal point of IT operators is on maintaining
software stability and reliability. This divergence between
the goals of two teams lead to inconsistency, and in the end
the business process suffers. DevOps ensures the quality of
the product at all stages as in [4]. This can be envisioned as
a conveyor belt, where lots of check-ins and stability are
happening in one place, at every stage, in order to ensure
that any package approaching down the belt is detached if
it’s not high-quality as much as necessary, and finally
delivered to the production environment safe and sound.
Any practices that is adopted by the organization which
speeds up the business process in the form of cultural
change, is otherwise termed to be DevOps. The automation
of Continuous integration, Deployment and Delivery
(CIDD) are such practices that help in bringing the ideas of
DevOps as practical solutions.

Continuous Integration (CI) is considered to be one of the
best software development practices where members of a
team integrate their work frequently; commonly each
person integrates at least daily leading to multiple
integrations per day. The integrated code is then verified
with the help of automated build (including test) in order to
detect the integration errors as quickly as possible. A lot of
teams finds this approach leading to significantly reduced
integration glitches and permits a team to develop
organized software more promptly. Martin Fowler et al,
provides a fast outline of Continuous Integration
summarizing the technique and its existing usage in
enterprise world [8]. The author focused on describing the
key practices in making up an effective Continuous
Integration (CI). As a result, developing a well-organized
and automated building process is crucial in a controlled
environment. Various software experts say that CI has
numerous benefits, but we've found that it's still a rarity in
the IT field. Therefore, the key solution is to automate the
CI practice absolutely everything and run the development
and testing process so often, in that way all integration
errors are found quickly and early. As a result each
individual is equipped for the transformation of things
whenever they needed, because they know that if they do

grounds an integration error, which is quite easy to catch
and hit, as in [13] and [14].

Continuous integration (CI) is the key element involved in
supporting agile software development mainly in testing
environment [12]. Sean Stolberg projects his understanding
in implementing and supporting continuous integration
contained by the framework of agile methodology [9]. The
transition of traditional software tester to an agile
development environment gives a clear viewpoint that there
needs to put the indispensable infrastructure in place and
promoting an improved development practices in order to
make the changeover to towards agility. It is noted that
continuous integration implementation is the solution to the
lack of automation framework. And also the organization
that follows agile practice cannot find success without
continuous integration. Despite being a cornerstone of agile
development, surprisingly little is known about how
organizations assimilate continuous integration (CI) and
what organizational changes adopt to that practice.

All aspects of DevOps applicable to various phases of
SDLC are addressed in [3]. And it specifically talks about
the business needs, ways to move from continuous
integration to continuous delivery and its benefits. As part
of Agile transformation in past few years we have seen IT
organizations adopting continuous integration principles in
their software delivery lifecycle, which has improved the
efficiency of development teams, as in [12]. With the time
it has been realized that the optimization of continuous
integration alone is just not helping to make the entire
delivery lifecycle efficient or is not driving the organization
efficiency. Unless all the pieces of a software delivery
lifecycle work like a well-oiled machine - efficiency of
organization to optimize the delivery lifecycle cannot be
met. This is the one of the main problem which DevOps
tries to address. The journey and learning process in setting
up a Continuous Integration for software group [1].
Analysis shows that the success of continuous integration is
very much depends on the tools selected and discipline of
the team. The value of an integrated environments,
modernize the build process where any software engineers
could learn or adopt immediately, all these needs lead us to
the idea of Continuous Integration. Continuous Integration
is not necessary for the one who works in isolation but
collaborates with other important task involved in software
development life cycle, as in [7].

Almost all software development is performed by means of
teamwork, leveraging on varied functional groups carrying
out different components or subsystem. In an enterprise
where development of software involves a collection of
developers working on modules, integration management is
absolutely a necessity; we need to find ways to labour
proficiently and effectively in making the lengthy and
substantial integration practice in to a modest and delighted
job. Whether the practice of Continuous Integration of agile
software development methods has had an impact on open
source software projects has been investigated in [2].
Commercial software firms are increasingly using and

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(213-216) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 215

contributing to open source software. Thus, they need to
understand and work with open source software
development processes. Using fine-granular data from more
than 5000 active open source software projects the analyses
of the code size contributions over a project’s life-span.
Code contribution size has stayed flat. It has been inferred

that the open source software development has not
reformed their code integration practices. In particular,
within the limits of this study, it is claimed that the practice
of continuous integration has not yet significantly
influenced the behaviour of open source software
developers.

