

 © 2019, IJCSE All Rights Reserved 255

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

Finding the best network for laying renewable energy based solar panel

roads: A GPU parallel algorithm implemented on CUDA

Aayush Kapur
1*

, Nirut Gupta
2

1 ,2

B Tech CSE, VIT Vellore, India

*Corresponding Author aayush.kapur2016@vitstudent.ac.in

DOI: https://doi.org/10.26438/ijcse/v7i6.255260 | Available online at: www.ijcseonline.org

Accepted: 13/Jun/2019, Published: 30/Jun/2019

Abstract— The objective of this paper is implementation of ACO algorithm on GPU to combat real life problems of road

network identification along with an application focusing on renewable energy. GPUs are specialized microprocessors that

accelerates graphics operation. Parallel processing is required when we consider a heavy code with so much of similar

iterations. CUDA is NVIDIA’s architecture for parallel computing that is used for extensive parallel computing and increases

the performance by employing the GPU (Graphical Processing Unit). We have Ant colony optimisation algorithm

implementation that is a bit different than others. Also, we compare it with the sequential code and the results are that it is very

fast as compared to sequential code. To deal with the execution of optimisation we will propose two different approaches, one

will be the serial approach of the ACO algorithm to generate the network and other will be GPU / CUDA based approach. We

will compare the execution time in both the cases and then find out the speed up. An applicability of this approach is for

generating the best possible road network for city coordinates where we try to get the network with least cost. This is of

immense applicability for developing countries where road networks are upcoming.

Keywords— CUDA, GPU, Parallel Processing, travelling salesman problem, Road network identification

I. INTRODUCTION

With growing population and ever-increasing energy

demands it is very important that we start generating enough

energy for our needs without dependency on the fossil fuels

to preserve our future, thus there is a lot of scope for the

renewable energy. Large expanse of land available for China

and India along with abundance of sunlight throughout the

year in the subcontinent, there is opportunity for developing

a road network for all the cities and small towns especially in

India, with these roads being of special solar panels which

have been tested successfully on one mile stretch in China.

Thus these roads can be a source of electricity for us.

The scope of the paper is limited to the computational and

algorithmic aspects of this idea. For finding the best route

possible between the cities as explained above for the road

network of solar panels which will allow the transportation

over it, we need to find the route joining all the points of

interest. Thus, the problem can be reduced to that of a basic

case of travelling sales man problem. Now there can be

various approaches to solve the travelling salesman problem,

one such approach is Ant colony optimisation.

Using this optimisation, we will be able to find the network

we desire.

To deal with the execution of the optimisation we will

propose two different approaches, one will be the serial

approach of the ACO algorithm to generate the network and

other will be GPU / CUDA based approach. We will

compare the execution time in both the cases and then find

out the speed up for both the cases.

Section II of this paper gives details about the related work

which has been done on this topic, Section III explains the

methodology we adopted and the algorithm used, Section IV

mentions the results and the sections V gives the conclusion

and also the future work which can be done on this topic.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 256

II. RELATED WORK

AN EFFICIENT GPU IMPLEMENTATION OF ANT COLONY OPTIMISATION FOR THE TRAVELLING SALESMAN

PEROBLEM

This paper talks about the sophisticated and clean ACO approached on GPU. They have presented an efficient method for

selecting random cities by number of ants. The method uses iterative random trial which is useful to find next city in highly

efficient and with low computation cost. They have considered many programming issues of the architecture of GPU such as

shared memory conflicts. Also, they have introduced a new method with stochastic trial in the roulette-wheel selection.

Table 1: Papers on ACO and CUDA
Title Author Journal and

DATE

Key concepts Advantages Disadvantages Future

enhancement

Improving

Ant Colony

Optimization

performance

on the GPU

using CUDA

Lawrence

Dawson

Iain Stewart

IEEE congress

2013

Implementation

of tour

construction

using roulette

wheel selection.

Proposed a new

parallel

implementation

of roulette wheel

which DS

roulette which

reduces running

time of tour

construction

New parallel

implementation

executed upto

82x faster while

not changing the

quality of tour

constructed. And

almost 8.5 times

more than GPU

existing parallel

implementation

Roulette wheel

selection method

cannot be used

on minimization

problems.

A more compact

and enhanced

version of

roulette.

The GPU-based

Parallel Ant

Colony System

Rafal

Skinderowicz

2016 Proposal of three

parallel versions

of Ant colony

system (which is

similar to ACO

and MMAS).

The two of them

uses standard

pheromone

memory and the

third one uses

selective

approach.

Parallel ACS on

Nvidia Kepler

GK104 is able to

obtain speed up

of 25x vs

sequential ACS

while in case of

selective

pheromone it

comes about to

be 17x.

Selective

pheromone is

costly and

complex.

Algo should be

tested by using

new generation

of GPU’s.

Accelerating

ant colony

optimization-

based edge

detection on

the GPU

using CUDA

Laurence

Dawson, Iain

A Stewart

IEEE congress

2014

Implements a

novel data parallel

approach that maps

individual ants to

thread wraps. GPU

is used to reduce

number of

iterations

First parallel

implementation

of an ACO based

edge detection.

