
 © 2018, IJCSE All Rights Reserved 281

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-11, Nov 2018 E-ISSN: 2347-2693

Scaling and Testing Refactoring Preconditions in Refactoring Engines

Padakanti Divya
1*

, Karanam Madhavi
2

1
Dept. of Information Technology, GRIET, Hyderabad, India

2
 Dept. of Computer Science and Engineering, GRIET, Hyderabad, India

*Corresponding Author: divyajalender@gmail.com, Tel.: 8897203208

Available online at: www.ijcseonline.org

Accepted: 22/Nov/2018, Published: 30/Nov/2018

Abstract— Demonstrating refactoring sound as for a formal semantics is viewed as a test. Designers compose test cases to

check their refactoring implementations. However, it is troublesome and time expending to have a decent test suite since it

requires complex sources of info (programs) and a prophet to check whether it is conceivable to apply the transformation. In

the event that it is conceivable, the subsequent program must save the perceptible conduct. There are some computerized

strategies for testing refactoring motors. In any case, they may have impediments identified with the program generator

(comprehensiveness, setup, expressiveness), automation (sorts of prophets, bug classification), time utilization or sorts of

refactoring that can be tried. This paper stretches out past system to test refactoring engines. It likewise clarifies the

enhancement expressiveness of the program generator for testing more kinds of refactoring's, such as Extract Function.

Moreover, developers simply need to determine the information's structure in an explanatory dialect. They may likewise set the

system to skip some continuous test contributions to enhance performance. This additionally assesses strategy in 18 kinds of

refactoring implementations of Java and distinguishes 35 bugs identified with aggregation blunders, behavioral changes, and

overly strong conditions. This paper thinks about the effect of the skip on the time utilization and bug detection in this

proposed method. By using a skip of 25 in the program generator, it decreases in 96%the times to test the refactoring

implementations while missing only 3.9% of the bugs. In almost no time, it finds the principal failure related to aggregation

blunder or behavioral change.

Keywords: Refactoring, overly strong preconditions, automated testing, program generation

I. INTRODUCTION

Characterizing and executing refactoring's is a nontrivial

task since it is hard to characterize all preconditions to

ensure that the transformation protects the program conduct.

In fact, proving refactoring rightness for whole dialects such

as Java and C comprises a test [1]. Thus, refactoring engines

may have bugs [2], [3]. By and by, developers of refactoring

motors utilize tests to assess the refactoring

implementations. However, testing refactoring motors isn't

trivial since it requires complex data sources, such as

programs, and an oracle to characterize the right coming

about the program or whether the transformation must be

rejected. Physically composing test cases may be expensive,

and in this way, it might be hard to make a good test suite

considering all the dialect develops.

Scientists have proposed various automated methods for

testing refactoring engines [3], [4], [5], [6].They automate

four noteworthy strides of the testing procedure: (I) creating

test inputs; (ii) applying the refactoring implementation; (iii)

checking the yield accuracy; (iv) and classifying the

identified failures into distinct bugs. In spite of the fact that

these systems have identified various bugs in refactoring

engines, it remains a question whether they scale to

distinguish more bugs without impressive effort.

To reduce the time to test the refactoring implementations,

this paper actualizes a technique to avoid some continuous

test inputs [8]. Back to back programs created by DOLLY

will, in general, be fundamentally the same as, possibly

distinguishing a similar kind of bug. Thus, developers can

set a parameter to avoid a few programs to reduce the time

to test the refactoring implementations. By skirting these

programs, this proposed technique can reduce the Time to

First Failure (TTFF), decreasing the developer inactive time

[8].

The proposed technique utilizes an arrangement of

automated prophets to evaluate the rightness of the

transformations identified with assemblage mistakes,

behavioral changes, and overly strong conditions. In the

wake of recognizing the failures, the technique utilizes an

arrangement of automated bug categorizers to classify every

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 282

single failing transformation into distinct bugs. For

simplification, the new technique utilizes the term

transformation to allude to a refactoring or a failing

transformation.

