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l. INTRODUCTION

The fractional order Differential equations are
generalizations of integer order classical differential
equations and it is valuable tools in the modeling of many
physical phenomena in various fields of science and
engineering.

Recently, various analytical and numerical methods have
been employed to solve linear and nonlinear fractional
differential equations. The differential transform method
(DTM) was proposed by Zhou [1] to solve linear and
nonlinear initial value problems in electric circuit analysis.
DTM constructs an analytical solution in the form of a
polynomial and different from the traditional higher order
Taylor series method. For solving two-dimensional linear
and nonlinear partial differential equations of fractional order
DTM is further developed as Generalized Differential
Transform Method (GDTM) by Momani, Odibat, and Erturk
in their papers [2-4].

Il. GENERALIZED DIFFERENTIAL TRANSFORM
METHOD

Consider a function of two variables U (X, y) be a product
of two single-variable functions, i.e.

u(xy)="f(x)a(y).

which is analytic and differentiated continuously with respect
to Xand Y in the domain of interest. Then the generalized
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two-dimensional differential transform [2-4] of the function

u(x,y)is

1
U, ,(k.h)=

I'(ak+1)I(Bh+1)
(o] 2 un],,
where 0 < a,,BSl;Ua’ﬂ (k, h) =F, (k)Gﬁ (h) is

called the spectrum of U (X, y)and

@

k

(Dg) =Dg,Df e, DY (K — times)
The inverse generalized differential transform of
U, 5 (k,h) is given by

u(xy)= X2, (kh)(x-%) (y-%)"” @

k=0 h=0
It has the following properties:

L ifu(X,y)=v(Xy)£W(X,y) then
U, s(k,h)=V, ;(k,h)xW,  (k,h)

. ifu(x,y)=av(x,y),aeRthen
U, ,(k.h)=av, ,(k,h)
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L ifu(x,y)=v(x y)w(x,y) then

VI ifu(x,y)=Dgv(xy),0<a <1 then
T(a(k+1)+1)
I'(ak+1)

VILI. ifu(x,y):D)Z)v(x,y),0<7/s1then
Ua’ﬁ(k,h):%vaﬁ(k+§,hj
if u(x,y)=D}Vv(x,y),0<y <1 then

r(ph+y+1
—(rﬂ(ﬂh 11) )vaﬁ (k, h +%)
IX. if u(x,y)=f(x)g(y) and the function
f (X) = x*h(x) where 1 >—1, h(X) has the
generalized Taylor series expansion

h(x) = ian (x—%,)™ and
n=0

(@ P <A+1land « isarbitrary or
(b) B=A+1, aisarbitraryand @, =0 for
n=012,...m-1,herem-1< g <m.

Then (1) becomes

U,,(k,h)=

U, ,(kh) v, , (k+1h)

VIII.

U, s (k,h)=

1
I'(ak+1)I(ph+1)

x[ng(Dﬁ)hu(x, y)}

(%:Yo)
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X. it v(x,y)=f(x)g(y),the function f(x)
satisfies the conditions given in (1X) and
u(x,y)=D]v(x,y) then

U, ,(k,h)= r(fﬁgz:i)ly)vw [k +§,hj

where U,, ; (k, h),Vaﬁ (k,h)and W, , (k,h)are the
differential transformations of the functions
u(x,y),v(x,y)and w(Xx, y) respectively and

1 : k=n

S(k—n)=

0 K=#n

1. MATHEMATICAL PRELIMINARIES ON
FRACTIONAL CALCULUS

In the present analysis we introduce the following definitions
[5, 6].

3.1 Definition: Letax € R™ On the usual Lebesgue space
L(a, b) integral operator | “ defined by

dﬁaf(X)_ 1 XX— a-1
_r(a)g( t) f(t)dt

1“f (x)= v

and
1°f (x) = f (x)
is called Riemann-Liouville fractional integral operator of

order « >0and a< x<b
It has the following properties:

l. |« f (X) exists for any X e[a,b]
. 1 (x) =197 £ (x)
. 1P f(x)= 17171 (x)
(41
F(a+y+1)

wheref(x)e L[a,b], a,f>0,y>-1

3.2 Definition: The Riemann-Liouville definition of
fractional order derivative is

\VA 1% =

a dn n-a
Rlo_DX f(x):WOIX f(X)
1 "o n-a-1
= -t f(t)dt,
fn-ayac) 1O

where n is an integer that satisfies N—1<a <n.
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3.3 Definition: A modified fractional differential
operator D“ proposed by Caputo is given by

Inoc(ji (X)
1

=r(n—a)f( )" Y (Ot

where a(ae R*) is the order of operation and nis an

oD (%) =0

integer that satisfies N—l1<a <n.
It has the following two basic properties [7]:

. 1f fel, (a,b) or feC[a,b] and a>0
then ; DY’ Iaf(X)zf(X).

x 07 x

. 1f feC’ [a,b] and if & >0 then

n-1 f(k) 0"
OIX“ngf(x):f(x)—Zka;
=R
n-l<a<n.

