

 © 2018, IJCSE All Rights Reserved 241

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Issue-8, Aug 2019 E-ISSN: 2347-2693

Improvisation of SDLC Model Using Machine Learning Technique (CBR)

For Development of Software

Madhup Kumar

1*
, Anuradha Sharma

2

1
M.Tech by Research, Jharkhand Rai University, Ranchi, India

2
Department of CSE, Jharkhand Rai University, Ranchi, India

*Corresponding Author: madhup.kumar@bitmesra.ac.in, Tel: +919955346969

DOI: https://doi.org/10.26438/ijcse/v7i8.241246 | Available online at: www.ijcseonline.org

Accepted: 14/Aug/2019, Published: 31/Aug/2019

Abstract— This paper explores software development through early prediction of planning phase. It summarizes a variety of

techniques for software planning prediction in the domain of software engineering. The objective of this research is to apply

the various machine learning approaches, such as Case-Based Reasoning and Fuzzy logic, to predict software planning. The

system predicts the planning phase activity after accepting the values of certain parameters of the software. This paper

advocates the use of case-based reasoning (i.e., CBR) to build a software development prediction system with the help of

human experts. The prediction is based on analogy. We have used different similarity measures to find the best method that

increases reliability. It can be readily deployed on any configuration without affecting its performance.

Keywords—Software Engineeering,SDLC Model,Machine Learning, CBR

I. INTRODUCTION

Computer have been used for commercial purpose for last 50

years'/w engineering have been useful to solve large and

more complex program in cost effective and efficient way

with his past experience. We can say s/w engineering is a

engineering approach to develop s/w. S/W engineering

method based on error prevention, cost effective to prevent

error from occurring than to correct them as and when they

detected, Well defined stages such as SRS, Designing,

Coding, Testing Maintenance ,various design technique used.

There are various life cycle models available for developing

various types of software. Every SDLC model has some

advantages and some limitations. The software developer

decides which SDLC model is suitable for his product. The

primary advantage of use to a life cycle model is that it

.Development of s/w in a systematic and disciplined manner.

A life cycle model forms a common understanding of the

activities among the s/w engineers and helps develop s/w in

systematic and disciplined manner. The objective of this

paper is to compare all universally accepted SDLC model

and Proposed a new SDLC model for development of

software in systematic and disciplined manner.

Previous method that was exploratory method this Based on

error correction, error are detected only during the final

project testing, in this method there are various limitation

like hard to maintain product, break down when used to

develop large product. A software life cycle is the sequence

of identifiable stages/process that a software product

undergoes during its life time. A SDLC model is a

descriptive and pictorial representation of s/w life cycle. A

life cycle model map the different activities performed on a

s/w product from its inspection to retirement .Business

organization follow steps-Business process, manufacturing

industries-manufacturing process same as for s/w

development use s/w process model .The first life cycle of

any s/w product is generally feasibility study, RAS, Design,

Coding, testing and maintenance. A (software/system) life

cycle model is a description of the series of activities carried

out in a Software Engineering project, and the relative order

of these activities. In this approach there arte several

estimation techniques are available for estimating size of the

projects i.e. Line of Code ,Function Point Metrics and

Feature point metrics same as for project estimation there are

different types of metrics are available i.e. Basic COCOMO,

Intermediate COCOMO etc. All matrices have some

advantages and drawbacks. its depend on nature of the

project which metric will be used.

II. OVERVIEW OF MACHINE LEARNING

Machine learning deals with the problem of building

computer programs that improve their performance at some

task through experience. Machine learning has been utilized

in various problem domains. Some typical applications of

 International Journal of Computer Sciences and Engineering Vol.6(9), Sep 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 242

machine learning are: Optical character recognition, Face

detection ,Spam filtering ,Fraud detection, Medical diagnosis

and Weather prediction etc. Major categories of machine

learning techniques are: Case-based reasoning(CBR) , Rule

induction(RI) , Neural networks(NN) , Genetic

algorithms(GA) , Inductive logic and programming(ILP)

Relevant details should be given including experimental

design and the technique (s) used along with appropriate

statistical methods used clearly along with the year of

experimentation (field and laboratory).

