@
AX]JCSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Vol.-7, Issue-10, Oct 2019 E-ISSN: 2347-2693

Denoising Dirty Document using Autoencoder

Mohammad Imran'’, T. Sita Mahalakshmi?, M.D. Venkata Prasad®, V. Kumar Kopparty*

'Computer Science and Engineering, Neil Gogte Institute of Technology (NGIT), Affiliated to Osmania University, Survey
No-35, Peerzadiguda Road, Kachawanisingaram, Uppal, Hyderabad, India
Department of Computer Science and Engineering, GITAM Institute of Technology, Andhra Pradesh, India
3Research Scholar (Regd No: 1260316406), Dept. of Computer Science and Engineering, GITAM Deemed to be University,
Visakhapatnam, Andhra Pradesh, India
“Research Scholar (Regd No: 41900148), Dept. of Computer Science and Engineering, LPU (Lovely Professional University),
Jalandhar - Delhi G.T. Road, Phagwara, Punjab, India

*Corresponding Author: drimran.ngit@gmail.com
DOI: https://doi.org/10.26438/ijcse/v7i10.2126 | Available online at: www.ijcseonline.org

Accepted: 10/0ct/2019, Published: 31/0ct/2019

Abstract -An autoencoder is an unsupervised machine learning algorithm [12] that applies back propagation, setting the target
values to be equal to the inputs. Deep autoencoders are used to reduce the size of our inputs into a minor representation. If
anyone needs the original data, they can reconstruct it from the compressed data. The input seen by the autoencoder is not the
raw input but a stochastically corrupted version. A denoising autoencoder is thus trained to reconstruct the original document
from the noisy version.In the implementation of Deep autoencoders we have trained the algorithm with noisy and cleaned
document images; we generated a model which helps us in removing noise or unnecessary interruption from the documents.
Document denoising can be achieved with the deep learning model which automatically learns the discriminative features
necessary for classification of input images.

Keywords—document denoising,deep autoencoder,supervised learning, deep learning ,classification,cleaned and noisy images

I. INTRODUCTION from a noisy observation of it and generates the output by
removing any noise or unnecessary interruption.

Autoencoder can be broken in to three parts encoder,
decoder, latent space, encoder of the network compresses or
down samples the input into a fewer number of bits. When
the decoder is able to reconstruct the input exactly as it was
fed to the encoder, you can say that the encoder is able to
produce the best encodings for the input with which the

decoder is able to reconstruct well!

Bottleneck Laver

Input Image Output Image

MOTIVATION

Many of the recent deep learning models rely on extracting
complex features from data. The goal is to transform the input
from its raw format, to another representation calculated by
the neural network.

This representation contains features that describe hidden

unique characteristics about the input. Decoder

Encoder
Fig: 1 Feature variation
There are variety of autoencoders, such as the convolutional

autoencoder [13], denoising autoencoder, variational Dimensionality reduction can be achieved using deep

autoencoder and sparse autoencoder.The goal of image
restoration techniques [1] is to restore the original image

© 2019, IJCSE All Rights Reserved

autoencoders,the reconstructed image is the same as our
input but with reduced dimensions. It helps in providing the
similar image with a reduced pixel value.

21

International Journal of Computer Sciences and Engineering

ORCNAL

1000 x 1500, 100kb

nAsH

1000 x 1500, 25kb

Vol.7(10), Oct 2019, E-ISSN: 2347-2693

With the prosper development of neural networks, image
denoising by neural networks [5] has been a hot topic, an
autoencoder consist of three layers:

Instead of requesting a
full-sized image, G+ requests
just 1/4th the pixels

..and uses RAISR to restore
detail on device

Fig: 2 Dimensionality Reduction

Document Denoising is the most prominent and effective
technique. The common ideas of these approaches is to
transfer image signals to an alternative domain where they
can be more easily separated from the noise [2, 3]. In this
paper, we use Autoencoder [4] to achieve image denoising.

