
 © 2018, IJCSE All Rights Reserved 207

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-9, Sept. 2018 E-ISSN: 2347-2693

Clustering the Duplicate Open Crash Reports Based on Call Stack Traces

of Crash Reports

Pushpalatha M N
1*

, Mrunalini M
2

1
Dept. of Information Science and engineering, Ramaiah Institute of Technology, VTU, Bangalore, India

2
 Dept. of Computer Applications, Ramaiah Institute of Technology, VTU, Bangalore, India

*Corresponding Author: pushpalathamn1@gmail.com, Tel.: 9739012668

Available online at: www.ijcseonline.org

Accepted: 19/Sept/2018, Published: 30/Sept/2018

Abstract— A computer program such as software application that stops functioning properly is called software crash. Software

crash is tedious problem in software development environment. Upon user permission, the crash report which contains the

stack traces is sent to the developer or vendor. Software development team receives hundreds of crash reports from many

deployment sites. There are many duplicate crash reports are generated, because many users submit the crash reports for the

same problem. For analysing each crash reports, it may take more time. This motivates, to present the solution to analyse the

crash reports and cluster the duplicate crash reports based on call stack similarities and store them into unique bucket, so that

development resources can be optimized. In this paper, clustering the duplicate crash report of open source is proposed based

on the similar information in the call stack. Hierarchical clustering technique is used to cluster the duplicate crash reports into

unique bucket. Mozilla and Firefox open source crash reports are used for experiment and performance evaluation is done

using purity determined the purity of clusters up to 80%. This method helps to increase the efficiency and reduce the number of

developers along with an improved time to fix the bug.

Keywords- Crash reports, clustering technique

I. Introduction

Open and closed source software’s incorporate built-in error

reporting systems. For example, Window has window error

reporting system and in a similar way, open source Firefox

browser and Thunderbird email client have their own error or

crash reporting system. Whenever, an application or software

crashes or stops functioning normally, system ask for the user

to submit that information to vendor. When user submits the

crash information it is stored in the form of crash report in the

crash reporting system.

Crash reports contains different frame and each frame

contains different information like application name and

version, application build date, module name and version,

module build date and module offset which is crashed and its

call stack traces. This information helps developer to

understand the problem and fix the function that contains

problem causing the crash. Fixing a crash means identifying

the faulty functions which is time consuming and difficult

task. Some of the crash reporting systems collects the crash

reports automatically and organize them into multiple

buckets. The crash reports collected by crash reporting system

are used for debugging. When the crash reports caused by

same bug are collected they are stored in more than one

bucket by crash reporting systems. It is difficult for developer

to analyse the same bug for multiple times and it is time

consuming.

Figure 1: An overview of crash reporting system

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 208

Windows error reporting system receives a large number of

crash reports from many deployment sites. The received

crash reports are later grouped into different buckets

automatically, by window error reporting system as shown in

the Figure 1 [4]. In a similar way, open source crash

reporting also receives a lot of crash reports from all over the

world. All Mozilla related crash reports are stored in Mozilla

crash reporting system.

In this paper, Crash reporting system is proposed, which

analyse the crash reports and pre-processes the crash reports

to retain the data which is required. Then similarity between

crash reports is determined using position dependent model

and prefix matching method proposed in [4]. Once duplicate

crash reports are found we cluster the similar crash reports

into one unique bucket. We are using data mining clustering

technique to cluster the duplicate crash reports. This crash

reporting system helps to reduce the debugging effort and

time of the developers and also helps to prioritize which

bugs needs to be fixed first.

The paper is organized as follows, Section I gives

introduction, Section II gives related work on crash reports,

Section III about Design and Implementation and Section IV

gives conclusion of our work along future enhancement.

II. RELATED WORK

Related work on the crash reports is analyzed in [1].

Functional Frequency, cyclometric complexity, Inverse

Bucket Frequency, Average Distance to crash point for

calculating the scores and later ranked according to score [3].

Along above four metrics [3] in [2] used Number of times

where function is referred in static call graph. (NC) for

finding the scores and ranked the functions. The function

which is having highest score is given more importance for

debugging than lower. The fault will be checked on the top

functions. [4] Duplicate crash reports are clustered together

using the hierarchical clustering algorithms for the crash

reports of windows error reporting system. In our work, we

used the concept from [4] for clustering the open source

crash reports. In [6] used natural language for predicting the

duplicated bug reports, i.e., is used only summary and

description information in bug report for finding whether the

new bug report is duplicate of already available bug reports

or not. In [7] used textual information of bug report along

with stack traces for predicting the duplicate bug reports. [8]

Experiment is done on the Thunderbird and Firefox crash

reports and found that only top crashes around 10 to 20 will

give large majority of crash reports. [8] Predicted the top

crashes of new releases by training on the features of top

crashes of past releases using machine learning techniques.

