

 © 2019, IJCSE All Rights Reserved 226

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-3, March 2019 E-ISSN: 2347-2693

A novel framework for combating network attacks using Iptables

Nikita Gandotra
1*

, Lalit Sen Sharma
2

1,2

Dept. of Computer Science & IT, University of Jammu, Jammu (J&K), India

*Corresponding Author: nkt_2201@yahoo.co.in

DOI: https://doi.org/10.26438/ijcse/v7i3.226237 | Available online at: www.ijcseonline.org

Accepted: 20/Mar/2019, Published: 31/Mar/2019

Abstract— Network attacks pose as grievous threat to the stability of the Internet and are a major security concern as they can

breach the security of the network or even make the victim unavailable. The network attack packets can intercepted by using

Iptables before they can reach the victim machine. Iptables is the standard firewall included in Linux distributions for handling

the kernel Netfilter modules. The effectiveness of the defense provided by the Iptables firewall mainly depends on its rules. In

this paper, we have proposed a novel framework with new customized Iptables rules for mitigating fifteen types of network

attacks which include port scanning; denial of service attacks, TCP, UDP, and ICMP based attacks etc. The performance of

Iptables with these rules is evaluated with the real experiments for examining the competence of firewall in managing the

network traffic and security when subjected to attack flow along with the normal traffic. The performance of Iptables is

recorded in the terms of CPU utilization for processing and Logs generation, Frame Loss Ratio and Efficiency. The attack

traffic is generated using Scapy for execution of the attacks whereas the normal traffic is generated using a traffic generator

called D-ITG. It was found that Iptables could successfully detect the network attack and performed really well during the

mitigation of such attacks.

Keywords—Iptables, Netfilter, Scapy, DITG, network-attacks

I. INTRODUCTION

Network attacks pose as threats to security and services

provided by the servers connected to the Internet. The servers

are continuously being targeted by intruders by different

network attacks as these are extremely simple to execute in

comparison to other types of cyber-attacks and can hamper

the performance of the servers. In order to provide protection

to the network, firewalls are usually deployed as these form

the first line of defense without restricting the information

exchange with the outside world. Iptables is an open source

firewall that is included in most Linux distributions and has

become extremely popular among researchers due to its

reliability, robustness, flexibility and apparently infinite

scope for customization. Since Iptables is an open source

firewall and provides high dependability for handling burst

traffic [1], thus it was chosen upon the other software

firewalls. Iptables was developed under the Netfilter project

[2]. The Netfilter module is a kernel space program that

facilitates packet filtering, network address translation and

several other packet mangling facilities. It examines the

incoming and outgoing packets and allows or blocks them

based on a set of rules that represents a set of conditions [3].

If all the conditions specified in a rule matches the packet,

then the specified action is taken otherwise the default policy

is applied. When a packet arrives at Netfilter hooks [4], the

firewall searches the rule space sequentially, one by one and

if a matching rule is found, first matching rule is applied

against the packet.

This paper focuses on formulation of new customized

Iptables rules for mitigating fifteen different network attacks

[5] and also verifies their potential for their use in real life

scenarios. The performance of Iptables is evaluated with

these rules on an experimental testbed and the behavior of

the firewall is observed when subjected to different network

attack flows along with the normal traffic. The performance

and security provided by Iptables is tested by performing

real-time experiments and recording it in the terms of key

parameters: CPU utilization for Iptables and Logs

generation, frame loss ratio and efficiency. Key parameter

represents the ability of firewall in managing the attacks

along with network traffic. The network attacks were

performed using Scapy [6] and their corresponding

techniques are also discussed in the paper. Also, the normal

network traffic was generated using D-ITG [7] to emulate the

actual working condition of the firewall.

The main contributions of this work is as follows:

1. Performance of Iptables under attacks has not been

evaluated before. The previous works have only reported

the occurrence of attack without measuring its

performance;

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 227

2. The rate limits proposed in this paper precisely

represents the real life scenarios [19] as compared to

previous works;

3. The performance of Iptables with Scapy has not been

measured before;

4. The tests are conducted on high speed network of

22Mbps with attack rate of 2 Mbps; and

5. Both the framework and performance of Iptables is

discussed for fifteen types of network attacks.

The organization of remaining paper is as follows: Section II

briefly discusses the structure of Iptables while Section III

presents an insight into the related works. The Experiment

plan and the work done are discussed in Section IV. Section

V and Section VI illustrate the observations and the results.

Finally, Section VII summarizes and concludes this paper.

II. BACKGROUND

Iptables is a Linux administration tool used to access the

Netfilter framework and allows the user access to the kernel

firewall. The Netfilter module is implemented in the Linux

as a kernel space program which is either included as a set of

modules or compiled directly into the kernel. Iptables

perform Stateful Packet Inspection (SPI) of the incoming and

outgoing packets to filter out packets based on the security

policy. It keeps track of every connection passing through it

and has the ability to filter out packets based on the MAC

address which makes it a formidable security solution.

Iptables use separate rule tables to support miscellaneous

packet processing facility which are implemented as separate

modules. The three primary tables used by Iptables are

FILTER table, NAT table, and a MANGLE table [8]. These

tables operate on different chains which contain the set of

rules. Chains can be in-built or user defined [3] such as

PREROUTING for NAT translation and checking the TOS,

INPUT for incoming packets, FORWARD for redirecting

incoming packets, OUTPUT for outgoing packets and

POSTROUTING for NAT translation and services

implemented on packet before leaving.

