

 © 2018, IJCSE All Rights Reserved 24

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-6, Issue-1 E-ISSN: 2347-2693

Precomputing Shell Fragments for OLAP using Inverted Index Data

Structure

D. Datta

1*
, A. Koley

2
, A. Sarkar

3
, S. Chatterjee

3

1*

Department of Computer Science, St. Xavier‟s College, Kolkata, India
2
Department of Computer Science, Banaras Hindu University, Varanasi, India

3
Deloitte Consulting US-India Pvt. Ltd, Hyderabad, India

*Corresponding Author: debabrata.datta@sxccal.edu

Available online at: www.ijcseonline.org

Received: 22/Dec/2017, Revised: 31/Dec/2017, Accepted: 19/Jan/2018, Published: 31/Jan/2018

Abstract— Efficient methods to generate data cubes for On-Line Analytical Processing or OLAP are required for query

processing and data analysis. OLAP involves multidimensional analysis of data and as well as selectively extracting and

viewing data from different perspectives or points of view. In OLAP, a complex query can lead to many scans of the base

relational database, leading to poor performance. This research paper provides an algorithm for the data cube generation

suitable for OLAP systems in a fast way. The OLAP cube structure, based on aggregation operations and capable of fast

retrieval of data, is extensively explored. The inverted index data structure, which is a mapping from content to index of the

said content in any indexed data storage system, is used as an efficient tool for shell fragment computation. A study of

efficiency and trade-offs involved in terms of processing complexity and storage space when compared to full cube

computation are also provided here.

Keywords— OLAP, data cube, cube shell, shell fragmentation, inverted index data structure, multidimensional analysis

I. INTRODUCTION

A data warehouse is a semantically consistent data store

that serves as a physical implementation of a decision

support data model [2]. It stores the information an

enterprise needs to make strategic decisions. A data

warehouse is also often viewed as architecture, constructed

by integrating data from multiple heterogeneous sources to

support queries, analytical reporting, and decision making.

It is a subject-oriented, integrated, time-variant, and non-

volatile collection of data for supporting decision making

process.

Data warehouse systems serve users or knowledge workers

in the role of data analysis and decision making. Such

systems can organize and present data in various formats

in order to accommodate the diverse needs of different

users. These systems are known as Online Analytical

Processing (OLAP) systems. A data warehouse is usually

modelled by a multidimensional data structure, called a

data cube, in which each dimension corresponds to an

attribute or a set of attributes in the schema, and each cell

stores the value of some aggregate measure such as count

or sum. A data cube provides a multidimensional view of

data and allows the pre-computation and fast access of

summarized data.

There have been many efficient cube computation

algorithms proposed, such as ROLAP-based multi-

dimensional aggregate computation [3], multi-way array

aggregation [7], BUC [6], H-cubing [8], and Star-cubing

[9]. Since computing the whole data cube not only requires

a substantial amount of time but also generates a huge

number of cube cells, there have also been many studies on

partial materialization of data cubes [5], iceberg cube

computation [6,8,9], computation of condensed, dwarf, or

quotient cubes [10,11,12] , and computation of

approximate cubes [13]. Besides large data warehouse

applications, there are other kinds of applications like

bioinformatics, survey-based statistical analysis, and text

processing; all of them need the OLAP-styled data

analysis.

In OLAP, a complex query can lead to many scans of the

base relational table, leading to poor performance. Also,

aggregation functions are very popular in OLAP queries.

Thus, a new data structure based on aggregation operations

and capable of fast retrieval of data was desired. An OLAP

cube is a data structure that overcomes the limitation of

relational model by providing fast query processing. A data

cube allows data to be modelled and viewed

perspectives of multiple dimensions. In practice, they are

often pre-computed for fast OLAP. Using the pre-computed

cubes' shell fragments, cuboid cells of the required data cube

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 25

can be dynamically assembled and computed online,

resulting in a faster OLAP.

A full data cube of high dimensionality needs massive

storage space and unrealistic computation time. One

possible solution is to compute a thin cube shell, which is a

computation process of considering only a few dimensions

from all possible dimensions. For example, all cuboids with 5

dimensions or less in a 50-dimensional data cube, resulting

in a thin cube shell of size 5. The resulting cuboid set would

require much less computation time and storage space than

the full 50-dimensional data cube.

However, there is a major drawback of this approach. Such

a thin cube shell does not support 6 or more dimensional

OLAP.