Figure 1: Continuous Integration (CI) in CIDD AWS Infrastructure

Organizations faced challenges while adapting to
Continuous Deployment has been examined as well as the
approaches to alleviate those challenges are studied [5].
Continuous Deployment (CD) is added emerging software
development process which was positively applied by the
number of core companies such as Facebook, Microsoft,
Google and IBM. The CD process aims to immediately
deploy software to customers as soon as new code is
developed, and can result in a number of benefits for
organizations, such as: new business opportunities, reduced
risk for each release, and prevent development of wasted
software, as in [6]. The author set up a total number of 20
procedural and community interviews deriving the
challenges faced by organizations while facing to adopt
continuous deployment process. And so, it has been
determined that every organizations who needs to be
adopted for CD practice has to be well prepared to knob
technical as well as social challenges while adopting with
their existing expertise. The researchers interrogated 15
information and communications technology companies to
govern the extent to which the organization takes on
continuous deployment [3]. It has been found that
continuous deployment is beneficial and there lies
hindrances during its adoption. In spite of understanding
delivered benefits, none of the software companies adopted
a completely automated deployment pipeline. The
companies also had advanced CD capability than what they
have accomplished. In many cases, organization
intentionally chooses to not to aim for full continuous
deployment.

Continuous integration, Deployment and Delivery (CIDD)
has been everywhere for a while now, but the habits it
suggests are far from common practice. Automated builds,

a full test suite, and committing to the mainline branch
every day sound simple at first, but they require a
responsible team to implement and continuous care. CIDD
starts with enriched tooling which can be catalysed for
lifelong change in every software organization’s culture.
Fazreil Amreen Abdul et al illustrate the journey and
learning process in setting up a continuous integration,
deployment and delivery for a software group, as in [5].
The analysis report shows that the success of CIDD solely
very much depends on the tools selected for automation and
discipline of the every single individual/team. Discipline of
the team means most of the time the human (managers,
programmers and developers) state of mind habits the
abilities on achieving the organizations objective (e.g.
money first, quality later) which stop CIDD from being the
part of their practice.

Analysis shows that the implementation of Continuous
integration effectively eliminated the need for integration
testing and the cost associated with developers spending
time on this phase. The philosophy of CI which on a regular
basis integrates the changes of individual developer’s code
with the mainline base set aside the whole development
team from integration hell that has been coined from
extreme programming. The practice CI is reinforced with
the help of automated tools to cope with repeated
integration of source code through automated builds,
testing, and deployments. Some of the obtainable products
from the global markets are, for example, Jenkins/Hudson,
Assembla, SonarQube or GitHub, allowing for the
execution of a unified CI-process, as in [10]. One of the
main problems, however, is that relevant information about
the quality and health of a software system is both scattered
across those tools and across multiple views. One of the

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(213-216) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 216

challenging problem by raising awareness on software
quality and tailoring material towards individual
stakeholders, such as developers, team lead/testers, as in
[9]. On behalf of this reason they contemporary a quality
awareness charter and stand named as SQA-Mashup, as in
[11]. It marks the use of service-based mash up standard
and integrates the information starting from the complete
CI-tool sequence in a solitary provision.

III. PROPOSED SYSTEM

The objective of this paper is to dig the importance and
advantages of DevOps and make the complete
transformation of manual software development process to
automated system through Continuous Integration,
Deployment and Deliver practices. Therefore, we propose
to create new Infrastructure in Amazon Web Service which
automates the complete pipeline for CIDD. The new
infrastructure automates every process from build in
development to delivery in production line. With the
available technologies in the global market, selective CIDD
tools are used for the implementation of the proposed
infrastructure.