The FILTER table is primarily used for filtering packets

where the actual action is taken against the packets whether

to ACCEPT or DROP them. The decision depends upon the

contents of packet header. It operates on INPUT, OUTPUT,

FORWARD and user defined chains. The NAT table is used

for network address translations and also for hiding the

internal network using MASQUERADE target. It uses three

types of chains: PREROUTING, OUTPUT and

POSTROUTING. MANGLE table is a special packet

handling module which operates on all chains and is used for

enforcing TOS, TTL and security.

Firewall rules correspond to a set of conditions representing

the situation for accepting or rejecting the packets. The

different options [9] available for defining rules are: IP

header fields, Device interfaces, Rate-limited packet

matching, Current connection state, Addressing types, Layer

2 types, range of IP addresses, ICMP types, Length of the

packet, Time of the arrival, Random packets, Packet sender’s

user, group, process, or process group ID, Type of Service

field, Time to live and Targets.

III. RELATED WORK

Only a little work was available on the performance of

firewall and their resilience under attacks. Most of the

existing works laid much emphasis on reporting the

occurrence of attacks [12-16] than the performance of the

firewall under attack [17-18].

K. Chatterjee [10] studied the performance of CyberRoam, a

commercial firewall under DoS flood. The system showed a

poor performance due to high traffic and hence suggested the

use of Iptables for restrictive forwarding and preventing DoS

flood when the hardware could not be upgraded. B. Sharma

and K. Bajaj [11] explored the use of Iptables for packet

filtering in Linux. They discussed rules for blocking of

HTTP traffic, specific URLs, ICMP traffic, SMTP traffic and

P2P file sharing traffic.

B. Q. M. AL-Musawi [12] discussed the various types of

DoS attacks and suggested Iptables rules for preventing only

SYN flood, UDP flood and ICMP flood. The attack traffic

was generated by hping and its occurrence was reported by

using wireshark. Also, the rate limits proposed in rules were

far away from real life scenario. Likewise, S. Mirzaie et al. in

[13] proposed Iptables rules for mitigating SYN flood attack.

They rate-limited the number of TCP connections from a

single IP address. No further evaluation has been done in

order to evaluate the efficiency of the suggested rule.

M. Šimon et al. [14] studied the use of IP6Tables and

Iptables for IPv6 and IPv4 networks for mitigating HTTP-

GET Flood. The test setup consisted of P2P grid and the

performance of Iptables rules was measured in the form of

network load, memory usage and network usage (data sent

and received). Certain important parameters such as CPU

Utilization and number of packets dropped by Iptables were

not considered.

In [15], A. Balobaid studied the impact of DoS attacks and

its mitigation on cloud (OpenStack- Icehouse) environment.

The SYN flood and UDP flood were executed using Hping3

and Iptables was used for its mitigation. It was seen that

Iptables significantly reduced the impact of the attack but the

rules used were not discussed and the performance of

Iptables was not evaluated.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 228

M. Y. Arafat in [16] discussed an approach using Iptables to

mitigate DNS Amplification Attack. The suggested rules

were discussed in the paper but performance evaluation has

not been done to check the effectiveness of the rules.

K. Salah et al. [17] discussed about the performance of

network firewall and proposed an analytical model based on

Markov chain. The performance of Linux Netfilter firewall

was analyzed for 10000 dummy rules for both normal traffic

and DoS traffic. The DoS traffic was generated by KUTE

and the performance was recorded in terms of packet loss,

throughput, packet delay, and CPU utilization. No Iptables

rules for DoS attack were discussed in the paper.

T. Hayajnch et al. in [18] evaluated the performance of

network and personal firewalls for security and performance.

The performance evaluation was done on the basis of

throughput, jitter, delay and packet loss while for security

evaluation, different types of attacks that could be blocked by

the respective firewall were reported. In particular, Cisco

ASA 5510, Packet Filter, Comodo and ZoneAlam were

considered and was inferred that Cisco ASA achieved better

performance in comparison to other firewalls.

IV. EXPERIMENT PLAN

A. Experimental Setup

The experimental setup consists of a LAN of four PCs to

assess the performance of Iptables under different types of

network attacks. Figure 1 shows the setup together with the

corresponding IP addresses.

The performance of Iptables is measured under attack along

with normal traffic. For generating normal traffic, D-ITG

(Distributed Internet Traffic Generator) is used. It is an open-

source traffic generator with additional facility of network

analysis, measurement and monitoring. It can be used to

generate traffic by varying packet size and packet rate [20]

and monitor the performance on the link without affecting

the experiments. The normal traffic is generated at a rate of

6000 packets per second with the packet size of 256 bytes.

The traffic for different attacks were created using Scapy [6].

It is a packet manipulation tool written in Python that enables

the user to send, sniff and forge the packets in a computer

network. It provides the facility to describe a packet or a set

of packets with user defined field values. The attacks were

executed for duration of 120 seconds. The performance is

measured in terms of following key parameters:

i. CPU Utilization by Iptables computed by averaging

the amount of CPU utilization by the kernel during its

execution and is measured by TOP command.

ii. CPU Utilization for Logs Generation computed by

averaging the amount of CPU used by the SYSLOG

during its execution.

iii. Frame Loss Ratio furnishes the total packets dropped

by the firewall:

FLR=Packets Dropped by Iptables ×100

Total Packets received by NIC

iv. Efficiency computed as the ratio of total packets

received by Iptables to the packets received by the

machine.

