

 © 2018, IJCSE All Rights Reserved 218

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Comparative Study of Selenium WebDriver and Selenium IDE (Integrated

Development Environment)

Shilpa Garg

1*
, Paramjeet Singh

2
, Shaveta Rani

3

1
Dept. of CSE, Giani Zail Singh Campus College of Engineering and Technology, Bathinda, India

2
 Dept. of CSE, Giani Zail Singh Campus College of Engineering and Technology, Bathinda, India

3
 Dept. of CSE, Giani Zail Singh Campus College of Engineering and Technology, Bathinda, India

*Corresponding Author: shilpagarg14.9@gmail.com, Tel.: +91-99144-00998

Available online at: www.ijcseonline.org

Accepted: 19/July/2018, Published: 31/July/2018

Abstract— Testing is necessary because we all make mistakes. Additionally, we are more likely to make errors when dealing

with perplexing technical or business problems, complex business processes, code or infrastructure, changing technologies, or

many system interactions. This is because our brains can only deal with a reasonable amount of complexity or change when

asked to deal with more our brains may not process the information we have correctly. Some of these errors are not important,

but some of them can be expensive and damaging, with loss of money, time or corporate reputation and may even cause injury

or death. A key element to conduct successful software testing, are various testing tools. In addition to tool support for

regressive testing, selection of appropriate tool also becomes equally important depending upon the cost involved in terms of

skillset required and maintenance of test scripts.

Keywords—Test Automation, Selenium IDE, Selenium Webdriver, Mutation Rate, Error Rate

I. INTRODUCTION

Software testing ensures quality and reliability of the

software do not fall under risk levels that organization has

benchmarked. Test execution can be performed in two ways:

Manual: Tester ensures application’s correct behavior where

he/she behaves as the end user and performs test steps

manually.

Test Automation: Tasks like comparing contents of large data

file or simulating how system would behave might overload a

person and even prone to mistakes as they soon get bored. In

test automation, software tools take up the burden of

performing repetitive tasks making test execution more

efficient and more reliable and even faster than doing it

manually.

Rest of the paper is organized as follows, Section I contain

introduction to software testing and its types, Section II

contain related work of selection and importance of test

execution tools, Section III explain Selenium and its

components, Section IV explain the methodology of creation

and comparison of test scripts in Selenium WebDiver and

Selenium IDE, Section V describe results based on test

scripts generated for dummy web applications and Section VI

concludes research work with future directions.

II. RELATED WORK

Customers have indicated that testing tool selection is

challenging process and look up for recommendations from

testing consultants who daily face various testing tools at

customer premises. Upon starting a new project testing

consultants must go through existing tools and quickly learn

new tools as well to pick and recommend most appropriate

one.

Selecting most appropriate test execution tool helps in

improved staff performance and time savings, improved test

results accuracy and earlier bugs identifications before The

users are impacted.

A test execution tool most often runs tests that have already

been run before. Whenever an existing system is changed

(e.g. for a defect fix or an enhancement), all the tests that

were run earlier could potentially be run again, to make sure

that the changes have not disturbed the existing system by

introducing or revealing a defect.

III. SELENIUM

Several commercial and open source tools are available and

selenium is possibly the most widely-used open source

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 219

solution for the formation of test scripts that are executed

against the web application under test.

Selenium is composed of multiple software tools that are: -

A. Selenium 2 (aka. Selenium WebDriver): Selenium-

WebDriver has been developed to better support dynamic

web pages in which the elements of a page can change

without reloading the page. WebDriver's goal is to provide

a well-designed, object-oriented API that provides

advanced support for today's advanced Web application

test problems. It is compatible with many browsers such as

Firefox, Chrome, IE and Safari. Selenium RC +

WebDriver = Selenium 2.0

B. Selenium 1 (aka. Selenium RC or Remote Control):

Selenium RC was the main project of Selenium for a long

time, before the fusion WebDriver / Selenium brought

Selenium 2, the newest and most powerful tool.