This will help to increase the software quality by quickly

fixing the top crashes first, which gives good user

experience.

III. DESIGN AND IMPLEMENTAION

3.1 Design model for clustering duplicate crash reports

Crash reports are loaded to the software. After pre-

processing is done on crash reports. In pre-processing the

information which is required to find the similarities are

retained. These pre-processed crash reports are helpful in

determining duplicate crash reports. Then duplicate crash

reports are determined using Position Dependent Model

method and Prefix matching method [4]. Once the matching

is done we get the percentage of similarities between the

crash reports which helps us to cluster the duplicate crash

reports. The Duplicate crash reports are clustered into one

unique bucket. This helps to reduce the time for fixing the

bug and also helps to prioritize the bugs to be fixed. After

clustering the Duplicate crash reports the purity of cluster is

determined to evaluate its performance. Once the duplicate

crash reports are organized into unique bucket the developers

can fix the bug without much effort and time.

Figure 2: Design model for clustering duplicate crash

reports

Figure 2 shows design model for clustering duplicate crash

reports. The steps involved are discussed below.

 The system has following steps

1. Crash reports: Open source crash reports are taken from

 the Mozilla crash reporting system

2. Pre-processing crash reports: This pre-processes the

 crash reports to remove the information which is not

 required.

3. Finding duplicate crash reports: Matching call stacks

 similarities to determine the duplicate crash reports.

4. Cluster duplicate crash reports to unique bucket: This step

clusters the duplicate crash reports based on the call stack

similarities into unique bucket.

5. Cluster evaluation: this step determines the purity of

clusters which helps to evaluate the Clusters.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 209

3.2 STEPS INVOLVED IN IMPLEMENTATION PHASE
Implementation phase of crash reporting system has

following steps:

1. Loading crash reports into source code and Pre-

processing the crash reports.

2. Finding the similarities between the call stacks of crash

reports.

3. Clustering the duplicate crash reports based on

similarities.

4. Evaluation of clusters.

3.2.1 Pre-processing

In pre-processing crash reports are taken as input. These

crash reports are taken from Mozilla crash reporting system.

Crash reports include crash info, crashing thread, modules,

system info, and threads. In our work, considered the frames

of crash reports which are present in crashing thread

information. Each frame contains different information like

application name and version, application build date, module

name and version, module build date and module offset

which is crashed and its call stack traces.

These crash reports contain more information which is not

required. To remove information which is not required we

are performing pre-processing step. In pre-processing the

crash reports are analysed and pre-processed

Implementation steps involved in pre-processing are:

Step 1: Taking crash reports as input.

Step 2: Analysing each crash reports and identifying the

information which in not required.

Step 3: Pre-processing the crash reports to retain information

which is required.

3.2.2 Call Stack Similarities

Once the crash reports are pre-processed next step is to find

the call stack similarities to find the duplicate crash reports.

Once the crash reports are pre-processed it contains

information about frames which is required to find duplicate

crash reports. In our projects we are determining the

duplicate crash reports by considering the function which is

crashed by using prefix matching method and position

dependent model method.

In Position dependent model more weight should be given to

top frames which are close to top frame because the frame

which cause for crash occurs at the top frames of the stack

trace. The alignment offset between the matched crash

reports should be very small. In our work, we are keeping

offset threshold as three and we are considering only seven

frames from the top of the stack trace. Then we are using

prefix matching to find duplicate crash reports. In prefix

matching method we are comparing function attribute of one

frame with function attribute of other frames in remaining

crash reports. Once the matching is done the matching

percentage is displayed.

Implementation steps involved in call stack similarities are:

Step 1: set distance of frame from top frame as 7.

Step 2: set the alignment offset between matched frames

among the crash reports into 3.

Step 3: set matching threshold as 50%.

Step 4: perform the prefix matching method to determine the

duplicate crash reports.

Step 5: display the matching percentages of the crash reports

3.2.3 Clustering

Once the matching of frames in crash reports is done we

group the duplicate crash reports by clustering them. We are

keeping matching threshold as 50. If the matching

percentage between the frames in crash reports is 50 or

above 50 we group those crash reports into one cluster. In the

similar way we are grouping all the matched crash reports

into respective clusters. For clustering we are using the idea

of hierarchical clustering. After finding the duplicate crash

reports we are merging the similar crash reports into one

cluster.