Figure 1. Experimental Setup

All the results are evaluated on machine with processor

Intel® Core™ i3-3110 CPU @ 2.40 GHz along with 8 GB

RAM space. Ubuntu-14.04 version was used as the operating

system.

B. Proposed Work

A firewall can be positive filtering or negative filtering.

Positive filtering firewall is set to allow all the traffic unless

there is a rule to block it while in latter, no traffic is allowed

unless there is a clear rule to allow it. This behaviour is

defined by the choice of default policy of the firewall. Here,

the default policies for all the chains in FILTER table are set

to DROP. This is done to provide maximum protection to the

system. The Iptables rules are written in a shell script to

combat all the attacks and to allow traffic on certain ports.

Total number of rules in the shell script is 210. The lines of

code used for fixing the default policy are as follows:

iptables --policy INPUT DROP

iptables --policy FORWARD DROP

iptables --policy OUTPUT DROP

The following taxonomies briefly discusses the different

types of attacks for which new customised Iptables rules

were formulated:

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 229

TCP BASED ATTACKS

1. SYN Attack:

One of the major protocols of the internet is TCP. It provides

reliable and connection-oriented service between two hosts.

In order to create a connection, TCP uses three-way

handshake:

i. Request where the client sends a SYN request to

make a connection

ii. The server responds with an ACK (acknowledgement)

and a SYN message, which accepts the client’s

request

iii. The client transmits back an ACK to the server,

establishing the connection

Attackers exploit this process of TCP connection by

generating fake messages to busy the servers for

authenticated users. In a SYN attack, the system is targeted

by multiple SYN packets with different spoof IP addresses

which cause the system to respond with ACK/SYN messages

and it continues to wait for the ACK from the spoof IP

address which never arises. The server removes the waiting

ACK from the concurrent connections, either when an ACK

is returned or the connection interval timer is worn out which

terminates the connection. The problem begins here because

the server can handle only a limited number of concurrent

connections. So, all the incoming requests are ignored when

the service queue is full causing denial of service to the

legitimate clients. To combat it, the rate of TCP requests is

limited to 2500/sec. The decision of the limit is taken by

considering the capabilities of the server to respond to

concurrent TCP requests [19]. The following rules are

formulated for this attack:

1) iptables -N TCPflood

2) iptables -A TCPflood -p tcp --syn -m limit --limit

2500/s --limit-burst 3000 -j RETURN

3) iptables -A TCPflood -p tcp -j LOG --log-prefix

“Iptables TCP SYN Flood: " --log-level 7

4) iptables -A TCPflood -p tcp -j REJECT --reject-with

tcp-reset

5) iptables -A INPUT -p tcp -m state --state NEW -j

TCPflood

The above code creates a new chain called TCPflood. The

limit match option matches the rate of incoming SYN

requests to 2500/s and burst of 3000 i.e. the rate limit is

enforced once the size of 3000 is reached. If the rate of

incoming packets is less that 2500/sec then the control is

returned to the calling chain (INPUT chain) and no action is

taken here and the rule searching is resumed from the INPUT

chain. While in case the rate of incoming requests is greater

than the limit, then the packets more than the limit is dropped

just like in token bucket technique. In order to execute the

SYN attack, the SYN packets are generated by the following

Python code:

send (IP (dst=“192.170.1.119”, src = RandIP ())/

TCP(dport = 80, flags= “S”),loop=1, inter=0.001)

This generates continuous TCP requests directed towards the

server residing at the firewall on the HTTP port with an inter

departure time of 0.001 sec.

2. ACK attack

It is a TCP based attack where the attacker sends packets

with the ACK flag enabled and a forged IP address. On

receiving the packet, the victim machine searches all the

established TCP connections to find out the active

connection to which it may belong. As the source contains

spoofed IP address, the victim eventually drop these packets

but causes resource exhaustion at victim machine as every

packet has to be processed resulting in loss of service to the

authenticated users. To combat the ACK attack, all the

incoming TCP packets whose connection state are new but

are not SYN requests are dropped here:

1) iptables -A INPUT -p tcp ! --syn -m state --state NEW -

j LOG --log-prefix “Iptables Invalid Packet" --log-level

7

2) iptables -A INPUT -p tcp ! --syn -m state --state NEW

-j DROP

The ACK attack traffic was generated by the following

Python code:

send(IP(dst=“192.170.1.119”,src=RandIP())/TCP(dport=

80, flags= “A”), loop=1, inter=0.001)

3. RESET Attack

TCP uses flags to indicate the type of packet. One of the

flags used in TCP connections, is the “RST" flag which

indicates that the connection should be terminated. This pre-

empts the communication instead of completing with FIN

flag. In a RESET attack, the attacker takes over the

connection between two hosts or floods the host with

massive number of RST packets which leads to re-

initialisation of TCP connection by server. In order to block

excessive RST packets, they are rate-limited to 400/sec when

they occur in large frequencies by following lines:

1) iptables -A INPUT -p tcp -m tcp --tcp-flags RST RST -

m limit --limit 400/s --limit-burst 400 -j ACCEPT

2) iptables -A INPUT -p tcp -m tcp --tcp-flags RST RST

-j LOG --log-prefix “Iptables TCP RESET: " --log-

level 7

3) iptables -A INPUT -p tcp -m tcp --tcp-flags RST RST

-j DROP

The attack traffic was generated by following:

send (IP (dst = “192.170.1.119”, src = RandIP ()) / TCP

(dport = 80 , flags = “R”),loop=1, inter = 0.001)