Result in some

drawbacks like

broken edges

Parallel

implementation

of other such

thing based on

ACO

Novel Method to

Improve ACO

Performance on

the GPU Using

CUDA for Nurse

Roster Scheduling

Problem

 Mr. A. P.

Pande1,Mr.

B. S. Patil,

Mr. A.U.

Patil

International

Journal of

Innovative

Research in

Computer and

Communication

Engineering

March 2016

Implementation of

data-parallel GPU

execution of the

ACO algorithm to

solve nurse roster

scheduling

problem.

parallel

accomplishment

executes up to 8-

12x faster than

sequential

execution at the

same time as

preserving the

quality of the

Schedules

formation.

Implemented

both the

construction of

Schedule and

pheromone

update phases on

the GPU

Improvement in

SS required since

Schedule

construction

phase uses a new

efficient

execution of

roulette wheel

selection.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 257

A REVIEW ON

SOLAR

ROADWAYS: THE

FUTURE OF

ROADS

Stephy Johny

and Keerthi

Susan John

International Journal

of Recent Innovation

in Engineering and

Research

Volume: 02 Issue: 03

March– 2017

(IJRIER)

idea is to

replace the

asphalt roads

with solar

roadways on

our streets,

highways

parking lots

and sidewalks

that collect

solar energy to

be used by our

homes and

businesses.

The renewable

energy

generated by

solar road

panels will

replace the

current need for

fossil fuel

which is used

for generation

of electricity

which in turn

can reduce the

greenhouse

gases nearly to

half.

As it requires

huge initial

investment, it

would be

difficult to

install solar

roadways in

developing

countries.

Solar roadways

will solve the

problems of usage

of fossil fuels and

energy

consumption.

The future work

involves making

it possible in real

life.

COMPUTE UNIFIED DEVICE ARCHITECTURE

(CUDA)

CUDA is NVIDIA’s architecture for parallel computing that

is used for extensive parallel computing and increases the

performance by employing the GPU (Graphical Processing

Unit). CUDA is identifying its use in various branches which

includes image and video processing, simulation of fluid

dynamics, seismic analysis, ray tracing and many more.

CUDA programming has a hierarchy of thread groups called

block, grid and thread. A grid is divided into some number of

blocks and in each block, there consist an equal number of

threads.

CUDA C extends C language by allowing the developer to

declare C function. They are called as kernels. When

kernel is involved all blocks, which are there in the grid

are allocated to the running processor and threads in each

block is executed by the cores present in the running

processor.

III. METHODOLOGY

Steps:

1. Initialise the ants and cities, get the coordinates

of the cities.

2. Initialise required matrices

3. Random assignment of cities to ants

For (pheromone update < max iterations)

{

 4. Tour construction for each ant

 5. While (tour construction == TRUE)

{

Calculate order of cities visited

Calculate the distance of tour

}

 6. Minimum distance travelled by an ant taken

 7. Update the delta matrix taking in to account the

optimisation for each ant

 8. More ants on route, higher delta value, higher

pheromone value

 9. Update pheromone definite times

}

Steps explanation:

1. Initialise the ants and cities, get the coordinates

of the cities.

2. Initialise the distance matrix as distance between

the cities, pheromone matrix as a highly negative

value, delta matrix as zero, visited array and tour

array for each ant as null/zero/empty.

3. Randomly assign a city to each ant as starting

point, tour array will have that city as first

element as well as mark that city as visited in the

visited array

4. Now construct tour for each ant from the starting

city selected above, each city to be visited next is

selected randomly, no city can be visited more

than once.

5. While tour construction (true)

for all cities

for each ant

5.1 make next city as visited

5.2 save the order in which cities are

visited in tour array

5.3 calculate the total distance traversed

in the tour till that point

5.4 make next city as current city

6. Identify the Ant which traversed minimum

distance while covering all the cities and reached

back to the starting city.

7. Delta array will be updated by the rule

“for all ants

for two consecutive cities in the

tour

Add

(CONSTANT/distance

between consecutive cities in

the tour) to the array elements

in the delta matrix depicting the

consecutive cities in the tour

of a particular ant”

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 258

 8. This will make sure that if more ants take similar

route to cities, higher the value of delta.

 9. Pheromone will be updated definite number of times

with each successive update affecting the pheromone

value to a lesser extent.

 10. For particular city pair

Pheromone update =pheromone current + delta

value

 11. Initialise the tour and visited array for each ant as

empty, to account for successive iterations.

 12. Use the maximum distance traversed in the tour

and the pheromone matrix in the successive iterations.

IV. RESULTS AND DISCUSSION

Through this work we have tried to implement Ant colony

optimisation in the sequential mode and in the parallel

mode using CUDA. Then we applied this implementation

on the travelling salesman problem to find the best route,

we have taken the ‘tsp’ file of the coordinates of cities and

applied it to the above scenario to obtain the best network

for those points. The said points are the cities in

developing country such as India and the said network is

the road network which we want to develop.

