
 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        24 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                          Volume-6, Issue-1                                           E-ISSN: 2347-2693 

                 

Precomputing Shell Fragments for OLAP using Inverted Index Data 

Structure 

 
D. Datta

1*
, A. Koley

2
, A. Sarkar

3
, S. Chatterjee

3 
 

 
1*

Department of Computer Science, St. Xavier‟s College, Kolkata, India 
2
Department of Computer Science, Banaras Hindu University, Varanasi, India 

3
Deloitte Consulting US-India Pvt. Ltd, Hyderabad, India 

 
*Corresponding Author:   debabrata.datta@sxccal.edu 

 

Available online at: www.ijcseonline.org  

Received: 22/Dec/2017, Revised: 31/Dec/2017, Accepted: 19/Jan/2018, Published: 31/Jan/2018 

Abstract— Efficient methods to generate data cubes for On-Line Analytical Processing or OLAP are required for query 

processing and data analysis. OLAP involves multidimensional analysis of data and as well as selectively extracting and 

viewing data from different perspectives or points of view. In OLAP, a complex query can lead to many scans of the base 

relational database, leading to poor performance. This research paper provides an algorithm for the data cube generation 

suitable for OLAP systems in a fast way. The OLAP cube structure, based on aggregation operations and capable of fast 

retrieval of data, is extensively explored. The inverted index data structure, which is a mapping from content to index of the 

said content in any indexed data storage system, is used as an efficient tool for shell fragment computation. A study of 

efficiency and trade-offs involved in terms of processing complexity and storage space when compared to full cube 

computation are also provided here. 
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I.  INTRODUCTION  

A data warehouse is a semantically consistent data store 

that serves as a physical implementation of a decision 

support data model [2]. It stores the information an 

enterprise needs to make strategic decisions. A data 

warehouse is also often viewed as architecture, constructed 

by integrating data from multiple heterogeneous sources to 

support queries, analytical reporting, and decision making. 

It is a subject-oriented, integrated, time-variant, and non-

volatile collection of data for supporting decision making 

process.  

Data warehouse systems serve users or knowledge workers 

in the role of data analysis and decision making. Such 

systems can organize and present data in various formats 

in order to accommodate the diverse needs of different 

users. These systems are known as Online Analytical 

Processing (OLAP) systems. A data warehouse is usually 

modelled by a multidimensional data structure, called a 

data cube, in which each dimension corresponds to an 

attribute or a set of attributes in the schema, and each cell 

stores the value of some aggregate measure such as count 

or sum. A data cube provides a multidimensional view of 

data and allows the pre-computation and fast access of 

summarized data. 

There have been many efficient cube computation 

algorithms proposed, such as ROLAP-based multi-

dimensional aggregate computation [3], multi-way array 

aggregation [7], BUC [6], H-cubing [8], and Star-cubing 

[9]. Since computing the whole data cube not only requires 

a substantial amount of time but also generates a huge 

number of cube cells, there have also been many studies on 

partial materialization of data cubes [5], iceberg cube 

computation [6,8,9], computation of condensed, dwarf, or 

quotient cubes [10,11,12] , and computation of 

approximate cubes [13]. Besides large data warehouse 

applications, there are other kinds of applications like 

bioinformatics, survey-based statistical analysis,  and text 

processing; all of them need the OLAP-styled data 

analysis. 

 

In OLAP, a complex query can lead to many scans of the 

base relational table, leading to poor performance. Also, 

aggregation functions are very popular in OLAP queries. 

Thus, a new data structure based on aggregation operations 

and capable of fast retrieval of data was desired. An OLAP 

cube is a data structure that overcomes the limitation of 

relational model by providing fast query processing. A data 

cube allows data to be modelled and viewed 

perspectives of multiple dimensions. In practice, they are 

often pre-computed for fast OLAP. Using the pre-computed 

cubes' shell fragments, cuboid cells of the required data cube 
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can be dynamically assembled and computed online, 

resulting in a faster OLAP. 

A full data cube of high dimensionality needs massive 

storage space and unrealistic computation time. One 

possible solution is to compute a thin cube shell, which is a 

computation process of considering only a few dimensions 

from all possible dimensions. For example, all cuboids with 5 

dimensions or less in a 50-dimensional data cube, resulting 

in a thin cube shell of size 5. The resulting cuboid set would 

require much less computation time and storage space than 

the full 50-dimensional data cube. 

However, there is a major drawback of this approach. Such 

a thin cube shell does not support 6 or more dimensional 

OLAP.  