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 230

4. XMAS Tree Scanning

It is an attack where special packets are sent to the server that

have either all the flags or FIN, URG and PSH flags enabled

in the TCP header. These are often used for port scanning

and performing denial of service attack as it requires greater

processing than the usual packets, so the server has to

allocate significant amount of resources to it. These packets

derive their name Christmas Tree packets from its structure

because all the fields of header are "lightened up" like a

Christmas tree. In order to block XMAS type attack,

following are used:

1) iptables -A INPUT -p tcp --tcp-flags ALL FIN, URG,

PSH -j LOG --log-prefix “Iptables XMAS packet:" --

log-level 7

2) iptables -A INPUT -p tcp --tcp-flags ALL FIN, URG,

PSH -j DROP

3) iptables -A INPUT -p tcp --tcp-flags ALL ALL -j LOG

--log-prefix “Iptables Xmas Tree type scanning: " --

log-level 7

4) iptables -A INPUT -p tcp --tcp-flags ALL ALL -j

DROP

The above rule no.2 matches TCP type packets with flags:

FIN, URG, PSH enabled while rule no.4 matches TCP type

packets where all the TCP flags enabled. Christmas tree

packets are generated by using following commands in

Scapy:

send (IP (dst = “192.170.1.119”, src = RandIP ())/ TCP

(dport=80, flags=X) , loop=1, inter=0.001) where

X=”FPU”; 0x0ff

5. IP Half Scan

In this attack, instead of establishing a complete TCP

connection, the attacker only sends initial or final packets in

order to avoid detection by port scan detectors. The attacker

starts the SYN message with the server but do not complete

it. IP Half scan attack is also known as half-open scans or

FIN scans. There are various software (like Jakal) available

that conducts half scans (stealth scan). In order to prevent

this attack, TCP packets with only SYN and FIN flag

enabled are filtered out using following:

1) iptables -A INPUT -p tcp --tcp-flags SYN, FIN SYN,

FIN -j LOG --log-prefix “Iptables IP Half scan:" --

log-level 7

2) iptables -A INPUT -p tcp --tcp-flags SYN, FIN SYN,

FIN -j DROP

The attack is generated using the following script:

send (IP (dst=“192.170.1.119”, src = RandIP())/ TCP

(dport=80, flags= “SF”), loop=1, inter=0.001)

6. Mail Bomb

Simple Mail Transfer Protocol is used for transferring

emails. TCP is the underlying protocol used for SMTP on

port number 25. This attack overwhelms a mail server,

triggering denial of service to its users. It is achieved by

sending an enormous number of e-mails to the server

systems. So, to combat flood of emails, the traffic on this

port is rate limited to 1000/sec using the following rules:

1) iptables -N Mailflood

2) iptables -A Mailflood -p tcp -m limit --limit 1000/s --

limit-burst 1000 -j RETURN

3) iptables -A Mailflood -p tcp -j REJECT --reject-with

tcp-reset

4) iptables -A INPUT -p tcp -m tcp --dport 25 -j Mailflood

The email flood is generated by using the following

statement in Scapy or some bulk emailing services [21] [22]

can be used to generate the email flood:

send (IP (dst = “192.170.1.119”, src= RandIP ())/ TCP

(dport=25, flags= “R”), loop=1, inter=0.001)

UDP BASED ATTACKS

7. UDP Flood

In this attack, the attacker sends off a hefty number of

packets (UDP) to different ports of the targeted machine. If

no application is listening on a port, the victim machine

responds with an ICMP type 3 packets. This whole process

of receiving, checking and responding results in victim being

overwhelmed and unreachable.

The UDP flood can also be generated by exploiting different

UDP services such as CHARGEN (measurement and

debugging tool that generates a sequence of characters on

receipt of every packet and operates on port 19). The attack

is usually performed by sending a packet with a spoofed IP

address to a system that has CHARGEN enabled. This can

also be used along with ECHO operating on port 7 to

generate massive traffic causing congestion. In addition to

port 7, an attacker can also use other services such as the

quotd (quote-of-the-day) functioning on port 17, or port 13

for the daytime service. These services echo packets on

receipt of packets and when used in combination can cause

service-denying congestion in the network. The UDP flood

can be battled by rate limiting the incoming UDP traffic by

following:

1) iptables -N UDPFLOOD

2) iptables -A UDPFLOOD -p udp -m limit --limit 2500/s

--limit-burst 2500 -j RETURN

3) iptables -A UDPFLOOD -p udp -j LOG --log-prefix

“Iptables UDPFLOOD: " --log-level 7

4) iptables -A UDPFLOOD -p udp -j REJECT

5) iptables -A INPUT -p udp -m state --state NEW -j

UDPFLOOD

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 231

A new chain is created for new UDP traffic called

UDPFLOOD. The rate of incoming packet is limited to

2500/sec. The UDP flood is generated by the following code

in Scapy:

send (IP (dst = “192.170.1.119”, src = RandIP ()) / UDP()

, loop=1, inter=0.001)

8. UDP Snork Attack And Other UDP Services

It is analogous to the UDP flood but is performed by

exploiting some selected services. It uses either the source

port ECHO (on port 7) or CHARGEN (on port 9), with 135

as the destination port. The result is a flood of unnecessary

transmissions which slows down the performance and can

crash the involved systems. The different UDP services can

be blocked by following:

1) iptables -A INPUT -p udp -m udp --dport X:X -j LOG -

-log-prefix “Iptables Port X" --log-level 7

2) iptables -A INPUT -p udp -m udp --dport X:X -j DROP

where X=7, 9, 13, 17 and 19

Attack is generated by following in Scapy:

send (IP (dst=“192.170.1.119”, src = RandIP ())/ UDP

(dport=X) , loop=1, inter=0.001)

9. DNS DoS Attack

It is the most common UDP based attack. The difference of

the size a DNS query and a response is exploited causing

tying up the bandwidth of the network by counterfeit DNS

queries. It is also called DNS Amplification Attack as the

DNS servers are exploited to act as “amplifiers” to swell up

the network traffic. Attack takes place by sending tiny

queries to the DNS servers by spoofing the IP address of the

targeted system. In response to these small sized queries,

much larger DNS response is returned. A great number of

responses will be returned at the same time if a number of

requests are made to the server, thus, congesting the network

and a DoS attack will take place. DNS service uses UDP and

operates on port 53.The DNS DoS attack can be mitigated by

rate limiting the DNS requests by following:

1) iptables -N DNSFLOOD

2) iptables -A DNSFLOOD -p udp -m limit --limit 1000/s

--limit-burst 1000 -j RETURN

3) iptables -A DNSFLOOD -p tcp -m limit --limit 500/s --

limit-burst 500 -j RETURN

4) iptables -A DNSFLOOD -p udp -j LOG --log-prefix

“Iptables DNS DOS: " --log-level 7

5) iptables -A DNSFLOOD -p udp -j REJECT

6) iptables -A DNSFLOOD -p tcp -j LOG --log-prefix

“Iptables DNS DOS: " --log-level 7

7) iptables -A DNSFLOOD -p tcp -j REJECT

8) iptables -A INPUT -p udp -m udp --sport 53 -j

DNSFLOOD

9) iptables -A OUTPUT -p udp -m udp --dport 53 -j

DNSFLOOD

10) iptables -A INPUT -p tcp -m tcp --sport 53 -j

DNSFLOOD

DNS typically uses UDP for query and response. But in case

the size of response packet is greater than 512 bytes, then

TCP is used. Thus, the above rules are defined for both UDP

and TCP. DNS DoS traffic can be generated by following

code in Python:

answer = sr1 (IP (dst = “192.170.1.119”, src= RandIP ())

/ UDP (dport = 53) / DNS (rd = 1, qd = DNSQR (qname

= “www.testrules.com”)) , verbose = 0, loop=1,

inter=0.001)

ICMP BASED ATTACKS

10. Ping Flood

The Internet Control Message Protocol is used for

transmitting error messages. The most common function

implemented in ICMP is the ping function. It is used to

determine if there exists a path between two hosts by using

ECHO request and ECHO reply messages. While pinging a

host, an ECHO request message is sent and in its response,

an ECHO reply is received. In case no ECHO reply is

received, this implies that either the other host is not

available or does not support the ping functionality.

The ICMP flood targets the victim with ICMP Echo Request

packets sent at a high-speed rate without waiting for a reply

from the targeted device. This overwhelms the victim’s

resources resulting in a consumption of both incoming and

outgoing bandwidth. ICMP flood can also be referred as ping

storm. So, the number of ECHO requests are rate limited to

1000/sec for combating the attack. The packets to be dropped

are logged before so as to keep record of the dropped

packets. The following rules are used to combat against this

attack:

1) iptables -N ICMPFLOOD

2) iptables -A ICMPFLOOD -p icmp --icmp-type echo-

request -m limit --limit 1000/second --limit-burst 1200 -

j RETURN

3) iptables -A ICMPFLOOD -p icmp -j LOG --log-prefix

“Iptables PING FLOOD: " --log-level 7

4) iptables -A ICMPFLOOD -p icmp -j REJECT

5) iptables -A INPUT -p icmp --icmp-type echo-request -

m state --state NEW -j ICMPFLOOD

Ping requests are generated by following code:

send (IP (dst = “192.170.1.116”, src = RandIP ()) / ICMP

(), loop=1, inter=0.001)

11. Fraggle Attack:

It is a variation of the ICMP flood where instead of directly

sending ping requests (ECHO requests) to the victim

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 232

machine, ping (ECHO) requests with its IP address (address

of the victim machine) are sent to a subnet, causing all the

systems to answer with ECHO reply messages to the victim

triggering flood of packets and thus consuming the

bandwidth of the victim [23]. So, the replies are rate limited

to a reasonable amount by following rules:

1) iptables -N Fragglestop

2) iptables -A Fragglestop -p icmp --icmp-type echo-reply

-m limit --limit 300/s --limit-burst 300 -j RETURN

3) iptables -A Fragglestop -p icmp -j LOG --log-prefix

“Iptables Fraggle Attack: " --log-level 7

4) iptables -A Fragglestop -p icmp -j REJECT

5) iptables -A INPUT -p icmp --icmp-type echo-reply -j

Fragglestop

The attack is generated by sending spoofed ICMP ping

requests with IP address of the firewall (192.170.1.119) to

other computer systems on the network.

