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l. INTRODUCTION

Differential ~ equations  with  fractional order are
generalizations of classical differential equations of integer
order and have recently been proved to be valuable tools in
the modeling of many physical phenomena in various fields
of science and engineering. By using fractional derivatives a
lot of works have been done for a better description of
considered material properties. Based on enhanced
rheological models Mathematical modeling naturally leads to
differential equations of fractional order and to the necessity
of the formulation of the initial conditions to such equations.
Recently, various analytical and numerical methods have
been employed to solve linear and nonlinear fractional
differential equations. The differential transform method
(DTM) was proposed by Zhou [1] to solve linear and
nonlinear initial value problems in electric circuit analysis.
This method has been used for solving various types of
equations by many authors [2-15]. DTM constructs an
analytical solution in the form of a polynomial and different
from the traditional higher order Taylor series method. For
solving two-dimensional linear and nonlinear partial
differential equations of fractional order DTM is further
developed as Generalized Differential Transform Method
(GDTM) by Momani, Odibat, and Erturk in their papers [16-
18].Recently, Vedat Suat Ertiirka and Shaher Momanib
applied generalized differential transform method to solve
fractional integro-differential equations [19]. The GDTM is
implemented to derive the solution of space-time fractional
telegraph equation by Mridula Garg,Pratibha Manohar and
Shyam L.Kalla [20]. Manish Kumar Bansal,Rashmi Jain
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applied generalized differential transform method to solve
fractional order Riccati differential equation [21]. Aysegul
Cetinkaya, Onur Kiymaz and Jale Camli applied generalized
differential transform method to solve non linear PDE’s of
fractional order [22].

Il. MATHEMATICAL PRELIMINARIES ON
FRACTIONAL CALCULUS

In the present analysis we introduce the following definitions
[23,24].
2.1 Definition: Let ¢ € R"

space L(a, b) integral operator |1 defined by

d_af(X)_ 1 XX— a1
_F(a)-([( t)" f(t)dt

On the usual Lebesgue

()=

and
1°f (x) = f (x)
is called Riemann-Liouville fractional integral operator of

order « >0and a<x<Db
It has the following properties:

l. |« f (X) exists for any Xe[a,b]
o 1P f(x) =171 (x)
. 17 ()= 17171 (x)
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I(y+1)

r (a +y +1)

where f (x)eL[a,b], &, 20 ,y>-1

a+y

V. 1% =

2.2 Definition: The Riemann-Liouville definition of
fractional order derivative is
dn
RL
Dy f(x)= ol f(x)
1 d" %

= [(x=t)" " f (),

F(n—a) dx" <

where n is an integer that satisfies N—1<a <n.

2.3 Definition: A modified fractional differential
operatorOCD;" proposed by Caputo is given by
dn
DI ()= 17 £ F(X)
1

ZWJ( 0" Y (),

Where a(a eR" )is the order of operation and nis an

integer that satisfies N—l<a <n.
It has the following two basic properties [25]:

. if fel,(ab) or feC[a,b] and >0
then s DY I f (x) = f (X).

x0°x

. 1f feC"[a,b] andif & >0 then

n-1 f(k) 0"
o7 gDy (x)=f (x)—zﬁxk ;
o k!
n-l<a<n.

2.4 Definition: For m being the smallest integer that
exceeds « , the Caputo time-fractional derivative operator of

order « >0, is defined as[26]

Dfu(x,t):%
_ og" ’
F(m—al‘ é:) aé:m dg ;o m 1<a<m
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Relation between Caputo derivative and Riemann-
Liouville derivative:
m-1 f(k) (O+)

CDaf :RLDaf _
DX ()= 5D (-2 T Zany)

-l<a<m
Integrating by parts, we get the following formulae as given
by [27]

k—a .