A. CASE-BASED REASONING

Case-based reasoning is one of the most popular machine

learning techniques. Case-based reasoning (CBR) is a

problem solving paradigm that is fundamentally different

from other major AI approaches. Instead of relying solely on

general knowledge of a problem domain it uses specific

cases . In place of making association along generalized

relationships between problem descriptors and conclusion,

CBR is used to predict or estimate for either internal or

external attributes of processes, products, or resources. These

include software quality, software size, software

development cost, software effort, software reliability,

software defect and reusability.

 Thus, the notion of case-based reasoning does not only

denote a particular reasoning method, irrespective of how the

cases are acquired, it also denotes a machine learning

paradigm that enables sustained learning by updating the

case base after a problem has been solved. Learning in CBR

occurs as a natural by-product of problem solving. When a

problem is successfully solved, the experience is retained in

order to solve similar problems in future. When an attempt to

solve a problem fails, the reason for the failure is identified

and remembered in order to avoid the same mistake in the

future. Case-based reasoning prefers learning from

experience, since it is usually easier to learn by retaining a

concrete problem solving experience than to generalize from

it.

Apart from identifying the current problem situation, the

central task that all case-based reasoning methods have to

deal with is to find a past case similar to the new one. CBR

also evaluates the proposed solution, and updates the system

by learning from the past experiences. In this process the

actual methods, part of the process that is focused, and the

type of problems that drives the methods, etc. varies

considerably.

 Program Logic

 We can broadly categorize the following four primary steps

for s/w planning prediction using CBR estimation system:

STEP 1. Retrieve the most similar case or cases, i.e.,

previously developed projects.

STEP 2. Reuse the information and knowledge represented

by the case (s) to solve the estimation problems.

STEP 3.Revise the proposed solution.

STEP 4. Retain the parts of this experience likely to be

useful for future problem solving.

Case-based estimation comes in handy when limited domain

knowledge is available and the optimum solution is difficult

to be defined. In software quality estimation we use analogy

by stating, “Similar Projects will have similar costs”. An

advantage of case- based estimation is that it is easy to

comprehend and explain its process to practitioners. In

addition, it can model a complex set of relationships between

the dependent variables and the independent variables.

However, its deployment in software quality estimation

needs improvements. The best working example of case-

based reasoning is the complex human intelligence.

However, our (human) reasoning by analogy is always more

than approximate or vague rather than precise and certain.

We present new Case-based reasoning process cycle model

to solve our problem(See Figure1).

FIGURE.1 CBR PROCESS CYCLE

III. LITERATURE SURVEY

Iqbal et.al., addressed about different development models

and their comparison with [1][10]. The paper explained

seven different models. The First one is Waterfall model

which provides base for other development models. Then its

enhanced models are explained in Iterative model, Spiral

model, V shaped model and finally, Agile development

model. The comparison includes the advantages and

disadvantages of different models which can help to select

specific model at specific situation depending on customer

demand.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sep 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 243

Nabil et.al., explain and compare developmental models in

software engineering[2]. The paper is concerned with the

software management processes that examine the area of

software development through the development models,

which are known as software development life cycle[11]. It

represents five of the development models namely,

waterfall, Iteration, V-shaped, spiral and Extreme

programming. These models have advantages and

disadvantages as well. Therefore, the main objective of this

research is to represent different models of software

development and make a comparison between them to show

the features and defects of each model. Suggesting a model

to simulate advantages that are found in different models to

software process management. 2. Making a comparison

between the suggested model and the previous software

processes management models. 3. Applying the suggested

model to many projects to ensure of its suitability and

documentation to explain its mechanical work.