12. Ping Of Death

In this attack, ping requests with massive payload (>65536)

are sent to server which causes it to hang. So, the following

rule is formulated to only accept packets upto size of 65535

bytes.

iptables -A INPUT -p icmp -m length --length 0:65535 - j

ACCEPT

Ping of death is generated by:

send(fragment (IP (dst = “192.170.1.119”,src= RandIP())

/ ICMP() / (“Y”*60000)), loop=1, inter=0.001)

OTHER ATTACKS

13. Null Scanning

It is a technique of locating “open” ports (for

communication) on a computer system and gathering as

much as possible information from it. TCP and UDP uses

well known ports for different services and applications.

Once information about listening ports is available with the

attacker, it can be used to exploit the server for the typical

service is enabled on the server. The null scanning uses TCP

packets with no flags enabled for gathering the information

about the listening TCP ports. So, null scanning can be

stopped by using following rules:

1) iptables -A INPUT -p tcp --tcp-flags ALL NONE -j

LOG --log-prefix “Iptables Port Scanning:" --log-level

7

2) iptables -A INPUT -p tcp --tcp-flags ALL NONE -j

DROP

Port scanners can be generated by following:

result, unans = sr (IP (dst = “192.170.1.119”) / TCP(

dport= (1,1024), flags= “ ”))

result. nsummary (lfilter = lambda (s, r) : (r.haslayer (TCP)

and (r.getlayer (TCP).flags&2)))

14. ARP Spoofing

ARP (Address Resolution Protocol) is a Network layer

protocol used for resolving IP addresses to machine MAC

addresses. This mapping of logical address to physical

address is stored in a table called ARP table. When a packet

arrives at a network device, it searches the ARP table to

locate the physical address of that host. In case no entry is

found, ARP request is broadcasted to all the systems to find

the MAC address of targeted host. The system which

identifies the broadcasted IP address as its own responds

with the ARP reply. This results in updating of ARP table

and packet is redirected to the corresponding MAC address.

ARP being a stateless protocol is often exploited by attacker

to perform ARP spoofing.

In this attack, an attacker sends fake ARP messages over the

network which results in linking of MAC address of the

attacker and the IP address of a valid system in the ARP

table. In order to prevent this attack, following rules are laid

to drop the packets that do not match the MAC address and

the IP address of the validated machine and can be used for

all machines:

1) iptables -A INPUT -s 192.170.1.116 -m mac ! --mac-

source 64:51:06:3c:8e:b1 -j LOG --log-prefix “Iptables

Spoofing: " --log-level 7

2) iptables -A INPUT -s 192.170.1.116 -m mac ! --mac-

source 64:51:06:3c:8e:b1 -j DROP

Spoofed packets were generated by the machines using

following:

send(IP (dst =“192.170.1.119”, src =“192.170.1.116”)) /

TCP() , loop=1, inter=0.001)

15. DoS Attack

Here, the objective is to make a network unapproachable to

intended users by producing a bulky traffic that can

overwhelm the resources of the network. It can be

accomplished by tiring the resources (like CPU, Memory) of

the server so that the server remains busy for actual users or

by consuming the bandwidth of the network by flooding the

network. The following rules to mitigate this type of attack

are based on rate limiting all the incoming traffic irrespective

of the type of traffic:

1) iptables -N DoSflood

2) iptables -A INPUT -j DOSFLOOD

3) iptables -A DoSflood -m limit --limit 8000/s --limit-

burst 10000 -j RETURN

4) iptables -A DoSflood -j LOG --log-prefix “Iptables

DoS attack:" --log-level 7

5) iptables -A DoSflood -j DROP

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 233

In order to perform this attack, a combination of different

types of flood traffic (TCP, UDP and ICMP) is generated

using Scapy from the systems in the network.

V. RESULTS AND DISCUSSION

The key parameters recorded for the fifteen network attacks

as discussed in previous section are shown in table I and are

graphically depicted in figure 2 to figure 17. Iptables has

performed well in mitigating the network attacks with the

average CPU utilization for processing and Logging with

2.42 % and 19.45 % respectively. Likewise, the average

efficiency of Iptables is 94.92% with frame loss ratio of

5.25% while mitigating the attacks.

Figure 2 to figure 5 compares the % CPU utilized by Iptables

during the attacks. The average CPU Utilization for TCP and

UDP based attacks is 2.55% and 2.78% while for ICMP

based attacks and other network attacks, it is 1.53% and

1.98% respectively. Thus, the CPU Utilization by Iptables

lies in the range 1-4 % which makes Iptables suitable for

mitigating the network attacks without making system

slower. Similarly, figure 6 to figure 9 shows the % CPU

utilized by Iptables for Log Generation during the attacks. It

lies in the range of 10-21%. Although, it is a significant

amount but it can be reduced by rate limiting the log

generated during the course of attack.

Figure 10 to figure 13 compares the percentage of packets

dropped by the Iptables for different network attacks.

Iptables performs excellently while mitigating TCP based

attacks with average frame loss ratio of only 1.73 % with

traffic of approximately 11,00,000 packets. Though, a

significant amount of packets were dropped in case of ping

flood but the average frame loss ratio in case of UDP and

ICMP based attacks is 3.89% and 5.11% respectively. This

indicates a good performance (except ping flood) with traffic

of approximately 10,00,000 packets. The poor performance

of Iptables in ping flood may be due to the fact that ICMP

packets require higher processing at network layer because

both Internet Control Message Protocol and Internet Protocol

work at network layer. Correspondingly, Iptables drops a

major amount of packets i.e. 30.75% which depicts the

lowest performance for DoS attack as it comprised of Ping

flood, TCP flood and UDP flood.