3.4 Definition: For m being the smallest integer that
exceeds « , the Caputo time-fractional derivative operator of

order a >0, is defined as [8]

Df‘u(x,t):%
—8mu(x,§) ; a=meN
_ o&" |
R mat O"U(X,E)
—F(m—a)-([(t_é) o d¢ ; m-1<a<m

Relation between Caputo derivative and Riemann-
Liouville derivative:

DU (x) =D f (x)-
-l<a<m

Integrating by parts, we get the following formulae as given
by [9]

© 2019, IJCSE All Rights Reserved

Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

b

T(x) D7 F (x)ax=[ 1 (x) Deg ()

a

n-1
+ ["De g (x) LDp I (x)]
j=0
I Forn=1
b b
.[g(x)aCDX“f (x)dx:j f (x) “:Dy'g(x)dx

+[XI§‘“g(x).f (X)L
IV. TESTPROBLEMS

In this section, we present four examples [10] to illustrate the
applicability of Generalized Differential Transform Method
(GDTM) to solve non linear time fractional differential
equations.

4.1 Example: We consider the following non-linear time
fractional partial differential equation

a 3
0 u(x,t)_6 (x,t)au(x’t)+u2(x,t)a u(>;,t) 0
ot” oX OX
>0
subject to initial condition u(X,0) =6x; X eR
®)

24

where 6t_“ is the fractional differential operator(Caputo

derivative) of order O0<ax <1.

Applying (1) with(X,,t,) =(0,0) on (3) we obtain

( (h- 1)+1){62k:h 1U1ﬂ(r,h—s—1)

Ui (M) == ey
x(k—=r+1)U,, (k—r+1s)

(4)
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and U, (k,0)=65(k-1) vk=0123,.....

()
Utilizing (4) and (5), we obtain after a little simplification the

following values ofU, , (k, h) for k=0,1,2,3,...and
h=0,12,3,...

216
[(a+1)
0;U,,(22)=0;

216° _
[(a+1])T(2a+1)

U

(01)=0;U,, (L1) =

lLa

U, (21)=0;U,,(31)

U,,(02)=0;U,,(12)=

216°T' (2 +1) { 216° +1}
(M(er+1)) T3 +1) | (T (2 +1))
and so on

Using the above values ofU, _, (k, h) for
k=0,12,3,..and h=0,1,2,3,...in (2), the solution of
(3) is obtained as
216 e
I'(a+1)
. 216°T (2a +1)
(M(a+1)) T (3a+1)

U, (L3)=

3
216 e

u(xt)= T(a+1)(2a+1)

216°

S +1} xt*
(T (2a+1))

(6)
4.2 Example: We consider the following non-linear time
fractional partial differential equation

0 u(;’t)—6u2(x,t)au(x’t)
e t OX t>0
+x° u(>§ ):O
OX

subject to initial condition u(X,0) = %(X —1);xeR
@)

a

where is the fractional differential operator(Caputo

a

derivative) of order 0 <ar <1

Applying (2) with (X0 : to) = (O, 0) on (7) we obtain
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and U, (k,0) :%(5(k -1)-1); vk=0,1,23,.......

)

Uutilizing (8) and (9), we obtain after a little simplification
the following values of U, , (k, h) for k =0,1,2,3,... and

h=0123,...