Here evaluated 18 kinds of refactoring implementations of

Just Add Refactoring Tools (JRRT) [9], Eclipse JDT (Java)

and Eclipse CDT (C). 76 (53 new bugs) bugs in a total of 49

bugs identified with assemblage blunders, 17 bugs identified

with behavioral changes, and 10 bugs identified with overly

strong conditions. Among those bugs, 28 bugs in

refactoring's connected inside function level.

The time utilization and bug detection have been analyzed in

this proposed technique. By utilizing a skip of 25 in the

program generator, it reduces in 96% the time to test the

refactoring implementations while missing just 3.9% of the

bugs. Moreover, by utilizing this equivalent skirt the

proposed strategy locate the first failure as a rule in almost

no time. In this way, the refactoring motor developer can

discover a bug in the refactoring implementation generally

rapidly, settle it, run the proposed technique again to

discover another bug, et cetera. Before a release, tool

developers can run the technique without the jump to locate

some missed bugs.

Proposed system:

This technique proposes Disabling Preconditions (DP), a

new technique to recognize overly strong preconditions in

refactoring implementations by disabling preconditions.

From now on we allude to disabling preconditions as the

way toward forestalling to report messages to the client,

raised by the preconditions. A message is accounted for

when a precondition is unsatisfied. Proposed technique

automatically create various programs as test inputs,

utilizing JDOLLY. For each created program, we endeavor

to apply the transformation utilizing the refactoring

implementation that is being tried. At the point when the

refactoring implementation rejects a transformation, it

reports a message to the client depicting the issue. For every

kind of message, Proposed technique distinguish code

fragments identified with the precondition that yields the

message. There might be various preconditions identified

with each message, yet for effortlessness, we consider, for

each refactoring implementation, one precondition per

message in our technique. Next, Proposed technique modify

the refactoring implementation to cripple the code fragments

that kept the refactoring application. This technique

proposes the DP changes to encourage and systematize the

way toward modifying the code to permit disabling

preconditions.

II. LITERATURE SURVEY

So are et al., [3] propose a Java program generator called

JDOLLY for exhaustively making programs. By using

JDOLLY, fashioners can show the amount of some Java

constructs and confinements for the made programs by using

Compound [7], a formal detail vernacular. They used

JDOLLY to make more than 100,000 projects. Though

JDOLLY can lessen the effort for delivering Java programs,

it just makes programs with straightforward system bodies

(only a solitary clarification), which isn't adequate to test

refactoring’s inside technique level. Moreover, altogether

making programs, for few Java fabricates, can require an

impressive measure of time.

[2] M. Vakilian and R. Johnson, “Alternate refactoring

paths reveal usability problems”, Current Integrated

Development Environments (IDEs) bolster numerous

refactoring's. However, programmers incredibly underutilize

automated refactoring's. Ongoing examinations have

connected customary ease of use testing strategies such as

studies, lab studies, and meetings to discover the ease of use

issues of refactoring tools. Nonetheless, these procedures

can recognize just specific kinds of ease of use issues. The

critical incident technique (CIT) is a general procedure that

reveals ease of use issues by dissecting disturbing client

connections. The strategy adjusts CIT to refactoring tools

and demonstrates that other refactoring paths are indicators

of the ease of use issues of refactoring tools. It characterizes

another refactoring path as a sequence of client

communications that contains undoing's, revealed messages,

or rehashed summons of the refactoring tool.

[3] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P.

Borba, “Making refactoring safer through impact analysis”,

As of now most developers need to apply for manual

advances and utilize test suites to enhance certainty that

transformations connected to protest arranged (OO) and

aspect-situated (AO) programs are right. Notwithstanding, it

isn't easy to do manual reasoning, due to the nontrivial

semantics of OO and AO dialects. Moreover, most

refactoring implementations contain various bugs since it is

hard to set up all conditions required for a transformation to

conduct safeguarding. In this article, the new technique

proposes a tool (Safe Refactor Impact) that investigates the

transformation and creates tests just for the strategies

impacted by a transformation distinguished by change

impact analyzer (Safira). contrast the Safe Refactor Impact

and the past tool (Safe Refactor) as for rightness,

performance, the number of strategies passed to the

automatic test suite generator, change inclusion, and the

number of pertinent tests produced in 45 transformations.