Initially the algorithm was run in sequential fashion on

different data points to get the results, however the time

taken for the cities increases exponentially even though

the increase in the number of cities is low.

As can be seen from the table above the time taken for 438

cities is 160 seconds, for 1002 cities its higher and it goes

on increasing.

This results in a prohibitive picture for execution for

dataset as large as 70009 cities which we want to consider.

The time taken will be very large. Thus, we tried to

implement the same on the parallel CUDA, where we

found that the time taken was very much lower compared

to the sequential execution.

In the parallel implementation first, we have equal number

of ants and cities, the number of cities increased as 29, 48,

100, 200, 318, 438, 1000, 4000

The execution cities and parameters were kept the same as

for sequential execution. The speedup results were found

and the comparative graph has been shown above. In the

case of 70009 cities, since we had no serial data due to

prohibitive time requirements, we tried to test it on

different number of ants considering different number of

cities each time.

V. CONCLUSION AND FUTURE SCOPE

In this paper we have proposed an implementation of a

parallel algorithm for finding best network for laying energy

based solar panel roads. In our implementation we randomly

assign city to each ant and start the tour and find the best tour

possible by multiple iterations. This heavy task with so much

iterations needs to be done in parallel for which CUDA is the

best solution. We have successfully implemented the

algorithm and find good results.

For 200 cities the parallel execution time was found to be

1.7389 seconds whereas serial execution time for the same

was 36.172. Thus, GPU implementation attains the

speedup factor of 20.80

For our future work, we are mainly going to focus on the

accuracy and efficiency of the algorithm and will find some

ways to optimise the solution.

Second it will be of some practical implication of the results

we acquired more aligned with the real life scenarios with

more parameters considered.

It can also be applied on different applications which we

haven’t considered in this paper requiring heavy

computational tasks.

ACKNOWLEDGMENT

We would also like to thank VIT University management

for giving us this opportunity to undergo this subject and

providing us facilities to do this project.

REFERENCES

[1] Akihiro Uchida, Yasuaki Ito, Koji Nakano, “An Efficient GPU

Implementation of Ant Colony Optimization for the Traveling

Salesman Problem”, IEEE

[2] Zhou Y, He F Z, Qiu Y M. June 2017, Vol. 60 068102:1–

068102:3. SCIENCE CHINA Information Sciences

[3] Dawson, Stewart. 2013. IEEE

[4] Zhoua, Hea, Houa, Qiub . 14 october 2017. ELSEVIER , future

generation computer systems

[5] Akihiro, Ito, Nakano. 2012. IEEE

[6] Ceciliaa , Llanesa, Abellána, Gómez-Lunab, Changc, Hwud

.15December2017. ELSEVIER, Journal of parallel Distributed

computing

[7] Dawson, Stewart. 2014. IEEE

[8] Johny and John. 25 May 2018. ELSEVIER Computer

Languages,Systems & Structures

[9] Ermiş , Çatay. May 2017. Transportation Research Procedia

[10] Souza, Pozo. 2014. IEEE

[11] Patil, Pandel. March 2016. International Journal of Innovative

Research in Computer and Communication Engineering

[12] Skinderowicz. 2016. ACM

[13] Papenhausen, Mueller. 25 May 2018. ELSEVIER Computer

Languages,Systems & Structures

[14] Khatri, Gupta. 2014. IEEE

[15] Johny, John. March– 2017. International Journal of Recent

Innovation in Engineering and Research

[16] Alimi, Bali, Elloumi, Abraham. 2017. Springer

[17] Kulkarni. May-Jun 2013. International Journal of Engineering

Research and Applications

[18] Michaël Krajeck, Gravel, Delévacqa.2012.IEEE

[19] Shingate. 16 November 2017

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 259

[20] SHI, Zhi. 2012. Springer

[21] Rocki, Suda. 2013. IEEE 27th International Symposium on

Parallel & Distributed Processing

[22] Zhao, Cai, Lan. 2012. International Conference

[23] Youness, Ibraheim, Moness, Osama. 2012. IEEE

[24] Diaz, caro. 2012. IEEE

[25] Jain, Vanita & Jain, Aarushi & Jain, Achin & Kumar Dubey,

Arun. (2018) Comparative Study between FA, ACO, and PSO,

ijsrcse

Fig 1. NVIDIA visual profile for the code source: run on dell system nvidia GTX960M

Fig 2 Parallel vs Serial Execution Comparison Source: run on python2.7 plotted using matplotlib.pyplot on dell system

nvidia GTX960M

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 260

Fig 3. Tour construction measurements from NVIDIA visual profiler source: run on our machine

Fig 4. Parallel execution over 70009 cities: time output source: run on python2.7 plotted using matplotlib.pyplot on dell

system nvidia GTX960M

Table 2. serial vs parallel time comparison Source: on dell

system nvidia GTX960M

Cities Serial Parallel

29 0.812s 0.13s

48 2.11s 2.03s

100 8.987s 0.48s

127 13.63s 0.74s

200 36.17s 1.73s

318 92.91s 3.65s

438 160.94s 11.04s

1002 - 0.19s

4461 - 0.07s