1. Encoder

Input

2.Code

3.Decoder

Ourput

Encoder

- 4

Denoised image

Decoder

i

Compressed
representation

|

The feature we want to
exiract from the image

Noisiy input

Fig: 3 Denoising Image

Watermark removal. It is also used for removing watermarks
from images or to remove any object while filming a video
or a movie.

Fig: 4 Watermark Removals
Architecture of Autoencoders [9]

© 2019, IJCSE All Rights Reserved

|

/

\
[TTTTTT]

|

- -
-
- -
- -
o~
- -
-
~ g
~
~
~ ~
~ -
e
Pl
-
-
S~
S~ -
el
- S

|

—
(.

Encoder Decoder

Fig: 5 Architecture of Autoencoders

ENCODER: This part of the network compresses the input
into alatent space representation. The encoder
layer encodes the input image as a compressed representation
in a reduced dimension. The compressed image is the
distorted version of the original image.

CODE: This part of the network represents the compressed
input which is fed to the decoder.

DECODER: This layer decodes the encoded image back to
the original dimension. The decoded image is a lossy
reconstruction of the original image and it is reconstructed
from the latent space representation.

Il. RELATED WORK

The layer between the encoder and decoder, i.e., the code is
also known as Bottleneck. This is a well-designed approach
to decide which aspects of observed data are relevant
information and what aspects can be discarded. It does this
by balancing two criteria. Compactness of representation,
measured as the compressibility. It retains
some behaviourally relevant variables from the input.

Input Layer Hidden Layer Output Layer

“BOTTLENECK™

Fig: 6 Layer between the encoder and decoder

22

International Journal of Computer Sciences and Engineering

Yi=g(f(x)) = xi

The image shows how a denoising autoencoder may be used
to generate correct input from corrupted input. Handwritten
digit images are commonly used in optical character
recognition and machine learning research [6][7]

Input Qutput
19258540

B4@25B540 4RS840 BQ129270 6AR1282T0 B4@2581540 1@258¢40

Combton Corveltion Wax Pasig Comeluton Comeution Conclution
+LeskyRell + Leaty Rell +laaiy el +leakyReld +Signod
+Bach Nomalztion + Bateh Nmalazton +Upsanglirg

Fig: 7 Algorithm of Denoising autoencoder

As I've mentioned before, autoencoders like the ones we
have built so far aren't too useful in practive. However, they
can be used to denoise images quite successfully just by
training the network on noisy images. We can create the
noisy images ourselves by adding Gaussian noise to the
training images [8], then clipping the values to be between 0
and 1. We'll use noisy images as input and the original, clean
images as targets. Here's an example of the noisy images |
generated and the denoised images.

C N S Yarandor
cncoaer JeCcof

L] @
@ L L]
Y = ® ®
L ® B
® B
Input Hidden Output

Fig: 8 Simple autoencoder
I11.RESULTS AND DISCUSSION

We use keras APl [11] which uses tensorflow as backend we
loaded the following libraries using keras.layers we load

© 2019, IJCSE All Rights Reserved

Vol.7(10), Oct 2019, E-ISSN: 2347-2693

Input[9], Dense, Conv2D, Maxpooling2D[15], and
UpSampling2D from keras.models we import Model[10]

We load the following dataset which are having noisy and
cleaned images we divide the dataset in to two parts
train_fpath and train_cleaned_fpath with these we generate a
model using autoencoder.

1. Steps for loading dirty document dataset
train_fpath = "../input/denoising/denoising-dirty-
documents/train/train/"

train_cleaned_fpath =
"../input/denoising/denoisin
g-dirty-documents/train_cleaned/
train_cleaned/"

test_fpath = "../input/denoising/denoising-dirty-

documents/test/test/"

print (os.listdir (train_fpath))

2.Data exploration
Dataset consisting of three directories out of which two are
train and one is test directory

print ("No. of files in train folder = " len(os.listdir
(train_fpath)))

print ("\n No. of files in train_cleaned folder =",
len(os.listdir(train_cleaned_fpath)))

print ("\n No. of files in test folder =" len(os.listdir
(test_fpath)))