Instead of computing a cube shell, only few portions or

fragments of it may also be computed. Although a data

cube may contain many dimensions, most OLAP

operations are performed on only a small number of

dimensions at a time. Instead, it is more natural to locate

some cuboids of interest at first and then to drill along one

or two dimensions to examine the changes of a few related

dimensions. This implies that if multidimensional

aggregates can be computed quickly on a small number of

dimensions inside a high-dimensional space, a faster OLAP

can be achieved without materializing the original high-

dimensional data cube. Instead, a semi-online computation

model with certain pre-processing may offer a more

feasible solution. Given a base cuboid, some quick

preparation computation can be done offline. After that, a

query can be computed online using the pre-processed data.

The shell fragment approach follows such a semi-online

computation strategy. It explores the inverted index data

structure, which is popular in information retrieval and

Web-based information systems.

The paper discusses about research work going on this field

in the next section. Section three describes the main

algorithms involved in the present research work. The next

section explain the results obtained and the final section

concludes the present discussion with a brief statement about

the scope of work in the future.

II. BACKGROUND STUDY

Data cube computation is an essential task in data warehouse

implementation. The pre-computation of all or part of a data

cube can greatly reduce the response time and enhance the

performance of online analytical processing. However, such

computation is challenging because it may require substantial

computational time and storage space. There are many

methods for data cube computation, few of them are

explained below:

a. Multiway Array Aggregation

The multiway array aggregation method computes a full data

cube by using a multidimensional array as its basic data

structure [7]. It is a typical MOLAP approach that uses direct

array addressing, where dimension values are accessed via

the position or index of their corresponding array locations.

Hence, multiway cannot perform any value-based reordering

as an optimization technique.

b. BUC: Iceberg Cube Computation

An iceberg cube contains only those cells of the data cube

that meet an aggregate condition. It is called an iceberg cube

because it contains only some of the cells of the full cube,

like the tip of an iceberg. The purpose of the iceberg cube is

to identify and compute only those values that will most

likely be required for decision support queries. The aggregate

condition specifies which cube values are more meaningful

and should therefore be stored. This is one solution to the

problem of computing versus storing data cubes. BUC, or

Bottom Up Construction is an algorithm for the computation

of sparse and iceberg cubes [6]. Unlike MultiWay, BUC

constructs the cube from the apex cuboid toward the base

cuboid. This allows BUC to share data partitioning costs.

This processing order also allows BUC to prune during

construction, using the Apriori property. Partitioning and

sorting are the major costs in BUC‟s cube computation.

Since recursive partitioning in BUC does not reduce the

input size, both partitioning and aggregation are costly.

Moreover, BUC is sensitive to skew in the data. Performance

degrades as skew increases.

c. Star-Cubing

The Star-Cubing algorithm explores both the bottom-up and

top-down computation models [9]. On the global

computation order, it uses the bottom-up model. However, it

has a sub-layer underneath based on the top-down model,

which explores the notion of shared dimensions. This

integration allows the algorithm to aggregate on multiple

dimensions while still partitioning parent group-by‟s and

pruning child group-by‟s that do not satisfy the iceberg

condition. Star-Cubing is able to prune the indicated cuboids

because it considers shared dimensions. Because the shared

dimensions are identified early on in the tree expansion, re-

computing them can be avoided later. Star-Cubing is

sensitive to the ordering of dimensions, as with other iceberg

cube construction algorithms. For best performance, the

dimensions are processed in order of decreasing cardinality.

This leads to a better chance of early pruning, because the

higher the cardinality, the smaller the partitions, and

therefore the higher possibility that the partition will be

pruned. Star-Cubing can also be used for full cube

computation. When computing the full cube for a dense data

set, Star-Cubing‟s performance is comparable with

MultiWay and is much faster than BUC. If the data set is

sparse, Star-Cubing is significantly faster than MultiWay and

faster than BUC, in most cases. For iceberg cube

computation, Star-Cubing is faster than BUC, where the data

are skewed and the speed-up factor increases as min sup

decreases.

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 26

III. WORK DESCRIPTION

The work as described in this paper has explored the inverted

index data structure, which is popular in information retrieval

and Web-based information systems. Given a high-

dimensional data set, the dimensions are partitioned into a set

of disjoint dimension fragments; each fragment is then

fragmented into its corresponding inverted index

representation, and then cube shell fragments are constructed

while keeping the inverted indices associated with the cube

cells. Using the pre-computed cubes‟ shell fragments, cuboid

cells of the required data cube can be dynamically assembled

and computed online. This is made efficient by set

intersection operations on the inverted indices. The shell

fragments are negligible in both storage space and

computation time in comparison with the full data cube.

