

 © 2016, IJCSE All Rights Reserved 176

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Survey Paper Volume-4, Issue-5 E-ISSN: 2347-2693

Touch Screen Device Swipe n Share

Praful Khokale
1*

, Narendra Gunjal
2

, Prof. Suhas B. Gote
3

1,2
Department of Computer Engineering, Shatabdi Institute of engineering & Research, Agaskhind,

Sinnar, Nashik

3
Assistant Professor Department of Computer Engineering, S.I.E.R., Nashik

Available online at: www.ijcseonline.org

Received: Mar/10/2016 Revised: Mar/24/2016 Accepted: Apr/17/2016 Published: May/31/2016

Abstract— There are communication commonly extend across smart-phones and devices with wider screens. Indeed, data might be received

on the Smart devices but more conveniently processed with an application on a smart device, or vice versa. Such communication require

automatic data sharing from a sending location on one screen to a receiving location on the other device screen. We bring out a touch screen

device Swipe n Share technique to facilitate these communication involving multiple touchscreen devices, with minimal effort for the user.

The technique is a two-handed device gesture, where one hand is used to suitably align the mobile phone with the larger screen, while the

other is used to select and swipe an object between devices and choose which device receive the data.

Keywords- Touch Screen Devices; Mobile devices; data transfer; Swipe-and Share

I. INTRODUCTION

Communication frequently extend beyond a single device. A

phone number is more easily searched on a larger screen, but

once found the call is issued with the mobile[1]. A photo can

be quickly snapped with a mobile, but its integration in a

document is easier on a larger screen. Friends text us place

names on our mobiles,[2] but route directions can be better

looked up and printed from a larger device[3]. We might also

look up an address on a desktop screen, and then use it on our

mobiles to navigate to the location. All these are examples of

interactions that require users to select data on one device and

apply it to another[4]. In this situation, current practices

hinder this process by adding extra steps that divert users

from the primary goal of applying data from one device to

another Frequently, users recur to typing numbers, names or

addresses off a screen because transfer via a sharing protocol

is more cumbersome[5]. This type of interaction between

mobile and situated devices has been widely studied,

including recent work focused on interaction with mobile

phones as these have become data-rich devices[6]. However,

we are concerned with cross-device interactions that have

distinct characteristics. The interaction is spontaneous, and

the data concerned frequently only emerges during

interaction, for example as a result of a search, or of a

communication received[7]. The data does not dictate the

application, and users might want to use data items in

different ways, for instance apply contact data to an address

book, navigation tool, or phone application, depending on

their interaction goals.

Figure 1: Sharing concept: (a) a user holds the mobile phone next to the

desktop screen and selects a data item. (b) The user swipes it inside the

screen. (c) In the other direction, a user selects data on the PC and drops it on

the phone.

II. RELATED WORK

A range of techniques have been developed to allow users
to transfer data between mobile devices and situated
computers. Most mechanisms support fine-grained selection
of objects on the source device but only coarse-grained
selection of a target device. Assuming device discovery in the
background, users can select target devices by name and
initiate transfer of selected objects. On the target device, the
objects are delivered to a default location, which may be the
application used for transfer (e.g., Email) or a dedicated drop
box, from where users can pick the data up for further
processing. In contrast, Drag-and-Drop is designed for direct
point-to-point transfer from a location on one device to a
specific target on the receiving device[8]. Early work that
demonstrated point-to-point interaction across devices
includes Pick-and-Drop and Hyper Drag, that relied on