Safe Refactor Impact recognizes behavioral changes

undetected by Safe Refactor. Moreover, it reduces the

number of techniques passed to the test suite generator.

[4] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson,

“Comparing Approaches to Analyze Refactoring Activity on

Software Repositories”, A few approaches have been

utilized to examine proof on how developers refactor their

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 283

code, whether refactoring's exercises may decrease the

quantity of bugs, or enhance developers' profitability. Be

that as it may, there is some negating proof in past

investigations. Here recognize submitted conduct protecting

transformations in software repositories by utilizing manual

examination, submit messages or dynamic investigation.

Others center around distinguishing which refactoring's are

connected between two programs by utilizing manual

examination or static investigation. In this paper, look at the

three changed approaches based on a manual investigation,

submit a message (Ratzinger's approach) and dynamic

examination (SAFE REFACTOR's approach) to recognize

whether a couple of forms decides a refactoring, as far as

behavioral protection.

[5] G. Soares, R. Gheyi, and T. Massoni, “Automated

behavioral testing of refactoring engines", Refactoring is a

transformation that saves the outside conduct of a program

and enhances its interior quality. More often than not,

arrangement mistakes and behavioral changes are

maintained a strategic distance from by preconditions

decided for each refactoring transformation. Be that as it

may, to formally characterize these preconditions and

exchange them to program checks is a rather mind-boggling

task. Practically speaking, refactoring motor developers

ordinarily actualize refactoring's in a specially appointed

way since no rules are accessible for assessing the accuracy

of refactoring implementations. Accordingly, even standard

refactoring engines contain critical bugs. This paper presents

a technique to test Java refactoring engines. It automates test

input generation by utilizing a Java program generator that

thoroughly creates programs for a given extent of Java

affirmations. The refactoring under test is connected to each

produced program. The technique utilizes Safe Refactor, a

tool for distinguishing behavioral changes, as a prophet to

evaluate the accuracy of these transformations. At long last,

the technique classifies the failing transformations by the

kind of behavioral change or assemblage blunder presented

by them.

[6] S. Negara, N. Chen, M. Vakilian, R. Johnson, and D.

Dig, “A comparative study of manual and automated

refactorings”, Regardless of the tremendous achievement

that manual and automated refactoring has appreciated amid

the last decade. Understanding the refactoring practice is

critical for developers, refactoring tool manufacturers, and

analysts. Numerous past approaches to consider refactorings

are based on looking at code previews, which is loose,

inadequate, and does not permit noting research questions

that include time or think about manual and automated

refactoring. This paper displays the first expanded

experimental investigation that considers both manual and

automated refactoring. This examination is empowered by

proposed technique calculation, which derives refactorings

from constant changes.

III. PROBLEM STATEMENT

In existing work utilizes Differential Testing to

automatically recognize transformations dismissed by

refactoring engines because of overly strong preconditions

(DT technique). It automatically produces various programs

as test inputs utilizing JDOLLY, a Java program generator.

Next, it applies the equivalent refactoring to each test input

utilizing two distinct implementations and thinks about the

two outcomes. The technique utilizes SAFEREFACTOR to

automatically evaluate whether a transformation protects the

program conduct. SAFEREFACTOR automatically

evaluates whether two variants of a program have a similar

conduct via automatically producing experiments just for the

normal techniques impacted by the change. To utilize this

technique, developers require access to something like two

refactoring engines. Be that as it may, it must be utilized if

both refactoring engines execute the equivalent refactoring.

IV. IMPLEMENTATION PROCEDURE

Detecting Overly Strong Preconditions

In this section, the proposed technique to recognize overly

strong preconditions in refactoring implementations utilizing

the DP prophet. The Proposed technique gets as

info a refactoring implementation, the DP changes used to

permit disabling the preconditions, and a few parameters to

design DOLLY, such as skip, scope, and extra limitations.