b

f (x)dx=_[ f (x) ;Dyg(x)dx

+§[R§D§+j‘”9(
=0

)0 ()]
.  Forn=1,

D ey T
(@]
—~
>

b

_?g(x)achf (x)dx:j f (x)"Dgg(x)dx

a
b

+[XI§‘“g(x).f (X)L

I1l.  GENERALIZED TWO DIMENSIONAL
DIFFERENTIAL TRANSFORM METHOD

Consider a function of two variables U (X, y) be a product
of two single-variable functions, i.e.

u(xy)="f(x)g(y).

which is analytic and differentiated continuously with
respect to X and Y in the domain of interest. Then the

generalized two-dimensional differential transform of the
function U (X, y) is given by [16-18]

1
U“'ﬂ(k’h):r(ak +1)T(ph+1) o
(02) (22 u(x )]
(%+Yo)
where O<a,ﬁ£1;Ua’ﬂ(k,h)= F, (k)Gﬁ,(h) is

called the spectrum of U (X, y)and

k
(DXO) =Dy, Dg s , D¢ (kK — times)
The inverse generalized differential transform of
u, (k, h) is given by

(x=%)“(y=¥,)" @

It has the following properties:
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L ifu(x,y)=v(xy)£wW(X,y) then
U, ,(k,h)=V, , (k,h)+W, ,(k,h)
. |fu(x y)=a ( y),aeRthen

wp(kih)=2
1. |fu( y)=v

(k h)

VI ifu(x,y)=Dgv(x y),0<a <1 then

T(a(k+1)+1)

U k,h)= V. . (k+L1h

) = (kL)
VI if u(x,y)=D]v(X,y),0<y <lthen

uaﬂ(k,h)z—r(“k””)vaﬂ(ml,hj

’ [(ak+1) * a
Vil if u(x,y)=Djv(x,y),0<y <1 then

Uaﬂ(k,h)zw\/&ﬁ Kh+Zl

' r(ph+1) B

IX. if u(x,y)=f(x)g(y) and the function
f (X) = x*h(x) where 1 >—1, h(X) has the
generalized Taylor series expansion

h(x) = ian (X=X, )0’k and
n=0

(@ P <A+land « isarbitrary or
(b) B=A+1, aisarbitraryand @, =0 for

n=012,...m-1,herem-1< g <m.
Then (1) becomes
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1
U, (k)= I'(ak+1)T(Bh+1)

S CARICSYII

X, if V(X, y) = f(x)g(y), the function f(X)

satisfies the conditions given in (1X) and

u(x,y)=D]v(xy) then
U, ,(k.h)= F(O‘EZ:i)lJ)ry)vaﬁﬁmg,hj
where U, ;(k,h),V, ,(k,h)and W, ; (k,h)are the

differentlal transformatlons of the functlons
u(x,y),v(x,y)and w(Xx, y) respectively and
1 : k=n

5(k_n):{o . k=n

IV. TESTPROBLEMS

In this section, we present three examples [28] to illustrate
the applicability of Generalized Differential Transform
Method (GDTM) to solve non linear time fractional
dispersive partial differential equations.

4.1 Example: We consider the following non-linear time
fractional dispersive partial differential equation

0 u(x’t)+2au(x,t)au(x’t)+
ot* OX

2b[38u(x,t) o’u(x,t)

OX ox?

subject to initial condition U (X, O) =C;XeR
3

o

" is the fractional differential operator(Caputo

where

derivative) of order 0 < <1 C is areal constant.

Applying generalized two-dimensional differential transform

(1) with(X,, Y ) =(0,0) on (3) we obtain
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a
r=0 s=l

U, (kh)= I(x(h- 1+1){ ZaZk:h U,,(r,h—s-1)

I'(ah+1)
x(k=r+1)U,, (k—r+1s)

k h-1
—2b£3zz r+1)u,, (r+Lh-s-1)
r=0 s=0
x(k—=r+2)(k-r+1)uU, (k—-r+2s)

h-1

+izu (r.h=s—-1)(k—r+3)

0s

r=0 s=0

x(k—r+2)(k —r+1)U11a(k—r+3,s))}
4)

and U, (k,0)=c Vk=0,1,2,3

®)
Now utilizing the recurrence relation (4) and the initial
condition (5), we obtain after a little simplification the

following values ofU, , (k, h) for k=0,1,2,3,...and

h=0,123,...