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(176-179) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 177

instrumentation of the devices or environment. Recent work
includes Touch & Interact and Phone Touch, both enabling
users to select objects on a phone and to transfer it to a target
location on a touchscreen, by directly touching the screen
with the phone. However, data transfer from the screen to the
phone is generic and requires additional interaction for
transfer to a specific target on the phone. Other recent work
has been geared towards interaction over a distance, for
example by combining touch on a smart phone with pointing
at are mote screen to facilitate data transfer to a specific target
location on the screen, and vice versa[9]. However, this is
limited to environments instrumented for gesture tracking.
Close to our work is also Mistry et al.’s “SPARSH" concept,
envisioning touch-based pick-and-drop between devices .
Drag-and-Drop differs from SPARSH as it can integrate with
existing technologies, without needing any external cloud-
based service. As a technique, Drag-and-Drop is characterized
by spontaneous alignment of phone and screen for interaction,
and extension of drag-and-drop to work transparently across
the temporarily aligned devices. Transparent drag-and-drop
across aligned devices was previously demonstrated by
Hinckleyetal. In work that investigated pen interaction across
multiple displays. Their work emphasized the “stitching” of
the involved devices to create a combined display space for
cross-device interaction, while we designed our technique for
spontaneous transfer where the alignment of the devices is
fast and just long enough to facilitate the continuous dragging
gesture. Alignment of devices for cross-device interaction has
also been investigated in work on proximal interaction and
direct touch interaction with phones on touch surfaces[10] . In
our work, drag-and-drop is extended transparently across
devices. Other work has explored techniques for settings in
which the target is out of reach. This includes Drag-and-Pop
and Drag-and Pick which have been investigated for use on
wall-size displays but also demonstrated for interaction across
multiple touchscreens . Our technique exploits two-
handedness in an asymmetric manner. Guiard’s Kinematic
Chain model is therefore of key relevance to our work,
describing use of the non-dominant hand for setting the frame
of reference in which the dominant hand operates [4]. In our
case, the non-dominant hand is used to roughly align phone
and screen, thus setting the frame of reference for the finer-
grained drag-and-drop movement with the other hand.

III. DESIGN OF TOUCH SCREEN DRAG N DROP

On a conceptual level the Drag-and-Drop technique allows

users to drag data from a mobile device and drop it into a

desktop screen and vice versa. It is performed through one

single uninterrupted touch gesture and hence,it requires that

both screens support touch input[11]. The technique itself is

articulated into four contiguous phases: placing the mobile

device in proximity of the desktop screen, identifying the

source object of the drag-and-drop action, performing the

actual movement into the other screen and finally, identifying

the target destination where the content being dragged will be

“dropped”. The first phase builds on the assumption that

placing the mobile device next to the screen will form an ideal

“bond” between them allowing users to perceive the two

different screens as contiguous[12]. This requirement is

mainly needed to instil the idea that it is possible to drag data

“outside” the physical boundaries of one screen and inside

another one due to their close proximity to each other. In fact,

the devices have no knowledge of their respective locations

and do not need to: it makes the way it works seem more

easily understandable by first time users. Although we have

mainly focused on the technique itself, this “bonding”

moment could be also used to establish the pairing itself

between the devices. In our implementation we used an

explicit point-to-point connection which has to be initiated

before each session and lasts until the mobile device is

explicitly disconnected[13]. Sensorsplacedon the sidesof the

desktop screen could streamline the process.

IV. IMPLEMENTATION

Our prototype implementation consists of a server application

on the PC and two different clients on the mobile phone,

communicating over a wireless network. The desktop, a

Windows 7 PC connected to a23”HP2310titouch screen, runs

the PC Drag Detector, an application that handles touch

detection and networking. The mobile phone, an Android

4.0.3 device, alternatively runs one of the two client

applications which address different usage scenarios: first, the

Bridge Application enables existent applications on the

phone(e.g., a map applications or image galleries) to use

Drag-and Drop without modifications; second, the email

client demonstrates an application extended by Drag-and-

Drop to simulate a possible future native integration of our

technique by the operative system

 IV.I. The PC Drag Detector

The PC Drag Detector is a background application that

enables Drag-and-Drop on the desktop. It captures drag

events at the system level (i.e., independent of any specific

desktop application). When a drag gesture is detected, it

displays a detector window at the sides of the screen. Once

the user enters or exits the screen, the relevant window

captures outgoing or incoming data. Depending on the drag

direction, data is sent over the network to the phone or

received from it to complete the drag gesture on the desktop.