['27.png’, "126.png’, '35.png’, ‘117.png’, '263.png’, '98.png", '167.png’, '69.png’,

'83.png’, "119.png’, '141.png’, '156.png’, '87.png’, '56.png’, "162.png’, '18.png’, '1
1.png’, "113.png", '72.png’, "176.png’, "39.png’, '9.png’, ‘47.png’, '152.png’, '66.pn
q', '92.png’, "144.png’, '189.png’, '45.png’, '6.png’, "143.png’, "174.png’, '29.png’,
'53.png’, "188.png’, '77.png’, '54.png’, '6@.png’, "159.png’, '93.png’, '89.png’, '28
T.png’, "170.png", "11.png’, '5.png’, "132.png’, '84.png’, '6B.png", '111.png’, "125.p
ng', "185.png’, '9@.png", "122.png’, '146.png’, '95.png’, '215.png’, '26@.png’, "171.p
ng', '62.png’, '213.png’, '42.png’, '78.png’, "191.png’, '96.png’, "185.png’, "149.pn
g', "164.png’, '20.png’, '138.png’, '194.png’, '86.png’, '167.png’, '11@.png’, '120.pn
q', '38.png’, '74.png’, '81.png’, '206.png’, '197.png’, '23.png’, '173.png’, '99.png’,
'158.png’, '32.png’, '131.png’, '137.png’, "129.png’, '153.png’, '177.png’, "188.png’,
‘212.png’, '14.png’, '48.png", "198.png’, '161.png’, '26.png’, "1@1.png’, '75.png’, 2

1.png’, "140.png’, "44.png’, "192.png’, '63.png’, '116.png’, "135.png’, "182.png’, '11

4.png’, '24.png’, "182.png’, "179.png’, '155.png’, '128.png’, 'S@.png’, '289.png’, '3
6.png’, "134.png’, '8.png’, "65.png’, '3.png’, '57.png’, '186.png’, "183.png’, '184.pn
q', "216.png’, '281.png’, '2.png’, "123.png’, "147.png’, '41.png’, "15.png’, "158.pn

q', 'Sl.png’, "12.png’, '71.png’, '59.png’, '168.png’, "8A.png’, '188.png’, "195.png’,
'38.png’, '165.png’, '264.png’, '33.png’, '218.png’]

. of files in train folder = 144
. of files in train_cleaned folder = 144

. of files in test folder = 72

23

International Journal of Computer Sciences and Engineering

3. Load noisy images
def load_images(fpath):
images =[]
for image in os.listdir(fpath):
#print(fpath+image)
if image!="train' and image!="train_cleaned'
and image!="test":
img = cv2.imread(fpath+image)
img = cv2.cvtColor(img, cv2.COLOR_BG
R2RGB)

img_array = Image.fromarray(img, "RGB")

resized_img = img_array.resize((252,252))
images.append(np.array(resized_img))
return images
train_images = load_images(train_fpath)
train_images = np.array(train_images)
print("No. of images loaded = ",len(train_images),"\nShape
of the images loaded = " train_images[0].shape)

No. of images loaded = 144

Shape of the images loaded = (252, 252, 3)

4.Load clean images
train_cleaned_images = load_images
(train_cleaned_fpath)
train_cleaned_images = np.array
(train_cleaned_images)
print("No. of images loaded ="
len(train_cleaned_images),"\n
Shape of the images loaded ="
train_cleaned_images[0].shape)

No. of images loaded = 144

Shape of the images loaded = (252, 252, 3)

5. Load noisy test images

test_images = load_images(test_fpath)
test_images = np.array(test_images)

print("No. of images loaded = ",len(test_images),"
\nShape of the images loaded = ",test_images[0].
shape)

No. of images loaded = 72

Shape of the images loaded =

(252, 252, 3)

© 2019, IJCSE All Rights Reserved

Vol.7(10), Oct 2019, E-ISSN: 2347-2693

Displaying noisy training images

it e e gt s e g Mrj
g The o e, e e "'!a/\wox('p
et T o o o st it
nebod e, e e e e i wma}
a.l’mr‘EMa e el oo
ot il
‘ :{e.m;‘“.i:dm‘.mw;m