Bhuvaneswari et.al., illustrated software management

processes that examine the area of software development

through the development models, which are known as

software development life cycle[3]. It represents the

development models namely Waterfall model, Iterative

model, V-shaped model, Spiral model, Extreme

programming, Iterative and Incremental Method, Rapid

prototyping model, The Chaos Model, Adaptive Software

Development (ASD), The Agile Software Process (ASP),

Crystal, Dynamic System Development Method (DSDM),

Feature Driven Development (FDD), Rational Unified

Process (RUP), SCRUM, Wisdom, The Big Bang Model.

These models have advantages and disadvantages as well.

Therefore, the main objective of this study is to represent

different models of software development and make

comparison between them to show the features and defects of

each model.

(Kumar et al., proposed The New SDLC-2013 model which

is designed in such a way that it allows client and developer

to interact freely with each other in order to understand and

implement requirements in a better way to produce a high

quality software within budget and schedule[4].

As the Software Development process begins with the

client's need, so the proposed model tries to discover most of

the requirements of the client. It helps in developing an

efficient software product that satisfies the client. In the

sphere of computer based system products, client satisfaction

is dependent on how system development process evolves to

build operational product systems that satisfy the perceived

and actual client's need and associated system requirements.

Ultimately, client satisfaction depends upon the depth of

"through-life‟ understanding about the client needs and

associated user requirements for a future system, and the

ability to communicate these requirements to the system

developer. In addition, client satisfaction and confidence

depends upon the level of system assurance offered

throughout the system development lifecycle. Requirements

understanding problems inevitably lead to poor client-

developer relationship, unnecessary re-work, and overrun

cost and time. The client satisfaction is totally depended on

client needs for this reason SDLC-2013 focus on the initial

phases.

The proposed work can be summarized as the creation of the

approach SDLC-2013 to develop software more efficiently.

The aim of Software Engineering is to develop software of

high quality within budget and schedule. The proposed plan

tries to fulfill the objective of Software Engineering by

showing existing matching software as prototype to the client

for discovering the requirements efficiently from the client in

order to estimate cost, schedule and effort more accurately.

Vishwas et.al., compare and propose a new model developed

by incorporating Release Management within the scope of

the SDLC basic phases like analysis, design, coding, testing

and maintenance[5]. Release Management is the concept

which is quite new in the field of Software Engineering. The

concept of release management derives itself from the core

concept of project management employed in Software

Engineering. Software how-so-ever efficient and effective

cannot be considered commercially successful until and

unless the software remains in the market for sufficiently

long duration, in order to recover the cost that incurred

during development and deployment of the software. The

release management process is a relatively new but rapidly

growing discipline within software engineering of managing

software releases. As software systems, software

development processes, and resources become more

distributed, they invariably become more specialized and

complex. Furthermore, software products (especially web

applications) are typically in an ongoing cycle of

development, testing, and release. Add to this an evolution

and growing complexity of the platforms on which these

systems run, and it becomes clear there are a lot of moving

pieces that must fit together seamlessly to guarantee the

success and long-term value of a product or project. The

need therefore exists for dedicated resources to oversee the

integration and flow of development, testing, deployment,

and support of these systems. Although project managers

have done this in the past, they generally are more concerned

with high-level, "grand design" aspects of a project or

application, and so often do not have time to oversee some of

the more technical or day-to-day aspects. Release managers

(aka "RMs") address this need. They must have a general

knowledge of every aspect of the software development

process, various applicable operating systems and software

application or platforms, as well as various business

functions and perspectives.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sep 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 244

IV. NEW PROPOSED SDLC MODEL

Figure 2. Proposed Model

These are main phases of new proposed SDLC model

I. Planning : As we know how the requirement from

customer is important for any software development. There

are many software fail or delay due to wrong requirement.