Although a data cube may contain many dimensions, most

OLAP operations are performed on only a small number of

dimensions at a time. This is because it is not realistic for

anyone to comprehend the changes of thousands of cells

involving tens of dimensions simultaneously in a high-

dimensional space at the same time. Instead, it is more

natural to first locate some cuboids by certain selections and

then drill along one or two dimensions to examine the

changes of a few related dimensions. Most analysts only

need to examine the space of a small number of dimensions

once they select them. Stemming from the above motivation,

compute the shell fragments of data cubes are computed.

This is made efficient by set intersection operations on the

inverted indices.

The cuboid generation process starts with taking the base

cuboid as input. The inverted index data structure is

generated based on this base cuboid. A suitable fragment

length, say f, is chosen or determined by analysis of previous

data. The set of dimensions are split into fragments of length

f, except the length of last one, which may be less than or

equal to f. All possible combinations of the dimensions in

each fragment are generated separately for each fragment.

These combinations are used to compute sets of transaction

lists, henceforth referred to as TID, of dimension values that

appear together by referencing the inverted index data

structure. The measure to be aggregated is then aggregated

based on the intersection sets of the TID lists obtained using

the combination of values. The following is the flowchart

describing the system:

Figure 1: Flowchart of the proposed system

The main component of the proposed system is the

generation of inverted index data structure which is a

specialised data structure used as a tool for efficient data

retrieval. Most modern data retrieval systems from large

scale search engines to localised searching mechanisms built

into operating systems use inverted index in some form or

the other. At the basic level, an inverted index is a mapping

from the contents of an indexed storage system (such as a

database or a document) to its location in the system.

The inverted index data structure, shown in figure 3 was

constructed using an algorithm that requires just one pass of

the input table or the base cuboid. All the tuples in the input

table are read one at a time. For each tuple, all the dimension

values in that tuple are read one at a time. For each

dimension value, the inverted index table is searched for that

value. If an entry for that dimension value is found, the tuple

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 27

ID of the tuple in the input table where that value was read

from is inserted in the postings list for the entry. If no match

for the dimension value is found after the entire inverted

index table (in its current state) is searched, a new entry/

tuple for the new dimension is created with its posting list

containing the tuple ID of the tuple in the input table where it

was found.

Figure 2: Transaction List or Input Table

Figure 3: Inverted Index

Computation of the shell fragments of data cubes

includes the following sub-problems:

a) Construction of the Inverted Index:

The construction of the Inverted Index Data Structure based

on the Input Table follows the algorithm in Figure 4. Each

tuple in the input table is read one at a time. For each tuple

read, the values of each dimension are traversed one at a time

(only dimension values considered, not measures. The

dimStartIndex and dimEndIndex values serve to separate the

dimensions from the measures and are constant for a

particular table.).

For each dimension value in the Input Table, all the tuples of

the entire Inverted Index Table is searched for an occurence

of that dimension value, i.e., a check is performed to see if a

tuple in the IID exists for that dimension value. If such an

entry is found the TID of the tuple from which the dimenson

value was read is added to the TID list against the entry of

the dimsion value in the IID and the length of the TID list is

incremented by one. If, however, an entry for the read

dimension value is not found in the IID table, a new tuple is

added for it. The TID of the tuple in the Input Table from

which it was read is added in the TID list (ie, the TID list has

only one element when a new tuple is added.) and the list

count is initialized to one.

This process continues until all tuples in the Input Table have

been read and processed. When that is done, the IID will

have been generated.

b) Fragmentation and Combination

Since, the algorithm requires generating shell fragments from

which cuboids are calculated the set of dimensions of the

input table are partitioned into independent groups of

dimensions, called fragments. For example, If the dimension

list was {A,B,C,D,E,F,G} and the fragment length was 3, the

set of fragments would be { (A,B,C), (D,E,F), (G) }.

Figure 4: Pseudocode for the generation of Pseudo IID

If fragment length was 4, the partitions would be {

(A,B,C,D), (E,F,G) }. In more advanced implementations of

the algorithm the fragment length may be algorithmically

determined from historical data. The mathematical function

of combination is then applied to the dimension set in each

fragment. Each fragment generates a set of combinations of

dimensions. For example, if combination is performed on

fragment (A,B,C), the combinations of dimensions generated

will be AB, AC, BC of length 2 each and ABC of length 3.