Ll \
s ol o

isyne Wmf‘m’w
oma cat et a2 bt

There are sevenal clossie spefll
or elaninating high frequency noig
The mean filier, the medion filten
opemng filter are frequently used
18 4 loupass or snoothing filter ¢
pinel values uith the neighborkoog
the wnage naise but blurs the tnog
falter calculotes the.oediun of -t
Jor each pizel, theredy reduzing {
Fasally, the epening closing feltd
norphological filter hat comhined

L 1 A

r

Tt gl ot g A o i s 1
{4y o by by s byl s
|t gl W e wlmwe i i o
W ol o, T it ok it 5
et e e et ey oo
sl e uch e o e el el
TS R SRS e, G) 1
gt e g
7 0 B g
fafi o 5 e e
ek e it gl

6. Data normalization [16]
train_images = train_images.astype (np.float32)
train_cleaned_images = train_cleaned_images.astype

(np.float32)

test_images = test_images.astype(np.float32)

train_images = train_images/255
train_cleaned_images = train_cleaned_images/255
test_images = test_images/255
print(train_images[0].shape, train_cleaned_images[0].shape,

test_images[0].shape)

(252, 250, 3) (252, 250, 3) (252, 250, 3)

7. Displaying

normalization

noisy training

print("Displaying noisy training images
after normalization™)
display_images(train_images)

images after

T e o it el s e et ok
fo e The e, e e el
.

5.2 s v st it el
serohd v, e ’\: itqu 1o s e

ats ;{Ma ki
ot Fralhes
(e

i '11'
s i el

sy Qﬂtpslt'\;ﬁm
i e 1 st et

et Tgan

There are sevenal classie spatl
or eliminabing
The mean filter, the median filten
openng filter are frequently use
18 0 loupass or smoothing filter
pigel values utth the neighbonkooq
the nage notse but blurs the tnog

fulter calculotes the-medinn of 4

hagh frequency nos

Jor each pizel, thereby reducing
fisally, the opening closing feite

forghological fiter fhat conbned

Lve L

oo it s ot g e s iy ik
e o e g Ay ety s byt e
ol il et o, st
i ol s ok e, T s can e it n 3
e el e e hey e et ety o e
et st e ko potl e of el
i av} neg w:vm&} [

fen e et e s ‘Mm et
vt Tt b e it et mal

8. Define Deep autoencoder

You are provided two sets of images, train and test. These
images contain various styles of text, to which synthetic
noise has been added to simulate real-world, messy
artifacts[20]. The training set includes the test without the
noise (train_cleaned).

24

International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

we create an algorithm to clean the images in the test set. Epoch 17480
================s============= 5s 31Ims/step - loss: 8.6621

Epoch 27486
input_img = Input(shape=(252, 252, 3)) 1447144 (— 1s ams/step - loss: 6.5485
132?144/[:—— 1s 4ms/step — loss: B8.3896

X = Conv2D(32, (3, 3), activation="relu’, Epoch 4/40
padding='same")(input_img) [14] 1e amsfstep - Joss: @.3%ad
x = MaxPooling2D((2, 2), padding="'same")(x) U AmmmETy = T8 OS5
x =Conv2D(32, (3, 3), activation="relu’, —_] - W e = T O

padding="same")(x)
encoded = MaxPooling2D((2, 2), padding='same’)

mmmmmm———eee e 1s 4ms/step - loss: 8.3712

(X) S=============——=c-——————ooooo 1s 4ms/step — loss: 8.3784
x = Conv2D(32, (3, 3), activation="relu’, —] - 15 4ms/step - loss: 8.3671
padding="same") (encoded) —] - 15 4me/step - loss: B.3676

x = UpSampling2D((2, 2))(x)
X = Conv2D(32, (3, 3), activation="relu’, padding='same")(x)
X= UpSampIngD((Z, 2))(X) ============================== 1s 4ms/step - loss: 8.3613

decoded = Conv2D(3, (3, 3), activation='sigmoid’, autoencoder.fit(train_images, .
padding="same") (X) train_cleaned_images,epochs=400, batch_size=100,

shuffle=True)