U, (0.1)=
U, (L=~
U, (21)=-
U, (31)=~
U, (41)=-
U, (51)=~

Ul,a (6'1) ==

and so on

c’(a+12b);

I'(a+1)
12
F(a+1
20
F(a+1
30
F(a+1)

~—

~—

FasD c?(a+90b)

Using the above values ofU, _, (k, h) for

k=0,12,3,...and h=0,1,2,3,..

(3) is obtained as
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c’(a+20b);
c’(a+30b);
c’(a+42b);
c’(a+56b);

c’(a+72b);

.in (2) the solution of
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2(a+12b)t”
F(a+1)c (a+ )

+(c— F((SH) c? (a+20b)t"‘]x

2 . c? (a+30b)t”’]x2

20 . c? (a+42b)t"jx3

X4

30 )
- 56b)t”
J{c F(a+1)c (a+56b)

|
+(c—r(22+1) c? (a+72b)t”‘}x5

+(c— 1“(26+1) c? (a+90b)t“}x6 Foe,
(6)

4.2 Example: We consider the following non-linear time
fractional dispersive partial differential equation

o“u(x,t) —2u(x,t)au(x’t)

ot” OX

+2{38u(x,t) o’u(x,t)

OX ox?

+u(X,t) 63%2();’t)}+u2 (xt)=0

subject to initial condition u(x,0)=c;xeR
O

a

where " is the fractional differential operator(Caputo

derivative) of order 0 < <1 C is a real constant.

Applying generalized two-dimensional differential
transform (2) with ( Xy, Y, ) =(0,0) on (7) we obtain

224



International Journal of Computer Sciences and Engineering

U,. (k) - (((Shﬂjl){&Zul,a(r,h—s—l)
x(k=r+1)U,, (k—r+1s)

h-1

(Siz r+1)u
k

(r+Lh-s-1)

r=0 s=0

x(k—r+2)(k-r+1)u,, (k-r+2s)

r.h—s—1)(k—r+3)

and U, , (k,0)=c; vk=0,1,2,3,.......
9)

Now utilizing the recurrence relation (8) and the initial
condition (9), we obtain after a little simplification the

following values ofU, , (k, h) for k=0,1,2,3,... and
h=0,12,3,...

23
U, (01)=- z.
O =57y
116
U, (1L1)=- 2.
)=
351
U, (21)=- 2,
(Y=g
824
U, (31)=- 2,
B =rr
1655
U, (41)=——22 2,
1a(41) F(a+l)c
2988
U, (51)=-—22 ¢,
Y=
4991
U, (61)=- 2
(=1
and so on
Using the above values ofU, , (k, h) for
k=0,12,3,...and h=0,1,2,3,...in (2) the solution of

(7) is obtained as
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[ et )

u(xt)=c (

)
+ c’t” 824 2t |x3
a+1 a+1)
oo 1655 2988 2t |y
a+1 a+1)
+ C_F 1)C X +...
(a+ 10)

4.3 Example: We consider the following non-linear time
fractional dispersive partial differential equation

6“L;E:(,t) —2u(x,t)aug((’t)

+2(38u(x,t) o’u(x,t) +U(X’t)63u@i);,t)]

OX ox?
= 2X3t% + 2xt?* + 2x3%t* t>0
subject to initial condition u(x,0)=c; X €R

(11)

a

@ is the fractional differential operator(Caputo

where

derivative) of order 0 < <1 C is a real constant.