The whole process of any software is dependent on

requirement gather form user. There are different method

form which we can collect requirement from customer or

user. The objective of software engineering is that developed

software should meet or fulfill the user's requirement. In all

prior SDLC model have same problem Estimating beginning

of software but this is not in nature how can we estimate

accurate or judge size, cost, effort and time of the software

before completion of the software . After this we take as this

estimated size we calculate Cost, Effort, scheduling etc. this

is really become unnatural. These are one of the main causes

of project failure or delay.

This is first phase of my proposed SDLC model. In this

phase of model CBR technique will be used for project

estimation i.e. (Size, Effort, Time and cost). After

completion of this phase a document will be produced called

project requirement document this is like as SRS document.

In this document all required features size of the software,

total cost required for development of the software, effort

required for the software and time to be develop the software

will be measured form CBR technique.

The project manger prepares this document. In this document

there are all functional and non functional requirements will

be mentioned. After completion of this phase development

phase i.e. second phase of my proposed SDLC will start.

For estimating size of the Project I have used Function point

Metric. after estimating Size I have used Basic COCOCMO

model estimation technique for estimation of Total Effort,

Development Time and Total cost of the project.

All the estimation process done in .Net Platform

STEP 1. Retrieve the most similar case or cases, i.e.,

previously developed projects by single input value i.e. Line

of Code.

STEP 2. Reuse the information and knowledge to develop

new software.

STEP 3.Revise the proposed solution if any changes

required.

And the last step

STEP 4. Retain the parts of this experience likely to be

useful for future problem solving.

If not any similar cases are available in DB for any type of

the software then I have proposed a new solution .

Step1. Calculating Size of the software by using FPM.

Step2. calculating Effort of the software by using COCOMO

Model.

Step3.Calculating Development time of the software by

using COCOMO Model..

Setp4. Calculating Total Cost of the software by using

COCOMO Model.

Step5. Store all information in DB for future problem

solving.

Figure 3.proposed new working model with CBR technique.

II. Development: The main objective of this new developed

software life cycle model is to estimate accurate for the

software from Planning phase using CBR technique.

development phase is second phase of my proposed SDLC.

In this phase (a) designing will be done using UML tools to

draw UML diagram after that (b) coding will be done using

any programming language .

The steps for developing a program are therefore:

a) Understanding the requirement.

b) Produce the design document from PRD document.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sep 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 245

c) Translate the design into program code using suitable

programming language.

After coding testing will be done. Testing is traditionally

used mean testing of program code. When the product is

tested with appropriate and realistic tests that reflect typical

usage patterns by the intended users, the chances of the

product satisfying the customer's requirement is much

higher. While testing does not guarantee zero defects,

effective testing certainly increases the chances of customer

acceptance of the software. Testing is done by a set of people

with in a software product (or service) organization whose

goal and agreement is to uncover the defects in the product

before it reaches the customer. The process of analyzing a

software item to detect difference between existing and

required condition (i.e., bugs) And to evaluate the feature of

the software items.

III. Maintenance: After successful completion of testing

phase the last phase of my proposed SDLC maintenance

phase will be execute. The term software maintenance

denotes any changes made to a software product after it has

been delivered to the customer. The maintenance phase of

software life cycle is the period in which a software product

performs useful task.

Advantages of proposed SDLC Model:

a) Maintainability.

b) Correctness.

c) Reusability.

 d) Reliability.

e) Portability.

f) Efficiency.

1. Operation:

a) Correctness: The software which we are making should

meet all the specifications stated by the customer.

b) Usability/Learn ability: The amount of efforts or time

required to learn how to use the software should be less. This

makes the software user-friendly even for IT-illiterate

people.

c) Integrity: Just like medicines have side-effects, in the

same way a software may have a side-effect i.e. it may affect

the working of another application. But a quality software

should not have side effects.

d) Reliability: The software product should not have any

defects. Not only this, it shouldn't fail while execution.

e) Efficiency: This characteristic relates to the way software

uses the available resources. The software should make

effective use of the storage space and execute command as

per desired timing requirements.

f) Security: With the increase in security threats nowadays,

this factor is gaining importance. The software shouldn't

have ill effects on data / hardware. Proper measures should

be taken to keep data secure from external threats.

g) Safety : The software should not be hazardous to the

environment/life.