Instead of computing a cube shell, only few portions or 

fragments of it may also be computed. Although a data 

cube may contain many dimensions, most OLAP 

operations are performed on only a small number of 

dimensions at a time. Instead, it is more natural to locate 

some cuboids of interest at first and then to drill along one 

or two dimensions to examine the changes of a few related 

dimensions. This implies that if multidimensional 

aggregates can be computed quickly on a small number of 

dimensions inside a high-dimensional space, a faster OLAP 

can be achieved without materializing the original high-

dimensional data cube. Instead, a semi-online computation 

model with certain pre-processing may offer a more 

feasible solution. Given a base cuboid, some quick 

preparation computation can be done offline. After that, a 

query can be computed online using the pre-processed data. 

The shell fragment approach follows such a semi-online 

computation strategy. It explores the inverted index data 

structure, which is popular in information retrieval and 

Web-based information systems. 

The paper discusses about research work going on this field 

in the next section. Section three describes the main 

algorithms involved in the present research work. The next 

section explain the results obtained and the final section 

concludes the present discussion with a brief statement about 

the scope of work in the future. 

 

II. BACKGROUND STUDY 

Data cube computation is an essential task in data warehouse 

implementation. The pre-computation of all or part of a data 

cube can greatly reduce the response time and enhance the 

performance of online analytical processing. However, such 

computation is challenging because it may require substantial 

computational time and storage space. There are many 

methods for data cube computation, few of them are 

explained below: 

a. Multiway Array Aggregation 

The multiway array aggregation method computes a full data 

cube by using a multidimensional array as its basic data 

structure [7]. It is a typical MOLAP approach that uses direct 

array addressing, where dimension values are accessed via 

the position or index of their corresponding array locations. 

Hence, multiway cannot perform any value-based reordering 

as an optimization technique.  

b. BUC: Iceberg Cube Computation 

An iceberg cube contains only those cells of the data cube 

that meet an aggregate condition. It is called an iceberg cube 

because it contains only some of the cells of the full cube, 

like the tip of an iceberg. The purpose of the iceberg cube is 

to identify and compute only those values that will most 

likely be required for decision support queries. The aggregate 

condition specifies which cube values are more meaningful 

and should therefore be stored. This is one solution to the 

problem of computing versus storing data cubes. BUC, or 

Bottom Up Construction is an algorithm for the computation 

of sparse and iceberg cubes [6]. Unlike MultiWay, BUC 

constructs the cube from the apex cuboid toward the base 

cuboid. This allows BUC to share data partitioning costs. 

This processing order also allows BUC to prune during 

construction, using the Apriori property. Partitioning and 

sorting are the major costs in BUC‟s cube computation. 

Since recursive partitioning in BUC does not reduce the 

input size, both partitioning and aggregation are costly. 

Moreover, BUC is sensitive to skew in the data. Performance 

degrades as skew increases.  

c. Star-Cubing 

The Star-Cubing algorithm explores both the bottom-up and 

top-down computation models [9]. On the global 

computation order, it uses the bottom-up model. However, it 

has a sub-layer underneath based on the top-down model, 

which explores the notion of shared dimensions. This 

integration allows the algorithm to aggregate on multiple 

dimensions while still partitioning parent group-by‟s and 

pruning child group-by‟s that do not satisfy the iceberg 

condition. Star-Cubing is able to prune the indicated cuboids 

because it considers shared dimensions. Because the shared 

dimensions are identified early on in the tree expansion, re-

computing them can be avoided later. Star-Cubing is 

sensitive to the ordering of dimensions, as with other iceberg 

cube construction algorithms. For best performance, the 

dimensions are processed in order of decreasing cardinality. 

This leads to a better chance of early pruning, because the 

higher the cardinality, the smaller the partitions, and 

therefore the higher possibility that the partition will be 

pruned. Star-Cubing can also be used for full cube 

computation. When computing the full cube for a dense data 

set, Star-Cubing‟s performance is comparable with 

MultiWay and is much faster than BUC. If the data set is 

sparse, Star-Cubing is significantly faster than MultiWay and 

faster than BUC, in most cases. For iceberg cube 

computation, Star-Cubing is faster than BUC, where the data 

are skewed and the speed-up factor increases as min sup 

decreases. 
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III. WORK DESCRIPTION 

The work as described in this paper has explored the inverted 

index data structure, which is popular in information retrieval 

and Web-based information systems. Given a high-

dimensional data set, the dimensions are partitioned into a set 

of disjoint dimension fragments; each fragment is then 

fragmented into its corresponding inverted index 

representation, and then cube shell fragments are constructed 

while keeping the inverted indices associated with the cube 

cells. Using the pre-computed cubes‟ shell fragments, cuboid 

cells of the required data cube can be dynamically assembled 

and computed online. This is made efficient by set 

intersection operations on the inverted indices. The shell 

fragments are negligible in both storage space and 

computation time in comparison with the full data cube. 