The length of the combinations starts from 2 and go up to the

length of the fragment being processed. Figure 5 depicts the

process.

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 28

Figure 5: Visualization of how data are handled during fragmentation and

combination

c) Computation of Shell Fragments by Intersection
The inverted index can be generalized to multiple dimensions

where one can store TIDLists for combinations of attribute

values across different dimensions. The cuboids are

generated using the combination of dimensions (generated by

processing the fragments) to calculates sets of dimension

values which occur together one or more times. The tuples in

which they occur are recorded by intersecting the sets of

TIDs in which the dimension values occur independently i.e.,

the TID list column of the Inverted Index Data Structure.

We then build a local fragment cube by intersecting their

corresponding TIDLists and computing the aggregates of the

measures using the intersection sets to determine which

tuples to consider for aggregation.

If „f‟ is the fragment length, then the number of cuboids for

every possible combination of each fragment is given by:

To find other cuboids, the above expression is multiplied by

the floor value of (d / f) where „d‟ is the number of

dimensions and 2 is added to the expression for the base and

apex cuboids. Therefore, the above expression is modified to

the following form:

The above expression is the final one for the number of

cuboids generated when the number of dimensions is

divisible by the fragment length. If it is not divisible, then for

the remainder dimensions expression (1) is used. If k is the

number of remainder dimensions and Nc is the total number

of cuboids generated, then (2) becomes

From the Binomial Theorem,

Using the above formula, (3) can be simplified to

where k = d mod f and k < f.

Equation (4) is the final equation that is used to calculate the

number of cuboids generated depending on the fragment

length and the number of dimensions.

IV. RESULTS AND ANALYSIS

If the input to the algorithm is a Base Cuboid having „n‟

dimensions having „r‟ number of tuples, an inverted index

data structure will be generated mapping each of the (n × r)

dimension values to their transaction index in the base

cuboid. The fields in the inverted index table can be changed

based on implementation conditions but the very basic ones

required for it to be of use are TID, dimension value,

mentioned as AttributeValue, TIDList (corresponding to the

value), length of the TIDList, mentioned as ListSize. This
set of fragments is used to generate cube cells using a

combination algorithm and then are further used to generate

the cubes using set intersection. The process is illustrated as

in the next page.

Figure 6: The inverted index data structure

(1)

(2)

(3)

(4)

(3)

(4)

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 29

Figure 7: The IID. The highlighted rows are used to form one cell of Cuboid
ABC

The implementation of computing shell fragments is

relatively efficient than most cube shell computations. One

option is to calculate thin cube shells. Suppose, cubes are to

be generated for a 50-dimensional data cube of shell size 5,

then computation of
50

C5 +
50

C4 +
50

C3 +
50

C2 + 50 =

2369935 cuboids is required.

Figure 8: The Cuboid, ABC. The highlighted cell is formed by intersecting
the TIDs from the highlighted rows in Figure 7.

The number of cuboids generated when shell fragments are

pre-computed depends on the value of the fragment length

and the total number of dimension. The following formula is

used to calculate the total number of cuboids that are

generated is given by:

Using the example of the 50-dimensional data cube, the total

number of cuboids that is generated in this case is given by:

The efficiency is evident from the number of cuboids that is

generated in both cases. If both cases are compared, then

efficiency increases with an increase in the number of

dimension. So, for very large data cubes, the second method

of computation of shell fragments is more efficient. The

computational complexity for pre-computing shell fragments

with the implemented approach is given by O(2
n
). Here, f is

the fragment length. So, the computational complexity

increases with an increase in the fragment length and the pre-

computation of shell fragments as an exponential time

complexity.

Figure 9: Comparative study of the execution time by changing the

dimensions and fragment lengths

Figure 9 shows the execution time for different dimensions

with different fragment lengths on a basic test machine

having Intel(R) Core(TM) i5 processor at 1.70GHz and 4GB

of physical memory having x64-based architecture.

V. CONCLUSION and Future Scope

To conclude, in the Shell Fragment approach, given a high-

dimensional data set, the dimensions are partitioned into a set

of disjoint dimension fragments. After that, each fragment is

converted into its corresponding inverted index

representation. Finally, cube shell fragments are constructed

while keeping the inverted indices associated with the cube

cells.