Each precondition checks whether the transformation may

present a particular issue in the program, which can result in

gathering mistakes or behavioral changes. The technique

restores the adjusted refactoring implementation and all

transformations that yield an arrangement of overly strong

preconditions in the first refactoring implementation.

The main steps of the technique.

Step 1: Next, the refactoring implementation under test

endeavors to apply the transformations to each created

program. On the off chance that the refactoring

implementation rejects a transformation, the messages will

be gathered and answered to the client.

Step 2: For every kind of message, the refactoring

implementation code reviewed and physically recognize the

code fragments identified with the precondition that raises it.

One assumption ought to be made, for each refactoring

implementation, that there is one precondition identified

with every kind of message. Then, one adjustment ought to

be done such that the refactoring implementation code by

adding If explanations to permit disabling the execution of

the distinguished precondition utilizing the DP changes

Step 3: The objective is to apply the transformation as

opposed to detailing the message again.Once the technique

changes the refactoring implementation code to permit

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 284

automatically disabling the preconditions, and evaluate

them. For every transformation dismissed by the refactoring

implementation, it automatically endeavors to apply a

similar transformation again with a debilitated precondition

Step 4: In the event that the refactoring implementation

rejects the transformation and reports another message, it

rehashes the procedure by disabling more preconditions

until the point when the refactoring implementation applies

a transformation. On the off chance that the altered

refactoring implementation applies the transformation and

the subsequent program protects the program conduct as

indicated by SAFE REFACTOR IMPACT, then the

technique classifies the arrangement of impaired

preconditions as overly strong

Step 5: Otherwise, it breaks down the following rejected

transformation. When the classification is over a

precondition as overly strong, it won't be evaluated again

with other sources of info produced by DOLLY that yield a

similar message. Calculation 1 condenses the fundamental

advances. Next, this paper clarifies in more subtle elements

the way toward disabling the preconditions.

V. DETECT OVERLY STRONG PRECONDITION

TECHNIQUE

Input: refactoring implementation R, skip, scope,

constraints, timeLimit, DP changes

Step 1. progs= DOLLY.generate(skip, scope, constraints);

progs’ = Ø; . A set of pairs of programs and messages

msgs= Ø; . A set of all messages reported by R

Step 2. foreachprog∈progs do

msg= R.canApplyRefactoring(prog); .canApplyRefactoring

yields one message, for simplicity,

ifR cannot apply it

ifmsg≠Øthen

progs’.add(hprog, msgi);

msgs.add(msg); . For simplicity, it does not show that it

removes some names and keywords from msg

map= Ø; . A set of all mappings of messages to

preconditions

Step 3.1. Create a class: public class ConditionsR{ public

static void enableConditions() {} };

Step 3.2. foreachmsg∈msgs do

Step 3.2.1. Identify how msgis represented in R; .Specific

for each refactoring engine

Step 3.2.2. Create a fresh public static boolean field (cond)

in ConditionsR. Add cond= true in enableConditions;

Step 3.2.3. map.add(hmsg, condi); . It relates each message

to a condition

Step 3.3. Identify how to prevent reporting messages to user

in R; .Specific for each refactoring engine

R’ = R; R’ will contain the modified refactoring

implementation

Step 3.4. foreachmsg∈msgs do

Step 3.4.1. places= Identify all places in R that can prevent

reporting msgto user;

Step 3.4.2. foreach place ∈places do

R’ = applyDPChange(DPChanges, R’, place, msg, map); .