After which the detector window is hidden.

 IV.II. The Bridge Application

The bridge application, the first of our two mobile

implementations, connects Drag – and – Drop to existent

applications on the same phone. It handles bidirectional

interactions between desktop and mobile, using two different

UIs described in the following.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(176-179) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 178

Receiving Data from the Desktop After starting the bridge

application, it presents a grid of icons to the user, each

representing a distinct application class. Together, these six

classes address a range of typical usage scenarios. In

particular, we are covering 1) phone diallers, 2) contact

managers, 3) text messaging, 4) email clients, 5) maps and 6)

picture viewers. For example, after finding a restaurant while

browsing the web on the desktop, the user can simply select

the corresponding address and drag it onto the maps icon on

the phone to immediately start the navigation. By applying

data onto a particular application class, the user disambiguates

how the phone handles the corresponding data. This basic

concept readily extends to other use cases. For instance, to

call a number displayed in a desktop application, the user

applies it to the diallers icon to immediately get connected. In

doing so, Drag-and-Drop offers a quick and convenient

alternative to manually transferring the required information

from the desktop to the mobile phone, for example by re-

typing it. From a technical point of view, once the user starts

a drag gesture on the desktop, the finger will eventually enter

a drag detector window. The PC application then queries the

data to discern its underlying type and provides feedback on

the mobile once the finger enters its screen. Then, an icon

representing the dragged data is displayed as a preview and

moves alongside the user’s finger. Feedback about the validity

of the drop location on the mobile is shown to the user

through background changes of the currently highlighted

application class (i.e., yellow for a valid drop target, red

otherwise). When the finger is released, the dragged data is

applied to the chosen class. Through a mechanism called

implicit intents, the Android OS determines eligible

applications that can handle the data from those available in

the user’s device.
Sending Data to the Desktop The Bridge Application also

allows dragging items from the phone to the desktop to
address situations where data originating from a mobile
device is better viewed or edited on a larger screen. In order
to support this, we use Android’s built-in share feature, a
method to internally share data between various applications.
In particular, users have to first select the data they wish to
apply on another device from within an arbitrary application
on the phone (e.g., by opening a picture in the gallery viewer).
Second, they invoke the share feature which will bring up the
bridge application in send mode. Due to platform restrictions
users cannot initiate a drag gesture directly from a mobile
application. Thus, users are shown a list of icons representing
data types. Compatible ones will be highlighted, in situations
where data might be treated in different ways (e.g.: a picture
sent as a URL or as a binary file). From a technical
perspective, once the finger enters the detector window on the
desktop, the dragged data will be encapsulated into a
simulated local drag-and-drop event, transparent to both the
user and the target application on the PC.

Figure 2: Picture transfer from desktop to phone: the user selects a picture

displayed in a webpage(a) and proceeds to drag it across the screen and over

the semi-transparent detect or window (b); the drag gesture is continued on

to the mobile screen where the user drops the picture over the viewer icon

(c); finally, the picture is automatically displayed(d). The technique also

works in the opposite direction.

Figure 3: To send an email address available on a PC to a mobile email

client, the user can drag it towards the phone (a); once on the mobile, the

user can drop it over the relevant field. To copy text available on a mobile to

a desktop application, the user selects it normally on the mobile and drags it

towards the screen (c); once on the desktop screen, the user can release the

finger over any application accepting text to apply it there.