The efficiency of the firewall while combating the network

attacks is depicted in figure 14 to figure 17. The average

efficiency of the Iptables in case of TCP based attacks is

98.25% while the average performance in case of UDP and

ICMP based attacks is 96.06% and 94.79% respectively.

Likewise, the average efficiency in case of other network

attacks is 90.01%. Thus, it can be inferred that the Iptables

has efficiently blocked all the network attacks and can be

reproduced in real-life scenarios.

Table I. Observations for Key Parameters

ATTACKS

Number Of Packets Key Parameters

SENT RECEIVED % CPU

Utilisation (Kernel)

% CPU

Utilisation (Logging)

Frame

Loss Ratio
Efficiency

Scapy DITG NIC Iptables

SYN 371K 770K 1141K 1120K 2.72 12.66 1.84 98.15

ACK 271K 745K 1026K 1016K 2.45 13.57 0.97 99.02

RESET 271K 735K 1022K 1001K 2.39 15.30 2.05 97.94

Half Scan 441K 727K 1168K 1146K 2.45 21.63 1.88 98.11

Xmas 271K 753K 1024K 1014K 2.64 15.59 0.97 99.02

Mail Bomb 446K 709K 1155K 1124K 2.65 14.78 2.68 97.31

Ping Flood 271K 721K 992K 840K 1.59 14.92 15.32 84.67

Fraggle 200K 723K 923K 918K 1.52 15.73 0.5 99.5

Ping Of Death 481K 1189K 1670K 1636K 1.49 10.01 2.03 97.96

UDP Flood 303K 710K 1013K 991K 2.47 10.07 2.07 97.82

Snork 455K 712K 1167K 1085K 2.06 21.47 7.03 92.96

DNS Dos 383K 743K 1126K 1097K 3.83 10.11 2.57 97.42

Null Scanning 216K 721K 937K 867K 1.51 15.42 7.5 93.02

DoS 543K 709K 1252K 867K 2.51 19.49 30.75 69.24

ARP Spoofing 301K 717K 1018K 1015K 1.93 20.22 0.33 99.5

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 234

Figure 2. % CPU Utilized for Processing in TCP Based attacks

Figure 3. % CPU Utilized for Processing in UDP Based attacks

Figure 4. % CPU Utilized for Processing in ICMP Based attacks

Figure 5. % CPU Utilized for Processing in Other Network attacks

Figure 6. % CPU Utilized for Log Generation in TCP Based attack

Figure 7. % CPU Utilized for Log Generation in UDP Based attack

Figure 8. CPU Utilization for Log Generation (in %) of the firewall for

ICMP Based attacks

Figure 9. CPU Utilization for Log Generation (in %) of the firewall for

Other Network Based attacks

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 235

Figure 10. Frame Loss Ratio (in %) of the firewall for TCP Based

attacks

Figure 11. Frame Loss Ratio (in %) of the firewall for UDP Based

attacks

Figure 12. Frame Loss Ratio (in %) of the firewall for ICMP Based

attacks

Figure 13. Frame Loss Ratio (in %) of the firewall for Other Network

Based attacks

Figure 14. Efficiency (in %) of the firewall for TCP Based attacks

Figure 15. Efficiency (in %) of the firewall for UDP Based attacks

Figure 16. Efficiency (in %) of the firewall for ICMP Based attacks

Figure 17. Efficiency (in %) of the firewall for Other Network attacks

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 236

VI. CONCLUSION AND FUTURE SCOPE

The research goal of this paper was to recommend new
customised Iptables rules for mitigating fifteen network
attacks. Correspondingly, the performance of Iptables was
investigated by performing real time experiments and the
behaviour of the firewall was observed under network attack
along with normal traffic. This was recorded in the terms of
CPU utilisation for processing and Logs generation, Frame
Loss Ratio and Efficiency. To achieve the research goals,
various rules were incorporated in the shell script to combat
the network attacks. The designed script successfully Allow
or Deny the traffic based on the type of packet (attack or
normal). Therefore, this makes it possible to protect the
system from a wide variety of network hazards and can be
used for the providing security to the network.

The results clearly indicate that the Iptables performs really

well in case of network attacks but drops a considerate

amount of packets even though the processing is done by

kernel. This could be due to linear searching of the list of

rules which can potentially slow down the working of the

firewall. To overcome this problem, Packet Classification

algorithms can be implemented to improve the performance

of the Iptables.

REFERENCES

[1] W. Su and J. Xu, "Performance Evaluations of Cisco ASA and

Linux Iptables Firewall Solutions," May 2013.

[2] "Netfilter Project," [Online]. Available: www.netfilter.org.

[Accessed 01 October 2017].

[3] "Iptables," 2017. [Online]. Available:

http://www.Iptables.info/en/structure-of-Iptables.html. [Accessed

7 September 2017].

[4] "Monitoring and Tuning the Linux Networking Stack: Receiving

Data," May 2016. [Online]. Available:

https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-

linux-networking-stack-receiving-data/. [Accessed 27 September

2017].

[5] R. K. C. Chang, "Defending against Flooding-Based Distributed

Denial-of-Service Attacks:A Tutorial," IEEE Communications

Magazine, pp. 42-51, October 2002.

[6] "Scapy and its Documentation," 6 Nov 2017. [Online]. Available:

https://scapy.readthedocs.io/en/latest/. [Accessed 22 October

2017].

[7] A. Botta, W. Donato, A. Dainotti, S. Avallone and A. Pescapé.