Although a data cube may contain many dimensions, most 

OLAP operations are performed on only a small number of 

dimensions at a time. This is because it is not realistic for 

anyone to comprehend the changes of thousands of cells 

involving tens of dimensions simultaneously in a high-

dimensional space at the same time. Instead, it is more 

natural to first locate some cuboids by certain selections and 

then drill along one or two dimensions to examine the 

changes of a few related dimensions. Most analysts only 

need to examine the space of a small number of dimensions 

once they select them. Stemming from the above motivation, 

compute the shell fragments of data cubes are computed. 

This is made efficient by set intersection operations on the 

inverted indices. 

The cuboid generation process starts with taking the base 

cuboid as input. The inverted index data structure is 

generated based on this base cuboid. A suitable fragment 

length, say f, is chosen or determined by analysis of previous 

data. The set of dimensions are split into fragments of length 

f, except the length of last one, which may be less than or 

equal to f. All possible combinations of the dimensions in 

each fragment are generated separately for each fragment. 

These combinations are used to compute sets of transaction 

lists, henceforth referred to as TID, of dimension values that 

appear together by referencing the inverted index data 

structure. The measure to be aggregated is then aggregated 

based on the intersection sets of the TID lists obtained using 

the combination of values. The following is the flowchart 

describing the system:  

 

 

Figure 1: Flowchart of the proposed system 

The main component of the proposed system is the 

generation of inverted index data structure which is a 

specialised data structure used as a tool for efficient data 

retrieval. Most modern data retrieval systems from large 

scale search engines to localised searching mechanisms built 

into operating systems use inverted index in some form or 

the other. At the basic level, an inverted index is a mapping 

from the contents of an indexed storage system (such as a 

database or a document) to its location in the system. 

The inverted index data structure, shown in figure 3 was 

constructed using an algorithm that requires just one pass of 

the input table or the base cuboid. All the tuples in the input 

table are read one at a time. For each tuple, all the dimension 

values in that tuple are read one at a time. For each 

dimension value, the inverted index table is searched for that 

value. If an entry for that dimension value is found, the tuple 
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ID of the tuple in the input table where that value was read 

from is inserted in the postings list for the entry. If no match 

for the dimension value is found after the entire inverted 

index table (in its current state) is searched, a new entry/ 

tuple for the new dimension is created with its posting list 

containing the tuple ID of the tuple in the input table where it 

was found. 

 

Figure 2: Transaction List or Input Table 
 

 
 

Figure 3: Inverted Index 

 

Computation of the shell fragments of data cubes 

includes the following sub-problems: 
 

a) Construction of the Inverted Index: 

The construction of the Inverted Index Data Structure based 

on the Input Table follows the algorithm in Figure 4. Each 

tuple in the input table is read one at a time. For each tuple 

read, the values of each dimension are traversed one at a time 

(only dimension values considered, not measures. The 

dimStartIndex and dimEndIndex values serve to separate the 

dimensions from the measures and are constant for a 

particular table.). 

For each dimension value in the Input Table, all the tuples of 

the entire Inverted Index Table is searched for an occurence 

of that dimension value, i.e., a check is performed to see if a 

tuple in the IID exists for that dimension value. If such an 

entry is found the TID of the tuple from which the dimenson 

value was read is added to the TID list against the entry of 

the dimsion value in the IID and the length of the TID list is 

incremented by one. If, however, an entry for the read 

dimension value is not found in the IID table, a new tuple is 

added for it. The TID of the tuple in the Input Table from 

which it was read is added in the TID list (ie, the TID list has 

only one element when a new tuple is added.) and the list 

count is initialized to one. 

This process continues until all tuples in the Input Table have 

been read and processed. When that is done, the IID will 

have been generated. 

b) Fragmentation and Combination 

Since, the algorithm requires generating shell fragments from 

which cuboids are calculated the set of dimensions of the 

input table are partitioned into independent groups of 

dimensions, called fragments. For example, If the dimension 

list was {A,B,C,D,E,F,G} and the fragment length was 3, the 

set of fragments would be { (A,B,C), (D,E,F), (G) }. 

 

 

 
Figure 4: Pseudocode for the generation of Pseudo IID 

 

If fragment length was 4, the partitions would be { 

(A,B,C,D), (E,F,G) }. In more advanced implementations of 

the algorithm the fragment length may be algorithmically 

determined from historical data. The mathematical function 

of combination is then applied to the dimension set in each 

fragment. Each fragment generates a set of combinations of 

dimensions. For example, if combination is performed on 

fragment (A,B,C), the combinations of dimensions generated 

will be AB, AC, BC of length 2 each and ABC of length 3. 

The length of the combinations starts from 2 and go up to the 

length of the fragment being processed. Figure 5 depicts the 

process. 
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Figure 5: Visualization of how data are handled during fragmentation and 

combination 

 

c) Computation of Shell Fragments by Intersection 
The inverted index can be generalized to multiple dimensions 

where one can store TIDLists for combinations of attribute 

values across different dimensions. The cuboids are 

generated using the combination of dimensions (generated by 

processing the fragments) to calculates sets of dimension 

values which occur together one or more times. The tuples in 

which they occur are recorded by intersecting the sets of 

TIDs in which the dimension values occur independently i.e., 

the TID list column of the Inverted Index Data Structure.   