The automation system consists of the following five
stages:

a. Source Code Analysis

b. Automate Build (CI)

c. Automate Testing (CI)

d. Automated Deployment

e. Automated Delivery

CIDD provides wide-ranging profitable benefits to software
engineering world. On the ground, the profits of Integration,
Deployment and Delivery (CIDD) are: Suppression of
manual software deployment, Prevention production errors,
reduction of staging and providing report analysis on code
quality. In business terms, the value of Continuous
Integration is: Reduction of risk, decreased overheads
across the development, testing and deployment process
also, improving the standing of the business by providing
improved Quality Assurance.

Organization adapted to development life cycle without
automated CIDD face lots of bugs, infrequent commits,
difficulty while integrating the code, insufficient testing,
slow release process, poor project visibility, high
maintenance cost, inflexible code bases which altogether
leads to unhappy clients. Whereas CIDD Infrastructure
provides the automation of build, test code quality metrics,
etc. when organization adapts to such practice, it offers a
dedicated build server, regular commits, fewer bugs by
means of early frequent testing and regular automated
release. The automation provides smoother integration
process, automated regression tests and better visibility.

IV. CONCLUSION

According to our study, none of the organizations in has
reached the infusion stage in automating Continuous
Integration, Deployment and Delivery (CIDD) for adapting
to DevOps culture. Despite of its own advantages to the
business development process; only less than 65% of the
organization implements CIDD in manual, and very few
companies automated partially or fully to the CIDD
practice.

It is clear that the importance of CIDD is not recognized
widely due to the lack of labours and knowledge of tools
and environment. In order to help the development team in
software engineering world, we propose to create a newly
structured Infrastructure that simply automates the CIDD
practice in AWS Cloud environment for the improvement
of both software quality and business productivity. The
CIDD AWS Infrastructure automates the product build,
testing and deployment from development to production
line in a cloud environment for the productivity of
developing team.

REFERENCE

[1] Alexander Eck, Falk Uebernickel, and Walter Brenner, “Fit

For Continuous Integration: How Organizations Assimilate
An Agile Practice,” 2014.

[2] Amit Deshpande and Dirk Riehle, “Continuous Integration
in Open Source Software Development,” 2008.

[3] Daniel Ståhl and Jan Bosch, “Experienced Benefits of
Continuous Integration in Industry Software Product
Development: A Case Study,” 2015.

[4] David Chapman, “Introduction to DevOps on AWS”,
Amazon Web Service, December 2014.

[5] FazreilAmreen Abdul and MenselyCheahSiowFhang,
“Implementing Continuous Integration towards Rapid
Application Development,” May, 2012.

[6] Gerry Claps, Richard BerntssonSvensson, and Aybüke
Aurum, “On the Journey to Continuous Deployment:
Technical and Social Challenges Along the Way,” 2014.

[7] Hanna Salopaasi, “The Role of Continuous Integration in
Software Business,” 2014.

[8] Manish Virmani, “Understanding DevOps & Bridging The
Gap From Continuous Integration To Continuous Delivery,”
2015.

[9] Martin Fowler, “Continuous Integration,” 2006. [Online].
Available:
http://www.martinfowler.com/articles/continuousintegration.
html

[10] Mathias Meyer, “Continuous Integration and Its Tools”,
IEEE Software, 2014.

[11] Martin Brandtner, Emanuel Giger and Harald Gall “SQA-
Mashup: A Mashup Framework for Continuous Integration,”
Information and Software Technology 65, October 2014.

[12] Sean Stolberg, “Enabling Agile Testing Through Continuous
Integration,” 2009.

[13] K. ReshmaRevathi, Dr. S. Kirubakaran, "A Survey on
Automatic Bug Triage Using Data Mining Concepts",
International Journal of Science and Research (IJSR),
ijsr.net, Volume 5 Issue 3, March 2016, 184 - 186

[14] D. Cubranic and G. C. Murphy, “Automatic bug triage using
text categorization,” in Proc. 16th Int. Conf. Softw. Eng.
Knowl. Eng., Jun. 2004, pp. 92–97.