S===sm——m—smome—e—eeooo oo oo 1s 4ms/step - loss: B.3659

autoencoder = Model(input_img, decoded) [17]

autoencoder.compile(optimizer='sgd’, [18] , Model loss
loss='binary_crossentropy") 01751~ E‘t"
autoencoder.summary() 0.150
__ 0125
Layer (type) g 0100
=== ——=== 3

0.075 \

0050 Il'ull
""""""""""""""""""""""""""""""""""""" 0.025 \\x

0.000 —

__ o 5 50 EE) 100 125 150 175 200
Epoch

Fig : 9 Model loss

IV.CONCLUSION

The main purpose of this paper is to implement autoencoder
--------------------------------------- for denoising dirty document to generate reconstructed image
from the latent space,After 400 epochs, the autoencoder
__ seems to reach a stable train/test loss value of about 0.2065.
We can try to visualize the reconstructed inputs and the
encoded representations[21]. We will use Matplotlib to
display clean images predicted by the autoencoder for the
given test images.

A vew e besdermee fedon b fe bpnebd by

—— Rkl peterny b vert by gl (he Spetey

conv2d_5 (Conv2D) (None, 252, 252,

Total params: 29,587
Trainable params: 29,587

o intsie e 0 e

o Jesheus bevel bt Vot pwgaitlen pucera,

Non-trainable params: 8

L

Now let's train autoencoder for 400 epochs:[19] iFig: 1”(A).c|'ean image after using auto enco der

© 2019, IJCSE All Rights Reserved 25

International Journal of Computer Sciences and Engineering

REFERENCES

[1]. Xie, J., Xu, L., Chen, E.: Image denoising and in painting with deep
neural networks. In: NIPS. (2012)

[2]. J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli. Image
denoising using scale mixtures of Gaussians in the wavelet domain.
Image Processing, IEEE Transactions on, 12(11):13381351, 2003.

[3]. F. Luisier, T. Blu, and M. Unser. A new SURE approach to image
denoising: Interscale orthonormal wavelet thresholding. IEEE
Transactions on Image Processing, 16(3):593606, 2007.

[4]. K. Matsumoto et al.,”Learning classifier system with deep autoencoder,”
2016 IEEE Congress on Evolutionary Computation (CEC),
Vancouver, BC, 2016,pp. 4739- 4746.

[5] A. Krizhevsky, I. Sutskever and G. Hinton,”ImageNet classification with
deep convolutional neural networks”, Communications of the ACM,
vol. 60, no. 6, pp. 84-90, 2017.

[6] Semeion Research Center of Sciences of Communication, via Sersale
117, 00128 Rome, Italy Tattile Via Gaetano Donizetti, 1-3-5, 25030
Mairano (Brescia), Italy.

[7] L. Deng, "The MNIST Database of Handwritten Digit Images for
Machine Learning Research [Best of the Web],” in IEEE Signal
Processing Magazine, vol. 29, no.6, pp.141-142, Nov.2012.

[8] J. Schmidhuber, ”Deep learning in neural networks: An overview”,
Neural Networks, vol. 61, pp. 85-117, 2015.

[9] “All About Autoencoders”, Pythonmachinelearning.pro, 2018.

[10] “Image recovery Theory and application”, Automatica, vol. 24, no. 5,
pp. 726-727, 1988.

[11] “Building Autoencoders in Keras”, Blog.keras.io,
[12] M. Celebi and K. Aydin, Unsupervised learning algorithms.

[13] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification
with deep convolutional neural networks”, Communications of the
ACM, vol. 60, no. 6, pp. 84-90, 2017.

[14] V. Nair and G. E. Hinton. Rectified linear units improve restricted
Boltzmann machines. In ICML, 2010

[15] ”PyTorch”, Pytorch.org, 2018.