[Online]. Available:http://traffic.comics.unina.it/software/ITG/

manual/. [Accessed 16 November 2017].

[8] O. Andreasson, 2001. [Online]. Available: http://onz.es/IpTables

%20Tutorial.pdf. [Accessed 5 October 2017].

[9] M. Rash, Linux Firewalls- Attack Detection and Response, 2007.

[10] K. Chatterjee, "Design and Development of a Framework to

Mitigate DoS/DDoS Attacks Using IPtables Firewall,"

International Journal of Computer Science and

Telecommunications , vol. 4, no. 3, pp. 67-72, March 2013.

[11] B. Sharma and K. Bajaj, "Packet Filtering using IP Tables in

Linux," International Journal of Computer Science Issues(IJCSI),

vol. 8, no. 4, pp. 320-325, July 2011.

[12] B. Q. M. AL-Musawi, "Mitigating DoS/DDoS Attacks Using

Iptables," International Journal of Engineering & Technology

IJET-IJENS, vol. 12, no. 03, pp. 101-111, June 2012.

[13] S. Mirzaie, A. K. Elyato and D. A. Sarram, "Preventing of SYN

Flood attack with iptables Firewall," in 2010 Second International

Conference on Communication Software and Networks.

[14] M. Šimon, L. Huraj and M. Čerňanský, "Performance Evaluations

of IPTables Firewall Solutions under DDoS attacks," Journal of

Applied Mathematics Statistics and Informatics (JAMSI), vol. 11,

no. 2, pp. 35-45, 2015.

[15] A. Balobaid, W. Alawad and H. Aljasim, "A Study on the Impacts

of DoS and DDoS Attacks on Cloud and Mitigation Techniques,"

in 2016 International Conference on Computing, Analytics and

Security Trends (CAST), College of Engineering Pune, India. Dec

19-21, 2016, 2016.

[16] M. Y. Arafat, M. M. Alam and F. Ahmed, "A Realistic Approach

and Mitigation Techniques for Amplifying DDOS Attack on

DNS," in Proceedings of 10th Global Engineering, Science and

Technology Conference, BIAM Foundation, Dhaka, Bangladesh,

2-3 January, 2015.

[17] K. Salah, K. Elbadawi and R. Boutaba, "Performance Modelling

and Analysis of Network Firewalls," IEEE Transactions on

Network and Service Management, vol. 9, no. 1, pp. 12-20, March

2012.

[18] T. Hayajneh, B. J. Mohd, A. Itradat and A. N. Quttoum,

"Performance and Information Security Evaluation with

Firewalls," International Journal of Security and Its Applications,

vol. 7, no. 6, pp. 355-372, 2013.

[19] S. M. Aaqib, "To Analyze Performance, Scalability & Security

Mechanisms of Apache Web Server Vis-a-vis with contemporary

Web Servers," University of Jammu. Available:

[http://hdl.handle.net/10603/65175], Jammu, 2014.

[20] S. Mishra, S. Sonavane and A. Gupta, "Study of Traffic

Generation Tools," International Journal of Advanced Research in

Computer and Communication Engineering, (IJARCCE) Vol. 4,

Issue 6, June 2015.

[21] "BULK Email," BESI Marketing Solutions, [Online]. Available:

http://www.bulkemailsmsindia.com/. [Accessed 12 December

2017].

[22] "Bulk Email service," Mail Marketer, [Online]. Available:

http://mailmarketer.in/.

[23] R. J. Shimonski, D. L. Shinder, T. W. Shinder and A. C.-. Henmi,

Best Damn Firewall Book Period, Syngress, ISBN: 1-931836-90-

6, 2003.

[24] S. Sharma, Y. Verma and A. Nadda, “Information Security: Cyber

Security Challenges,” International Journal of Scientific Research

in Computer Science and Engineering, Vol.7, Issue.1, pp.10-15,

February (2019)

[25] P. Santra, “An Expert Forensic Investigation System for Detecting

Malicious Attacks and Identifying Attackers in Cloud

Environment,” International Journal of Scientific Research in

Network Security and Communication, Volume-6, Issue-5,

October 2018.

Authors Profile

Ms. Nikita Gandotra received her B.E. in

Computer Engineering from the University

of Jammu in 2010. She has also completed

M. Tech. in Computer Science from

University of Jammu (India) in 2014 which

is one of the most prestigious universities

in India and ranked 51st in University

Category in NIRF-2018 in India. She is

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 237

currently pursuing Doctorate of Philosophy (PhD) from

Department of Computer Science & IT, University of

Jammu. She is working on Packet Classification and security

management. Her areas of Interest include communication

and networking, network security, network and systems

management, data structures and adhoc networks.

Lalit Sen Sharma received his doctorate

in Computer Science and Engineering

from Guru Nanak Dev University

Amritsar, Punjab, India. He also holds

master’s degree in Mathematics and

Computer Applications from the same

university. He has been teaching to post

graduate students in computer

applications of University of Jammu for more than 20 years.

He is a life member of India Science Congress Association,

Computer Society of India, Institute of Electronics and

Communication Engineers and National HRD Network,

India. He is specialized in Data Communication and

Network, Internet and WWW and Data Structures. He has

completed one major research project to trace out

vulnerabilities in network applications funded by University

Grants Commission, Ministry of Human Resource

Development, Govt. of India. He has produced one PhD and

is currently supervising Six PhD scholars.