We then build a local fragment cube by intersecting their 

corresponding TIDLists and computing the aggregates of the 

measures using the intersection sets to determine which 

tuples to consider for aggregation. 

If „f‟ is the fragment length, then the number of cuboids for 

every possible combination of each fragment is given by: 

 
To find other cuboids, the above expression is multiplied by 

the floor value of (d / f) where „d‟ is the number of 

dimensions and 2 is added to the expression for the base and 

apex cuboids. Therefore, the above expression is modified to 

the following form: 

 
The above expression is the final one for the number of 

cuboids generated when the number of dimensions is 

divisible by the fragment length. If it is not divisible, then for 

the remainder dimensions expression (1) is used. If k is the 

number of remainder dimensions and Nc is the total number 

of cuboids generated, then (2) becomes  

 
 

From the Binomial Theorem,  

 
Using the above formula, (3) can be simplified to  

 
 

where k = d mod f and k < f. 

Equation (4) is the final equation that is used to calculate the 

number of cuboids generated depending on the fragment 

length and the number of dimensions. 

IV. RESULTS AND ANALYSIS 

If the input to the algorithm is a Base Cuboid having „n‟ 

dimensions having „r‟ number of tuples, an inverted index 

data structure will be generated mapping each of the (n × r) 

dimension values to their transaction index in the base 

cuboid. The fields in the inverted index table can be changed 

based on implementation conditions but the very basic ones 

required for it to be of use are TID, dimension value, 

mentioned as AttributeValue, TIDList (corresponding to the 

value), length of the TIDList, mentioned as ListSize.  This 
set of fragments is used to generate cube cells using a 

combination algorithm and then are further used to generate 

the cubes using set intersection. The process is illustrated as 

in the next page.  

 

Figure 6: The inverted index data structure 

(1) 

(2) 

(3) 

(4) 

(3) 

(4) 
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Figure 7: The IID. The highlighted rows are used to form one cell of Cuboid 
ABC 

 

The implementation of computing shell fragments is 

relatively efficient than most cube shell computations. One 

option is to calculate thin cube shells. Suppose, cubes are to 

be generated for a 50-dimensional data cube of shell size 5, 

then computation of 
50

C5 + 
50

C4 + 
50

C3 + 
50

C2 + 50 = 

2369935 cuboids is required. 

 

 
 

Figure 8: The Cuboid, ABC. The highlighted cell is formed by intersecting 
the TIDs from the highlighted rows in Figure 7. 

 

The number of cuboids generated when shell fragments are 

pre-computed depends on the value of the fragment length 

and the total number of dimension. The following formula is 

used to calculate the total number of cuboids that are 

generated is given by: 

 
Using the example of the 50-dimensional data cube, the total 

number of cuboids that is generated in this case is given by: 

 

The efficiency is evident from the number of cuboids that is 

generated in both cases. If both cases are compared, then 

efficiency increases with an increase in the number of 

dimension. So, for very large data cubes, the second method 

of computation of shell fragments is more efficient. The 

computational complexity for pre-computing shell fragments 

with the implemented approach is given by O(2
n
). Here, f is 

the fragment length. So, the computational complexity 

increases with an increase in the fragment length and the pre-

computation of shell fragments as an exponential time 

complexity.  

 

 

Figure 9: Comparative study of the execution time by changing the 

dimensions and fragment lengths 

Figure 9 shows the execution time for different dimensions 

with different fragment lengths on a basic test machine 

having Intel(R) Core(TM) i5 processor at 1.70GHz and 4GB 

of physical memory having x64-based architecture. 

V. CONCLUSION and Future Scope  

To conclude, in the Shell Fragment approach, given a high-

dimensional data set, the dimensions are partitioned into a set 

of disjoint dimension fragments. After that, each fragment is 

converted into its corresponding inverted index 

representation. Finally, cube shell fragments are constructed 

while keeping the inverted indices associated with the cube 

cells. 

With this approach, for high-dimensional OLAP, the total 

space that is needed to store such shell fragments is negligible 

in comparison with a high dimensional cube, so is the online 

computation overhead which can be performed from the 

available shell fragments. The algorithm, thus, forces a trade-
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off between pre-computation of entire cubes,  which require 

both unrealistic time complexities and large storage but once 

the process is done no more computation is required. 

Furthermore, a small computation time during query 

processing for drastically low pre-computation times and 

storage required. A systematic study of the applications of 

this approach could be a promising direction for future 

research. This algorithm can be used is any situation where 

fast OLAP is required. 
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