[16] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for
Image Recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778. DOI:
10.1109/CVPR.2016.90

[17] T. D. Gedeon and D. Harris, “Progressive image compression,”
[Proceedings 1992] IJCNN International Joint Conference on Neural
Networks, Baltimore, MD,1992, pp. 403-407 vol.4.

[18] L. Bottou. Large-scale machine learning with stochastic gradient
descent. COMPSTAT, 2010.

[19] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. ICLR, 2015.

[20] A. V. Lugt, “Signal detection by complex spatial filtering,” in IEEE
Transactions on Information Theory, vol. 10, no. 2, pp. 139-145, Apr
1964.

[21] E. Kaur and N. Singh, “Image Denoising Techniques: A Review”,
Rroij.com, 2018.

2018.

AUTHORS PROFILE

Dr.Mohammad Imran received his B.Tech
(CSE) in 2006 and M.Tech (CSE) in 2008 from
JNTU, Hyderabad, His Research interests
include Big Data Analytics, Deep learning,
Artificial Intelligence, Class Imbalance
Learning, Ensemble learning, Machine
Learning and Data mining. He completed his
Ph.D (CSE) in March 2019 in the department of Computer
Science and Engineering, Rayalaseema University, Kurnool-
518007, Andhra Pradesh. He has published more than 13
research papers in reputed international journals including
Scopus Indexed (SCI & Web of Science) and conferences

© 2019, IJCSE All Rights Reserved

Vol.7(10), Oct 2019, E-ISSN: 2347-2693

including IEEE and it’s also available online .He is currently
working as an Associate Professor in Department of CSE, Neil
Gogte Institute of Technology (NGIT),Affiliated to Osmania
University, Survey No-35 Peerzadiguda Road,
Kachawanisingaram,Uppal, Hyderabad, Telangana, India.

Dr. Tummala Sita Mahalakshmi is working as
a Professor in the Department of Computer @
Science and Engineering, GITAM University. !

She has published more than 15 research V.

papers in reputed international journals N
including Thomson Reuters (SCI & Web of M e
Science) and conferences including IEEE and Gl v I
it’s also available online. Her main research work focuses on
Cryptography Algorithms, Network Security, Cloud Security
and Privacy, Big Data Analytics, Data Mining. She has 20 years
of teaching experience.

Mr. Maradana Durga Venkata Prasad received
his B.TECH (Computer Science and
Information Technology) in 2008 from JNTU,
Hyderabad and M.Tech. (Software
Engineering) in 2010 from Jawaharlal Nehru
Technological University, Kakinada, He is a
Research Scholar with Regd N0:1260316406
in the department of Computer Science and Engineering,
Gandhi Institute Of Technology And Management (GITAM)
Deemed to be University,Visakhapatnam,Andhra Pradesh,
INDIA His Research interests include Clustering in Data Mining
,Big Data Analytics, Artificial Intelligence, Class Imbalance
Learning, Ensemble learning, Machine Learning and Data
mining.He is currently working as an Assistant Professor in
Department of Information Technology, Muffakham Jah
College of Engineering and Technology, Banjara Hills,
Hyderabad-500034,Telangana,INDIA. He is also an industrial
trainee where he teaches programming languages. He is the
author of several research papers in the area of Software
Engineering.

Mr. Vinay Kumar Kopparty received his
B.TECH (Computer Science and Information
Technology) in 2008 from JNTU, Kakinada
and M.Tech. (Computer Science and
Engineering) in 2012 from Jawaharlal Nehru
Technological University, Kakinada. He is a
Research Scholar with (Regd No: 41900148), K

Department of Computer Science and Engineering,

LPU
(Lovely Professional University), Jalandhar - Delhi G.T. Road,

Phagwara, Punjab (India)- 144411.His Research interests
include Clustering in Data Mining, Big Data Analytics,
Artificial Intelligence, Class Imbalance Learning, Ensemble
learning, Machine Learning and Data mining.He is currently
working as an Assistant Professor in Department of 1T, JBREC,
Moinabad, Hyderabad, Telangana.

26