Add if (ConditionsR.cond) {place}. Specific for each ref.

engine

transformations= Ø; . A set containing all transformations

applied by R’

Step 4. foreachhprog, msgi∈progs’ do

Step 4.1. ConditionsR.enableConditions(); . It enables all

preconditions

Step 4.2. ConditionsR.(map.getCondition(msg)) = false; . It

disables a condition related to msg

Step 4.3. msg= R’.canApplyRefactoring(prog);

ifmsg∈msgs then

go to Step 4.2;

else if msg = Øthen

transformations.add(hprog, R’.applyRefactoring(prog)i); . It

saves a transformation that does not yield a message

else

continue; . For simplicity, it does not focus on disabling

preconditions related to messages not reported in Step 2

result= ∅;

Step 5. foreach t ∈transformations do

ifSAFEREFACTORIMPACT(t.input,t.output,

timeLimit).hasSameBehavior() then

result.add(t); . It saves a behavior preserving transformation

applied by R’[25]

VI. DP CHANGES IN ECLIPSE

Eclipse actualizes a class (Refactoring Status) that stores

the result of the preconditions checking operation. It

contains methods,such as addError, addEntry, addWarning,

createStatus, createFatalErrorStatus,createErrorStatus, and

createWarningStatus.

Those strategies get a message and other contentions,

portraying a particular issue distinguished amid the

precondition checking. The strategies began with make

restore a Refactoring Status Protest. The messages are

stored in the refactoring. Properties record. A field from the

Refactoring Core Messages class speaks to them. They can

be specifically gotten to by a field call or through a

variable, parameter of the strategy, or the arrival of a

technique called.

The refactoring implementations of Eclipse check the status

of a transformation, in a Refactoring Status protest, in the

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 285

wake of assessing the preconditions. If it contains some

notice or mistakes messages, Eclipse rejects the

transformation and reports the messages to the client. This

paper proposes the Eclipse DP changes by breaking down

the littlest code fragment, which requirements to

incapacitate for maintaining a strategic distance from the

motor to include a new blunder or cautioning status in a

Refactoring Status object. DP Change 2 keeps Eclipse from

announcing mistake messages.

VII. RESULTS EVOLUTIONS

The proposed technique chose up to 10 refactoring

implementations from Eclipse JDT 3.7, NetBeans 7.0.1.

Afterward, a new form was released with enhancements

and bug settling (which likewise call JRRTv2); this new

form was additionally subject to analysis. Table 1

demonstrates all evaluated refactorings. The evaluated

refactoring’s center around a delegate set of program

structures. Moreover, a study did demonstrate the Eclipse

JDT refactoring’s that Java developers utilize most:

Rename, Move Method, Extract Method, Pull Up Method,

and Add Parameter. Four of these are evaluated in this

article. The Move Method refactoring was not bolstered by

NetBeans When that this article was composed.

Table 1: Summary of scope and constraints for each refactoring

Refactoring Scope (P - C - F - M) Main constraint

Rename Class 2-3-0-3 some class

Rename Method 2-3-0-3 some Method

Rename Field 2-3-2-1 some Field

Push Down Method 2-3-0-4 some c:Class k someSubClass[c] and someMethod[c]

Push Down Field 2-3-2-1 some c:Class k someSubClass[c] and someField[c]

Pull Up Method 2-3-0-4 some c:Class k someParent[c] and someMethod[c]

Pull Up Field 2-3-2-1 some c:Class k someParent[c] and someField[c]

Encapsulate Field 2-3-1-3 some Field

Move Method 2-3-1-3 some c:Class k someTargetClassField[c] and someMethodToMove[c]

Add Parameter 2-3-0-3 some Method

Scope = Package (P) - Class (C) - Field (F) - Method (M).

Table 2 synopses the experiment results. Segments Program

and Time demonstrate the number of programs created by

JDOLLY for each refactoring and the normal time for

testing the refactoring implementations from each engine.

Columns Comp. error., Behav. cha. and Overly strong

demonstrates the total number of transformations connected

by Eclipse, Net-Beans, JRRTv1, and JRRTv2 that delivered

gathering errors, behavioral changes, and that were not

connected due to overly strong conditions, respectively.

Considering all refactorings, JDOLLY produced 153,444

programs, and new technique distinguished 43,235

transformations with assemblage blunders, 27,597 ones with

behavioral changes, and 70,832 that were not connected due

to overly strong conditions. Even, however, Eclipse, JRRT,

and NetBeans have their own test suites, new technique

recognized 120 (likely) remarkablebugs.