With this approach, for high-dimensional OLAP, the total

space that is needed to store such shell fragments is negligible

in comparison with a high dimensional cube, so is the online

computation overhead which can be performed from the

available shell fragments. The algorithm, thus, forces a trade-

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 30

off between pre-computation of entire cubes, which require

both unrealistic time complexities and large storage but once

the process is done no more computation is required.

Furthermore, a small computation time during query

processing for drastically low pre-computation times and

storage required. A systematic study of the applications of

this approach could be a promising direction for future

research. This algorithm can be used is any situation where

fast OLAP is required.

REFERENCES

[1] X. Li, J. Han, and H. Gonzalez, “High-dimensional OLAP: A
minimal cubing approach”, In Proceedings of 30th International
Conference on VLDB, pp. 528 – 539, 2004.

[2] Chaudhari, S., U. Dayal, “An overview of Data Warehousing and
OLAP Technology”, ACM SIGMOD, pp. 65 – 74, 1997.

[3] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan and S. Sarawagi. On the computation
of multidimensional aggregates. In Proceedings of 22

nd

International Conference on VLDB, pp. 506 – 521, 1996.

[4] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow and H. Pirahesh. “Data cube: A relational
aggregation operator generalizing group-by, cross-tab and
subtotals”, Data Mining and Knowledge Discovery, pp. 29 – 54,
1997.

[5] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing
data cubes efficiently”, ACM SIGMOD, pp. 205 – 216, 1996.

[6] K. Beyer and R. Ramakrishnan, “Bottom-up computation of sparse
and iceberg cubes”, ACM SIGMOD, pp. 359 – 370, 1999.

[7] Y. Zhao, P. M. Deshpande, and J. F. Naughton, “An array-based
algorithm for simultaneous multidimensional aggregates”, ACM
SIGMOD, pp. 159 – 170, 1997.

[8] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient computation of
iceberg cubes with complex measures”, ACM SIGMOD, pp. 1 –
12, 2001.

[9] D. Xin, J. Han, X. Li, Z> Shao and B. W. Wah, “Computing
iceberg cubes by top-down and bottom-up integration, The
StarCubing Approach”. IEEE Transactions on Knowledge and
Data Engineering, Vol. 19, Issue – 1, pp. 111 – 126, 2007.

[10] W. Wang, H. Lu, J. Feng, and J. X. Yu, “Condensed cube: An
effective approach to reducing data cube size”, In Proceedings of
18

th
 International Conference on Data Engineering, 2002.

[11] Y. Sismanis, N. Roussopoulos, A. Deligianannakis, and Y.
Kotidis, “Dwarf: Shrinking the petacube”. ACM SIGMOD, pp.
464 – 475, 2002.

[12] L. V. S. Lakshmanan, J. Pei, and J. Han, “Quotient cube: How to
summarize the semantics of a data cube”, In Proceedings of 28

th

International Conference on VLDB, pp. 778 – 789, 2002.

[13] D. Barbara and M. Sullivan, “Quasi-cubes: Exploiting
approximation in multidimensional databases. CM SIGMOD, pp.
12 – 17, 1997.

Authors Profile

Mr. D Datta pursued Master of Technology from
University of Calcutta, India and he is currently
pursuing his Ph.D. in Technology from the same
university. He is an Assistant Professor in the
department of Computer Science, St. Xavier‟s
College (Autonomous), Kolkata, India He is a life
member of IETE. He has published more than 20
research papers in reputed international journals and conferences
His main research work focuses on Data Analysis. He has more
than 10 years of teaching experience and has more than 4 years of
Research Experience.

Mr A Koley pursued B.Sc. in Computer Science
from St. Xavier‟s College (Autonomous), Kolkata,
India and is currently doing his Masters in
Computer Science from Banaras Hindu
University, Varanasi, India.

Miss A Sarkar pursued B.Sc. in Computer Science
from St. Xavier‟s College (Autonomous), Kolkata,
India and is currently working as an analysist at
Deloitte Consulting US-India Pvt. Ltd, Hyderabad,
India.

Mr. S Chatterjee pursued B.Sc. in Computer
Science from St. Xavier‟s College (Autonomous),
Kolkata, India and is currently working as an
analysist at Deloitte Consulting US-India Pvt. Ltd,
Hyderabad, India.