2. Revision:

a) Maintainability : Maintenance of the software should be

easy for any kind of user.

b) Flexibility : Changes in the software should be easy to

make.

c) Extensibility : It should be easy to increase the functions

performed by it.

d) Scalability : It should be very easy to upgrade it for more

work(or for more number of users).

e) Testability : Testing the software should be easy.

f) Modularity : Any software is said to made of units and

modules which are independent of each other. These

modules are then integrated to make the final software. If the

software is divided into separate independent parts that can

be modified, tested separately, it has high modularity.

3. Transition :

a) Interoperability : Interoperability is the ability of software

to exchange information with other applications and make

use of information transparently.

b) Reusability : If we are able to use the software code with

some modifications for different purpose then we call

software to be reusable.

c)Portability : The ability of software to perform same

functions across all environments and platforms, demonstrate

its portability

Importance of any of these factors varies from application to

application. In systems where human life is at stake, integrity

and reliability factors must be given prime importance. In

any business related application usability and maintainability

are key factors to be considered. Always remember in

Software Engineering, quality of software is everything,

therefore try to deliver a product which has all these

characteristics and qualities.

Table 1.Comparative Study of New Purposed Software

Life cycle model with Other Models
Features Waterfall Spiral Agile

Model
New Model

SRS Well

Understood
Not Well

Understood

Not Well

Understood
Well

Understood
Cost/size

Estimation

Low High High Low

Schedule Within

Schedule

Schedule

May
 Exceed

Within

Schedule

Within

Schedule

 International Journal of Computer Sciences and Engineering Vol.6(9), Sep 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 246

Risk

Involvement

High Low High Low

User

Involvement

Low Low Low High

Guaranty

Of Success

Low High Good High

Client

Satisfaction

Low High High High

Flexibility Rigid Flexible Flexible Flexible

Time Frame Medium Medium Medium Short

Initial

Product Feel

No Yes No Yes

V. CONCLUSIONS AND FUTURE WORK

 In this research work I compare all traditional SDLC models

with each other every model have some advantages and some

limitation and I also proposed a new model for software

development with different life cycle. In this research work I

also compare a new model with other traditional SDLC

model. Some of the limitations of different SDLC model can

be overcome by this new proposed model but some rest

limitations of different SDLC model are not been overcome

like late delivery and cost . In my future work I shall

improve this new model and try to add more features in this

model.

REFERENCES

[1] G. Kadoda, M Cartwright, L Chen, and M. Shepperd. (2000),

“Experiences Using Case- Based Reasoning to Predict Software

Project Effort”, In Proceeding of EASE, p. 23-28, Keele, UK.
[2] I. Myrtveit and E. Stensrud. (1999), “A Controlled Experiment to

Assess the Benefits of Estimating with Analogy and Regression

Models”, IEEE transactions on software Engineering, Vol 25, no. 4,
pp. 510-525.

[3] K. Ganeasn, T.M. Khoshgoftaar, and E. Allen. (2000), “Case-based

Software Quality Prediction”, International journal of Software
Engineering and Knowledge Engineering, 10 (2), pp. 139-152 .

[4] Shi Zhong,Taghi M.Khoshgoftaar and Naeem Selvia “Unsupervised

Learning for Expert-Based Software Quality Estimation”.Proceeding
of the Eighth IEEE International Symposium on High Assurance

Systems Engineering (HASE’04).

[5] Ekbal Rashid, Srikanta Patnaik, Vandana Bhattacherjee “A Survey in
the Area of Machine Learning and Its Application for Software Quality

Prediction” has been published in ACM SigSoft ISSN 0163-5948,

volume37,number5,September2012,http://doi.acm.org/10.1145/234769
6.2347709 New York, NY, USA.