Ulla(l,O):O;Ul’a(k,O):—% Vk=0234,.;
11 1

U,(2l)=——:U,, (L) =——F—;

e (21) 12T (ar +1) (1) 18T (a +1)
235 34

Ui (51)= _mi U, (31)= O (a+1) :

and so on

Using the above values ofU, , (k,h) for
k=0,12,3,...and h=0,1,2,3,...in (2) the solution of
(7) is obtained as

1 1
t)=-Z-—— _xt“
4 =S (e

t* X2+ 1 —1+Lt" X
) 3l 2 3 (a+l)

1 11
_ _l+—
6 2l (a+1

+1 —1—ﬂt“ X2 +...
6 2F(a+1)

(10)

4.3 Example: We consider the following non-linear time
fractional partial differential equation
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0 u(x,t)+u(x’t)6u(x,t)
ot* OX
3
37 u@();’t):Zt“+x+t3“+xt2“ ;120
X

subject to initial condition u(x,0)=1; xR
(11)

a

where is the fractional differential operator(Caputo

derivative) of order 0 <ar <1

Applying (1) with (Xo,to) = (O, O) on (11) we obtain

+26(k)6(h—-4)+6(k-1)6(h-3)
(12)
and U, (k,0)=1; vk=0,1,2,3,....... (13)

Uutilizing (12) and (13), we obtain after a little simplification
the following values of U, , (k, h) for k=0,1,2,3,... and

h=0,123,..

17 70
U (0,l)=———:U, (1L1)= :
l’a( ) F(a+1) M( ) F(a+1)
174 350
U, (2,1)= U, (31)= ;
1’a( ) F(a+1) l’a( ) F(a+1)
615 987
u,,(41)= ; 1) = ;
M( ) F(a+1) M( ) F(a+1)
1484 2124
U, (6,1)= U, (7,1])=——;
M( ) F(a+1) 1’a( ) F(a+1)
2925 3905
U, (81)= U Ay=———:
1’“( ) I'(a+1) l’“( ) I'(a+1)
5082 6474
U, (10.1)= I'(a+1) Ui, (112)= I(a+1)
and so on

Using the above values ofU, , (k, h) for

k=0,12,3,...and h=0,1,2,3,...in (2) the solution of
(11) is obtained as
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17 70
1)=1 t“+| 1 t
uOt) = e +(+F(a+1) jx

174

H I ————t* [XP 4| 1+
I'(a+1) r
1421 e x| 14
I'(a+1)
+ 1+ 1484 t* [x®+| 1+
F(a+1)
1+ 2925 t X% +| 1+ 3905 t“ [x°
I'(a+1) I'(a+1)

+| 1+ 5082 t | +| 1+ 6474
F(a +1)

t [x"....
F(a+1) J
(14)

4.4 Example: We consider the following non-linear time
fractional partial differential equation
o“u(x,t au(x,t) d%u(xt) o%u(xt

(58) | 0y 260) _0(x)  Su(x)

ot” OX OX OX
F2XT 4 2xt% 2% t>0

9B7 ).
I'(a +1)

2124

ta 7
F(a+l) JX "

subject to initial condition u(x,0)=1; X eR

(15)

a

where is the fractional differential operator(Caputo

a

derivative) of order 0 < <1

Applying (1) with (Xo,to) = (0, 0) on (15) we obtain

U, (k,h)= F(l‘f((:d:)l;l) {_zzu (r.h-s-1)

x(k=r+1)U,, (k—r+1s)
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+(k+3)(k+2)(k+1)U,, (k+3h-1)
+(k+2)(k+1)U,, (k+2,h-1)+25(k-2)5(h-2)
+25(k-1)5(h-3)+25(k-3)5(h-5)}

(16)
and U, , (k,0)=1; vk=0,1,2,3,.......

17
Uutilizing (16) and (17), we obtain after a little

simplification the following values of U, , (k,h) for
k=0,123,...and h=0,1,2,3,...

Um(o,1)=ﬁ;um (1,1):%;
U, (2,1):%; u,, (3,1):%;
u,, (4,1):%;% (5,1):%;
um(e,l):% ;um(7,1)=% ;
um(s,l):% ;U (9, )=% ;
U, (10,1)= % U, (111) = %
and so on

Using the above values ofU, , (k, h) for

k=0,12,3,..and h=0,1,2,3,...in (2) the solution of
(15) is obtained as

4 27
A)=1l+—t“+| 1+ —t“
L= = et )
H I ———t* [X*+ 1+£t“ X
I'(a+1) I'(a+1)

+ 1+£t“ x*+ 1+it“ X°
I'(a+1) I'(a+1)
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+ 1+£t“ x® + 1+ﬂt“ !
F(a+1) F(a+1)
+ 1+&t“ x® + 1+13lt“ x°
F(a +1) F(a+1)
+ 1+ﬂ t* | x4+ 1+ﬂt“ XMt
F(a+1) F(a+1)
(18)
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