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Abstract— News channels established a 24-hour news habit which gets updated virtually in every second. Archiving becomes a 

challenging process since the news production is huge. Viewers are interested in news stories as it delivers useful and detailed 

information in short form. The news story created based on the history and the latest news updates The journalists access news 

archives to get details about the news happened related to the new happenings. Searching archives, fetching and linking related 

news is a tedious job for a reporter. In this work, a system is suggested which uses ontology and vanilla recurrent neural network to 

create news automatically for a query. The framework is evaluated using BLEU method and correlated with human evaluation. 

Ontology completeness decides the quality of the news generated. 
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I.  INTRODUCTION  

 

Enormous news contents are generated in every second 

which keeps on growing exponentially. Fast pace of 

production is due to more news organizations are come into 

existence and new types of news media hit the market. 

Fetching the right content from a huge library is a difficult 

job for journalists. Ontology helps to resolve this situation 

[1],[29],[30]. 

 

News desk journalists, editors and news producers are 

accountable for making news script and compiling it into 

story. The process starts with preparing a news script. 

Obviously reporters have to search the news library to get 

relevant information. Since the news related to a single event 

itself is huge, there is every chance that news correspondent 

may get hundreds of news for his/her single search query. To 

make a story, journalists may need to search archive with 

different keywords to collect information required to make 

the news story. It is a hectic task for the journalist 

considering the time limit. 

 

On the contrary, if the news reporter gets the news generated 

by the machine taking into considering all related events 

archived based on his/her search query terms provides a 

much more personalized experience for the journalist.  

The system introduced in this work is based on simple 

recurrent neural network and ontology. The content list of 

this paper is as follows. Literature review is summarized in 

Section II. The suggested system is explained in section III. 

In section IV, assessment and experimental results are 

carefully studied and finally, section V concludes the work 

mentioned in this paper 

 

II. RELATED WORK  

 

Traditional news extraction frameworks are recommendation 

applications focuses on content and user [2], [3]. Several 

hybrid approaches are also formed by combining traditional 

approach [4], [5], [6], [7], [8], [9]. One of the drawbacks of 

traditional approach is the inability to capture semantic 

meaning of news stories and search queries. It has been 

overcome by using semantic web tools [10], [11], [12]. 

 

News generation and summarization systems are developed 

based on natural language processing techniques in current 

years [13,14,15,16]. 

 

Neural networks are used extensively in automatic creation 

of text due to its immense capabilities and increased 

computational power [17,18]. The quality of text created is 

subject to the neural model used. Recently, these models are 

used for generating news, news head- lines, news comments 

etc. [19,20,21, 22,23]. 
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III. PROPOSED SYSTEM  

 

Recurrent Neural Network (RNN) is an extension of simple 

neural network which stores the previous state and uses 

sequential information. It has a context layer which 

maintains previous information. One of the simplest form of 

RNN is vanilla-RNN. RNNs works well for a short 

sequential information and does not remember long 

sequences. Long short term memory (LSTM) is developed to 

solve this issue which is a variant of RNN. The important 

concept of LSTM is the cell state [24,25].  

 

The hidden layer depends on current input at time n and n-1 

step (previous). 

 

a
n
 = tanh(weightaxC

(n)
 − Weightaaa

(n−1)
 + ba)     (1) 

 

The softmax function is used as the last layer to determine 

the probability of an output. 

 

 ȳ
n
 = softmax(Wyaa

n
)                              (2) 

 

LSTM cell uses three gates which are input gate, output gate 

and forget gate. Input gate (5) updates the previous state 

values. Add gate (4) includes the new candidate values to the 

state. Forget gate (3) determines which all values should not 

pass through and to be forgotten. 

 

f tn = σ (weightft · [an−1, xn] + bf t)       (3) 

adn = tanh (weightad · [an−1, xn] + bad)                 (4) 

inn = σ (weightin · [an−1, xn] + bin)         (5) 

 

Where input sequence is denoted by x = (x1, . . ., xn), RNN 

calculates the hidden vector sequence   a = (a1, . . ., an) and 

output vector sequence y = (y1, . . ., yn) by iterating the 

equations (1) and (2) from n = 1 to n. The symbol weight 

denotes weight matrices and b represents bias vector. σ 

denotes sigmoid function. 

 

The suggested architecture is represented in figure 1. The 

ontology used in this framework is Open Calais ontology 

which is developed by Thomson Reuters and follows the 

International Press Communications Council (IPTC). Vanilla 

Char RNN-LSTM algorithm is used to train the model to 

generate news from ontology keywords. 

 

The Framework has two processes namely training and 

testing. News annotations are used for model training. News 

is generated by using ontology keywords/tags as input to 

neural model. 