[6] M. J. Khan, S. Shamail, M. M Awais, and T. Hussain, “ Comparative

study of various artificial intelligence techniques to predict software
quality” in proceedings of the 10th IEEE multitopic conference, 2006,

INMIC 06, PP 173-177, Dec 2006.

[7] S. Becker, L. Grunske, R. Mirandola, and S. Overhage, “ Performance
prediction of component-based systems a survey from an engineering

perspective”, In architechture systems with Trust-worthy components,

Vol 3938 of LNCS, Springer, 2006.
[8] Ekbal Rashid, Srikanta Patnaik, Vandana Bhattacherjee “Enhancing

the accuracy of case-based estimation model through Early Prediction

of Error Patterns” proceedings published by the IEEE Computer
Society 10662 Los Vaqueros Circle Los Alamitos, CA, in International

Symposium on Computational and Business Intelligence (ISCBI

2013), New Delhi, 24~26 Aug 2013 ISBN 978-07695-5066-4/13

IEEE, DOI 10.1109/ISCBI.2013.
[9] Aamodt, A. and E. Plaza, Case-based reasoning: foundational issues,

methodical variations and system approaches. AI Communications
7(1), 1994.

[10] Venkata U.B.Challagulla et al ”A Unified Framework for Defect data

analysis using the MBR technique”. Proceeding of the 18th IEEE
International Conference on Tools with Artificial

Intelligence(ICTAI’06).

[11] Tom M. Mitchell, “Machine LearningSection 4.1.1; page 82, McGraw
Hill Companies, Inc. (1997).

[12] David E. Goldberg “Genetic Algorithms in search, Optimization and

Machine learning” Pearson Education, Inc.
[13] Luger, George F. Artificial Intelligence, Structures and Strategies for

Complex Problem Solving, Fourth Edition, atpage 471 2002. Harlow,

England: Addison-Wesley.
[14] Ekbal. Rashid "R4 Model for Case-Based Reasoning and Its

Application for Software Fault Prediction," International Journal of

Software Science and Computational Intelligence (IJSSCI) 8 (2016): 3,
doi:10.4018/IJSSCI.2016070102.

[15] Ekbal Rashid “Improvisation of Case-Based Reasoning and Its

Application for Software Fault Prediction” has been published in
International Journal of Services Technology and Management

(IJSTM).ISSN online: 1741-525X ISSN print: 1460-6720, Vol.21,

No.4/5/6,
pp.214,227,DOI:http://dx.doi.org/10.1504/IJSTM.2015.073921,

Inderscience Publisher.

[16] Catal C. Software mining and fault prediction. WIREs Data Mining
Knowl Discov 2012; 2: 420-426.

Authors Profile

Mr. Madhup Kumar is pursuing MTech (by

Research) in Computer Science from JRU

Ranchi. He has completed his MCA from

BIT Mesra Ranchi. He is working as

Asssociate Lecturer in Department of CSE,

BIT Mesra, Patna Campus.His research area

is Machine Learning(CBR),Software Engineering and

Networking.

Ms.Anuradha Sharma is an assistant

professor in the department of Computer

science and Information Technology. She

holds a Master degree in Information

Technology from Birla Institute of

Technology Mesra and a B.Tech in Computer

Science from B.P.U.T (Biju Pathnayak University of

Technology). Her topic for research while M.Tech was

“Prediction of Iron ore using Soft Computing Technique”

which involved Artificial Neural Network using Back

propagation method. Her area of interest include Software

engineering, RDBMS, soft Computing, Neural network. She

is an avid reader and holds interest in current affairs topic.

http://doi.acm.org/10.1145/2347696.2347709
http://doi.acm.org/10.1145/2347696.2347709
http://dx.doi.org/10.1504/IJSTM.2015.073921