Applying generalized two-dimensional differential transform

(1) with (X5, ¥ ) =(0,0) on (11) we obtain

(r+1)u,,(r+Lh-s-1)

x(k—r+2)(k-r+1)uU,, (k—r+2s)
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s S U,, (nh-s-1)(k-r+3)(k—r+2)

r=0 s=0

x(k=r+1)u,, (k—-r+3,s))

+26(k—-2)5(h-2)+25(k-1)5(h-3)
+25(k—3)5(h-5)}
(12)
and U, , (k,0)=c; vk=0,1,2,3....... (13)

Now utilizing the recurrence relation (12) and the initial
condition (13), we obtain after a little simplification the

following values ofU, , (k, h) for k=0,1,2,3,... and
h=0,12,3,...

20
U, (0.1)=- 2,
(O =~F e
108
U, (1L1)=- 2.
e M) ="F 5"
336
U, (2,1)=- 2.
1a(2) F(a+1)c
800
U, (31)=- 2
1a(33) I'(a+1)
1620
U, (41)=- 2.
(W) ="F G
3003
U, (51)=- 2.
w3 ="F G
4928
U, (61)=- 2
S P
and so on
Using the above values ofU, , (k, h) for
k=0,12,3,...and h=0,1,2,3,...in (2) the solution of
(11) is obtained as
20 . 108 .
t)=c— t“ +| c— t
Ut = {C F(a+l)" JX
+| c— 330 ct” [x*+|c— 800 cit” |x°
I'(a+1) I'(a+1)
+ c— 1620 ct” [x*+|c— 3003 % |x°
I'(a+1) I'(a+1)
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4928

- 2 X% ...
+(C F(a+1)c ]X+

4.4 Example: We consider the following non-linear time
fractional dispersive partial differential equation

(14)

o“u(x,t) 2u(x1) au(x,t)
ot* OX
e e

=2t + X +13* + xt*
subject to initial condition u(X,0)=c; X €R
(15)

a

where @ is the fractional differential operator(Caputo

derivative) of order O < <1 C is a real constant.

Applying generalized two-dimensional differential transform
(1) with (X,, Yo ) =(0,0) on (15) we obtain

I(a(h-1)+1) {_sz: h_lUlva(r,h—S—l)

Ui (k) = T (ah+1)
x(k=r+1)U,, (k—r+1s)

1

—6(3Zk: > (r+1)U,

r=0 s=0
x(k

(r+Lh-s-1)(k—r+2)
r+1)u,,(k—-r+2s)

+Zklg“ula(r,h—s—l)(k—r+3)(k—r+2)

x(k=r+1)U,, (k-r+3s))
+25(k)5(h—2)+25(k-1)5(h-1)
+25(k)S(h—4)+5(k-1)5(h-3)}
(16)
and U, , (k,0)=c; Vk=0,1,2,3,.......
A7)

Now utilizing the recurrence relation (16) and the initial
condition (17), we obtain after a little simplification the
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following values ofU, , (k, h) for k=0,1,2,3,... and
h=0,12,3,...

ulya(o,1):—%c2;
U, (11)= —F(Ol;ﬂ)(se;esc2 -1);
u,, (2,1):-%&-
u,, (3,1)=—%c2-
u,, (4,1):-%&-
Ulva(5,1):—%c2-
Ulya(6,1)=—%cz

and so on

Using the above values ofU, , (k, h) for
k=0,12,3,...and h=0,1,2,3,...in (2) the solution of
(15) is obtained as

74 rear
Jt)=c———ct
u(xt)=c F(oc+1)C
c—;(36602—1)t“ X
F(a+1)
C_&Czta 2 _ﬂCZta 3
F(a+1) F(a+1)
c—ﬂczt“ x* + c—gliczt“ x°
F(a+1) F(a+1)
c—ﬁczt“ X2+,
F(a+1)
(18)

V. CONCLUSIONS

In the present study, we present analytical algorithm for
finding approximate form solutions of a class of dispersive
model based upon the generalized differential transform
method (GDTM). It may be concluded that GDTM is a
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reliable technique to handle linear and nonlinear fractional
differential equations. Compared with other approximate
methods this technique provides more realistic series
solutions.
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