Implementation steps involved in clustering are:

Step 1: finding the crash reports with matching similarity as

50 or above 50 %.

Step 2: group the duplicate crash reports into respective

cluster.

Step 3: display the clusters with similar crash reports

3.2.4 Cluster Evaluation

When all the duplicate crash reports are clustered we perform

the evaluation of clusters. In evaluation we are finding

whether all the duplicate crash reports are clustered into

respective group or not. To perform the evaluation we are

determining the purity of the cluster. This purity helps us to

determine whether all duplicate crash reports are grouped

into respective cluster or not. We determine the purity using

the following formula 1.

∑

| |

Where N is the number of crash reports, n is the number of

clusters, yi is cluster in y and zc is the maximum number of

crash reports correctly classified for that cluster yi. Purity

gives the accuracy of clustering algorithm. It sum ups the

correctly classified class per cluster over the total number of

crash reports.

Implementation steps involved in evaluation of clusters are:

Step 1: determine the total number of clusters.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 210

Step 2 : find count of crash reports which are not grouped

into respective cluster.

Step 3 : determine the purity of clusters.

Step 4 : display the purity.

IV. CONCLUSION AND FUTURE SCOPE

4.1 CONCLUSION

Crash reporting system is used for clustering the duplicate

crash reports based on the similarities between the call stack

traces. This system helps to solve the debugging efforts,

increases the efficiency and reduces the number of

developers with an improved time to fix the bug. In the

proposed crash reporting system, based on the analysis of the

crash reports taken from Mozilla and Firefox crash dumps,

the crash reports are pre-processed to retain the required

information and call stack similarities are determined to

know the matching similarities between the crash reports and

duplicate crash reports are found. The duplicate crash reports

are grouped into respective clusters using hierarchical

clustering technique. The clusters are evaluated to know

whether all the duplicate crash reports are grouped into

respective clusters or not. Cluster evaluation is done by

finding the purity of clusters; the results have shown upto

80% for open source crash reports. The literature shows [4]

88% of cluster purity for crash reports of windows error

reporting system.

4.2 Scope for further enhancement

The crash reporting system to cluster the duplicate crash

reports for Mozilla crash reports can be enhanced to find the

duplicate crash reports and cluster them for the projects of

other organizations and other open source software’s.

REFERENECES

[1] Asha Ramaraddi Belahunashi, Pushpalatha M N,” A Survey on

analysing the crash reports of software applications”, International

Research Journal of Engineering and Technology , Volume 4, Issue

6, pp.1014-1017, June 2017.

[2] Divya R S, Pushpalatha M N, “Software CrashLocator: Locating the

Faulty Functions by Analyzing the Crash Stack Information in

Crash Reports”, International Journal of Advanced Engineering,

Management and Science (IJAEMS), Vol-2, Issue-5, pp.269-273,

May- 2016

[3] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun

Kim, “CrashLocator: Locating Crashing Faults Based on Crash

Stacks”, ISSTA 2014 Proceedings of the 2014 International

Symposium on Software Testing and Analysis, Pages 2014-214,

2014

[4] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei

Zhang, and Peter Nobel, “Rebucket: a method for clustering

duplicate crash reports based on call stack similarity”. In

Proceedings of the 34th International Conference on Software

Engineering, pages 1084– 1093. IEEE Press, 2012.

[5] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of

Duplicate Defect Reports Using Natural Language Processing”, in

Proc. ICSE 2007, Minneapolis,USA, pp. 499-510, May 2007.

[6] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, "An approach to

detecting duplicate bug reports using natural language and

execution information", in Proc. ICSE’08, Leipzig, Germany, pp.

461-470, 2008

[7] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung, and S. Park,

“Which crashes should i fix first? Predicting top crashes at an early

stage to prioritize debugging efforts”, IEEE Transactions on

Software Engineering, pp. 430-447, 2011.

Authors Profile

Ms. Pushpalatha M N pursed Bachelor of

Engineering from University BDT college of

Engineering, Kuvempu University in 2003 and

Master of Technology from Ramiah Institute of

Technology, Visvesarya Technological

University in year 2006. she is currently pursuing Ph.D. and

currently working as an Assistant Professor in Department of

Information Science and Engineering, Ramaiah Institute of

Technology since 2006. Her area of research is in Data

Mining and Software engineering.

Dr.M.Mrunalini, completed her PhD in

Computer Applications from Visvesvaraya

Technological University, Belgaum, in 2015.

She is currently working as an Assistant

Professor in Department of Computer

Applications. Her areas of interests are Software

Engineering, Data Warehouse-ETL tools , Software Security

and Big data.