 

 
 

Figure 1: News Generation System 

 

Two hidden LSTM layers and one fully connected layer is 

used in this model. In each hidden layer 256 hidden states are 

there. The model was trained for 1000 epochs. Learning rate 

0.9 and dropout ratio is 0.3. The Algorithm 1 describes the 

procedure. 

 

 Algorithm 1 Vanilla RNN-LSTM model 

Input: Input news annotations x 

Output: Trained Vanilla CharRNN-LSTM Model. 

Training Steps 

Start Procedure 

for several epochs of training do 

for each character ci in x do 

Run encoding on ci 

Run one step of NN optimization & Compute 

gradi- ents of the loss 

Update the parameters according to this gradient 

       end for end for 

       End Procedure 

 

Testing 

Input: Input Ontology Tags x 

Output: News generated 

Testing Steps 

for each tag tai in x do 

Generate the next n characters of news using the 

trained model 

    end for 

 

IV. EVALUATION AND RESULTS 

 

The approach in this work consists of manual and automatic 

evaluation.  Automatic evaluation techniques are not full 

proof in checking the news produced by system because of 

the complexity of natural languages. So we are also 

considering human evaluation in this case. Finally, 

conclusion is made by correlating human score with 

automatic evaluation metric value. 

Figure 2 is a graphical representation of average training loss 

versus number of epochs. 
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Figure 2: Avg. training loss Vs No. of Epochs 

 

4.1 Dataset 

The dataset used is BBC news dataset [26]. They belong to 

five different categories like business, entertainment, politics, 

sports and technology and is collected in the year 2004– 

2005. Two third of the data is inputted to train the model and 

remaining news is used for testing purpose. 

 

4.2 BLEU metric 

Precision can be measured using BLEU method. Precision is 

calculated by making human text as reference and diversity 

is measured by using generated text as reference. BLEU 

scales from 0 to 1 and 1 is the highest value. All n-gram 

matches between system and reference news were computed 

in this work [27,28]. Table 1 presents the BLEU score 

values. Figure 3 illustrates the scores with respect to training 

epochs. 

 
       Table 1: Average BLEU score Vs Number of Epochs 

Epoch BLEU-1 BLEU-2 BLEU-3 BLEU-4 

100 0.0913 0.0365 0.0128 0.0064 

200 0.1209 0.0484 0.0169 0.0085 

300 0.1873 0.0749 0.0262 0.0131 

400 0.1998 0.0799 0.0280 0.0140 

500 0.2049 0.0820 0.0287 0.0143 

600 0.2111 0.0844 0.0296 0.0148 

700 0.2234 0.0894 0.0313 0.0156 

800 0.2286 0.0914 0.0320 0.0160 

900 0.2291 0.0916 0.0321 0.0160 

1000 0.2307 0.0923 0.0323 0.0161 

          

 
                           Figure 3: BLEU score 

4.3 Human Evaluation 

Human experts and non-experts with distinct backgrounds 

are selected as evaluators. The evaluation is based on the 

basis of fluency, adequacy and quality. They are also told to 

judge whether the news generated is by human or computer. 

A questionnaire was prepared and score level is from 0 to 5 

except the judgement of the source of news (human or 

computer). A yes or no question is included in the 

questionnaire to judge news source. Table 2 summarizes 

human evaluation score  

 
Table 2. Human ratings 

Model   Quality 

(5) 

Fluency  

(5) 

Adequac

y (5) 

Machine 

Generated 

Char RNN-

LSTM 

 2     2   1 8/10 

 

4.4 Discussions 

The tags from Open Calais ontology is fed as the seed data 

for news generation. The intuition here is that if the system 

has enough data to learn from, it will produce news which 

has some correspondence to the reference news. Feeding the 

tag words at an interval results in generation of news which 

has some information from past news related with the tags. 

Hence the final generated news will contain information 

from past related news annotations with which each of the 

input tags are related to. 

 

The easiest test for human experts was to predict whether the 

generated news is manmade or machine generated. Most of 

them considered the generated news as machine text. 

Training vanilla recurrent neural network and generating 

meaning full text is a difficult job since it learns and generate 

text by character by character. Both human and BLEU values 

are correlating in this work. 

V. CONCLUSION AND FUTURE SCOPE  

We presented a news generation system using ontology and 

neural networks. The outcomes are promising for further 

research in this area. The possibility of using models based 

on different deep learning algorithms can also be 

investigated. The dataset used in this work consists of 

different topics. The inclusion of related news in the dataset 

may help the model to recognize the context. 

 

The keywords extracted by Ontology from news in the 

dataset are less in number. Since the feeding input data for 

generating news by neural model is ontology keywords, 

sufficient number ontology tags are necessary for improving 

the quality of news generated. 
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