Table 2: Overall experimental results

Refactoring Program Time(h) Comp. error. Behav. cha. Overly strong

Rename Class 15322 6.7 4368 160 4528

Rename Method 11263 6.9 2290 1713 4003

Rename Field 19424 29.3 894 1834 2728

Push Down Method 20544 11.9 13579 3312 16891

Push Down Field 11936 6 7231 119 7350

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 286

Pull Up Method 8937 7.3 3867 1363 5230

Pull Up Field 10927 8.6 1726 785 2511

Encapsulate Field 2000 2.5 472 1220 1692

Move Method 22905 10.3 1321 12289 13610

Add Parameter 30186 34.69 7487 4802 12289

Total 153444 124.19 43235 27597 70832

Table 3 outlines the bugs answered to Eclipse JDT, Net-

Beans and JRRT. new technique distinguished 34 overly

powerless preconditions in Eclipse. Albeit every one of

them was acknowledged by the Eclipse developers, 16 of

them were named as copied. Up until now, they have

settled only two of them. In NetBeans, new technique

recognized 51 overly powerless preconditions. Net-Beans

group has officially acknowledged 30 of them and settled 7

bugs. In the interim, here 24 overly frail preconditions to

JRRTv1, from which 20 were acknowledged and settled (4

of the bugs were not viewed as bugs because of a shut

world assumption of JRRT developers)it additionally

announced more 11 bugs to JRRTv2, from which 6 were

acknowledged and settled. JRRT group additionally fused

experiments into their test suite.

The proposed technique did not find overly strong

preconditions in NetBeans but identified 16 ones in

Eclipse.

Table 3: Summary of reported bugs.

Engine Submitted Accepted Duplicated Not accepted Not answered fixed

Eclipse 34 34 16 0 0 2

VIII. CONCLUSION

Bridges the bugs answered to Eclipse JDT, Net-Beans and

JRRT. new technique recognized 34 overly frail

preconditions in Eclipse. Albeit every one of them was

acknowledged by the Eclipse developers, 16 of them were

marked as copied. Up until this point, they have settled only

two of them. In NetBeans, new technique distinguished 51

overly feeble preconditions. Net-Beans group has officially

acknowledged 30 of them and settled 7 bugs. In the interim,

here 24 overly powerless preconditions to JRRTv1, from

which 20 were acknowledged and settled (4 of the bugs were

not viewed as bugs because of a shut world assumption of

JRRT developers)it likewise revealed more 11 bugs to

JRRTv2, from which 6 were acknowledged and settled.

JRRT group likewise consolidated experiments into their test

suite.

REFERENCES

[1] M. Schafer, T. Ekman, and O. de Moor, “Challenge proposal:

verification of refactorings,” In PLPV, 2008, pp. 67–72.

[2] G. Soares, M. Mongiovi, and R. Gheyi, "Identifying overly strong

conditions in refactoring implementations," in ICSM, 2011, pp.

173–182.

[3] G. Soares, R. Gheyi, and T. Massoni, "Automated behavioral

testing of refactoring engines,” IEEE Transactions on Software

Engineering, vol. 39, pp. 147–162, 2013.

[4] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing

of refactoring engines,” in FSE, 2007, pp. 185–194.

[5] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and.

Marinov, “Test generation through programming in UDITA,” in

ICSE,2010, pp. 225–234.

[6] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D.

Marinov, on reals"Systematic testing of refactoring engines

software projects," inECOOP, 2013, pp. 629–653.

[7] D. Jackson, “Software Abstractions: Logic, Language, and

Analysis.Revised edition. “The MIT Press, 2012.

[8] V. Jagannath, Y. Lee, B. Daniel, and D. Marinov, “Reducing the

costs of bounded-exhaustive testing,” in FASE, 2009, pp. 171–

185.

[9] M. Sch¨afer and O. Moor, “Specifying and implementing

refactorings," in OOPSLA, 2010, pp. 286–301.