Actions where data originating from a mobile device is better

viewed or edited on a larger screen. In order to support this,

we use Android’s built-in share feature, a method to

internally share data between various applications. In

particular, users have to first select the data they wish to

apply on another device from within an arbitrary application

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(176-179) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 179

on the phone (e.g., by opening a picture in the gallery

viewer). Second, they invoke the share feature which will

bring up the bridge application in send mode. Due to

platform restrictions user scan not initiate a drag gesture

directly from a mobile application. Thus, users are shown a

list of icons representing data types. Compatible ones will be

highlighted, in situations where data might be treated in

different ways (e.g.: a picture sent as a URL or as a binary

file). From a technical perspective, once the finger enters the

detector window on the desktop, the dragged data will be

encapsulated into a simulated local drag-and-drop event,

transparent to both the user and the target application on the

PC.

 CONCLUSION

In this paper we have presented a novel interaction technique

that allows user to intuitively share data between desktop

computers and mobile devices. Through touch gestures, the

cross-device Swipe n Share technique provides a practical

solution to a need that is still today not adequately supported.

The user feedback we gained highlighted its positive aspects

of being easy to learn and perform. We plan to further

investigate how to adapt the technique for use in public and

semi-public settings such as train stations, airports, museums,

retail stores, etc.

REFERENCES

[1] P. Baudisch, E. Cutrell, D. Robbins, M. Czerwinski, P. Tandler,

B. Bederson, and A. Zierlinger. Drag-and-pop and drag-and-

pick: Techniques for accessing remote screen content on touch

and pen-operated systems. In Proc. Interact ’03, pages 57–64.

IOS Aress, 2003[1].

[2] A. Bragdon, R. DeLine, K. Hinckley, and M. R. Morris. Code

Space: Touch + Air Gesture Hybrid Interactions For

Supporting Developer Meetings. In Proc. ITS ’11, pages 212–

221. ACM, 2011[2].

[3] M. Collomb and M. Hascoët. Extending drag-and-drop to new

interactive environments: A multi-display, multi-instrument

and multi-user approach. Interacting with Computers,

20(6):562 – 573, 2008[3].

[4] Y. Guiard. Asymmetric division of labour in human skilled

bimanual action: The kinematic chain as a model. Journal of

Motor Behaviour, 19:486–517, 1987[4].

[5] R. Hardy and E. Rukzio. Touch & Interact: Touch-based

interaction of mobile phones with displays. In Proc.

MobileHCI, pages 245–254. ACM, 2008[5].

[6] K. Hinckley, G. Ramos, F. Guimbretiere, P. Baudisch, and M.

Smith. Stitching: Pen Gestures That Span Multiple Displays.

In Proc. AVI ’04, pages 23–31. ACM, 2004[6].

[7] N. Marquardt, R. Diaz-Marino, S. Boring, and S. Greenberg. The

Proximity Toolkit: Prototyping Proxemic Interactions in

Ubiquitous Computing Ecologies. In Proc. UIST ’11, pages

315–326. ACM, 2011[7].

[8] P. Mistry, S. Nanayakkara, and P. Maes. Touch and Copy, Touch

and Paste. In Proc. CHI EA ’11, pages 1095–1098. ACM,

2011[8].

[9] B. A. Myers. Using handhelds and PCs together. Comm. ACM,

44:34–41, 2001[9].

[10] J. Rekimoto. Pick-and-drop: a direct manipulation technique for

multiple computer environments. In Proc. UIST ’97, pages 31–

39. ACM, 1997[10].

[11] J. Rekimoto and M. Saitoh. Augmented Surfaces: A Spatially

Continuous Work Space for Hybrid Computing Environments.

In Proc. CHI ’99, pages 378–385. ACM, 1999[11].

[12] D. Schmidt, F. Chehimi, E. Rukzio, and H. Gellersen.

PhoneTouch: A Technique for Direct Phone Interaction on

Surfaces. In Proc. UIST ’10, pages 13–16. ACM, 2010[12].

[13] A. D. Wilson and R. Sarin. BlueTable: Connecting wireless

mobile devices on interactive surfaces using vision-based

handshaking. In Proc. GI ’07, pages 119–125, 2007[13].