[10] D. Jackson, I. Schechter, and H. Shlyahter, “Alcoa: the Alloy

constraint analyzer,” in ICSE, 2000, pp. 730–733.

[11] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba,

“Makingrefactoring safer through impact analysis,” SCP, 2014, In

press.

[12] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program

refactoring safer,” IEEE Software, vol. 27, pp. 52–57, 2010.

[13] W. Mckeeman, “Differential testing for software,” Digital

TechnicalJournal, vol. 10, no. 1, pp. 100–107, 1998.

[14] E. Torlak and D. Jackson, “Kodkod: A relational model finder,”

inTACAS. Wiley, 2007, pp. 632–647.

[15] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson, “comparing

approaches to Analyze Refactoring Activity on Software

Repositories, "JSS, pp. 1006–1022, 2013.

[16] W. Opdyke, “Refactoring Object-Oriented frameworks,” Ph.D.

dissertation, the University of Illinois at Urbana-Champaign,

1992.

[17] L. Tokuda and D. Batory, “Evolving object-oriented designs with

refactorings,” ASE, vol. 8, pp. 89–120, 2001.

[18] A. Garrido and R. Johnson, “Refactoring C with conditional

compilation," in ASE, 2003, pp. 323–326.

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 287

[19] A. Garrido and R. E. Johnson, “Analyzing multiple configurations

of a program,” in ICSM, 2005, pp. 379–388.

[20] F. Steinmann and A. Thies, “From public to private to absent:

RefactoringJava programs under constrained accessibility,” in

ECOOP, 2009, pp.419–443.

[21] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornelio, “Algebraic

reasoning for Object-Oriented programming,” “SCP, vol. 52, pp.

53–100,2004.

[22] L. Silva, A. Sampaio, and Z. Liu, “Laws of Object-Orientation

with reference semantics,” in SEFM, 2008, pp. 217–226.

[23] H. Li and S. Thompson, “Testing ErlangRefactorings

withQuickCheck,” in IFL, 2008, pp. 19–36.

[24] M. Vakilian and R. E. Johnson, “Alternate refactoring paths reveal

usability problems,” in ICSE, 2014, pp. 1–11.

[25] Melina Mongiovi Member, Rohit Gheyi, Gustavo Soares, Márcio

Ribeiro, Paulo Borba, "Detecting overly strong preconditions in

refactoring engines" IEEE 2017.

[26] Geeta Bagade, Shashank Joshi “Analysis of Aspect-Oriented

Systems: Refactorings using AspectJ”
Vol.4, Issue .5, pp.76-80,

May-2016

[27]]Nagaveni, A. Ananda Rao, P. Radhika Raju, “Testing Refactoring

Implementations of Object-Oriented Systems”
International

Journal of Computer Sciences and Engineering, Vol.6 ,

Issue.7,pp.530-534, Jul-2018

Authors Profile

Padakanti Divya is currently pursuing Masterof

Technology from Gokaraju Rangaraju Institute of

Engineering and Technology, Hyderabad.

she has pursued Bachelor of Technology in 2016

from Balaji Institute of Technology and Science,

Warangal. Her main research work focuses on

Software Engineering.

Karanam Madhavi, working as a Professor in

Computer Science and Engineering Department,

Gokaraju Rangaraju Institute of Engineering and

Technology. She has completed her B.E in 1997,

M.Tech from JNTUA in 2003 and awarded Ph.D.

from JNTUA in 2013. She has 19 years of

teaching experience. She has published several papers in reputed

international journals and international conferences. Her research

interest includes software engineering, Model Driven Engineering,

Data Mining, and Mobile software engineering.

http://www.ijcseonline.org/pdf_paper_view.php?paper_id=906&12-IJCSE-01639.pdf
http://www.ijcseonline.org/pdf_paper_view.php?paper_id=906&12-IJCSE-01639.pdf
http://www.ijcseonline.org/pdf_paper_view.php?paper_id=2468&82-IJCSE-04174.pdf
http://www.ijcseonline.org/pdf_paper_view.php?paper_id=2468&82-IJCSE-04174.pdf