C. Selenium IDE: Selenium IDE (Integrated Development

Environment) is an easy-to-use Chrome and Firefox

extension and is generally the most efficient way to

develop test cases. It records the user’s actions in the

browser for you, using existing Selenium commands, with

parameters defined by the context of that element. This is

not only a time-saver, but also an excellent way of

learning Selenium script syntax. Specifically, Selenium

IDE does not provide iteration or conditional statements

for test scripts.

D. Selenium-Grid: Selenium Grid allows you to run tests in

parallel, i.e. different tests can be performed

simultaneously on different remote machines. This has

two advantages. First of all, if you have a large test set or

a slow-running test set, you can significantly increase

performance by using Selenium Grid to split the test set

and run different tests at the same time using the different

machines. In addition, if you need to run the test suite in

multiple environments, you can have several remote

computers that support and run the tests at the same time.

In any case, Selenium Grid greatly improves the time

needed to run the suite using parallel processing.

IV. METHODOLOGY

To deliver results accurately, test data should be organized

wisely with selection of appropriate automation framework

followed by the test script creation in both Selenium IDE and

Selenium WebDriver. After the formation of test scripts,

impacted areas in the test suite will be analyzed based on

changes made.

A. Comparison between Selenium WebDriver and Selenium

IDE (Integrated Development Environment)

Most test execution tools offer a way to start capturing or

recording manual tests; therefore, they are also known as

"capture / reproduction" tools, "capture / reproduction" or

"recording / reproduction" tools. The analogy is to record a

television program and play it. However, tests are not

something that is only reproduced to allow someone to see

the tests interact with the system, which can react slightly

differently when the tests are repeated. Therefore, the

acquired tests are not suitable if you want to achieve long-

term success with a test execution tool. The test execution

tools use a scripting language to guide the tool. The scripting

language is a programming language. Therefore, any tester

who wishes to directly use a test execution tool must use

programming skills to create and edit scripts. The advantage

of programmable scripts is that tests can repeat actions

(cycles) for different data values (e.g. Test entries), they can

follow different paths depending on the result of a test (for

example, if a test fails, go to a different set of tests) and can

be called by other scripts giving a certain structure to the test

set. The captured script is very difficult to maintain because:

1. It is closely related to the flow and interface presented by

the GUI.

2. You can trust the circumstances, status and context of the

system at the time the script was recorded. For example, a

script will acquire a new order number assigned by the

system when a test is recorded. When that test is performed,

the system will assign a different order number and will reject

subsequent requests that contain the previously acquired

order number.

The test input information is "coded", that is, it is

incorporated into the single script for each test. Any of these

things can be overcome by editing the scripts, but we're not

just recording and playing! If more time is needed to update

an acquired test than is necessary to run the same test again

manually, the scripts tend to be abandoned and the tool

becomes "shelf-ware".

B. Computation Parameters

1) Mutation Rate: Gives the rate at which mutations need

to be made in the entire test suite depending upon the change

request in either data field, locator or verification point.

2) Error Rate: Gives the percentage of wrong entries

made while manually editing test scripts (0.01 value is opted

based on Six Sigma techniques)

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 220

For Selenium IDE, No of Changes = No of Corrections * No

of Iterations

For Selenium WebDriver, No of Changes = No of

Corrections

3) Accuracy: Gives the efficiency and correctness of the

test suite after making changes to the test scripts.

More the accuracy, more reliable is the test suite in terms

defects detection. Accuracy can be improved by reducing the

chances of errors while altering the scripts manually which is

directly proportional to total changes required to be made in

the test scripts. Judicious selection of automation tool is

critical to ensure the success of the testing project that can be

based on above listed parameters.

V. RESULTS AND DISCUSSION

Below are the results documented for five web application:

A. Web Application 1: Test scripts are formed and analysed

in Selenium IDE and Selenium WebDriver based on the

following data.

No of Test Data Iterations: 50

No of Locators: 10

No of corrections made to Locators: 2

Table 1. Analyzation results for web application 1

Parameters Selenium WebDriver Selenium IDE

Mutation

Rate

(2/50) * 100 = 4% [(50 * 2)/50] * 100 =

200%

Error Rate [(0.01 * 2) / 50] * 100 =

0.04%

[(0.01 * 2 * 50) / 50] *

100 = 2%

Accuracy 100% - 0.04% = 99.96% 100% - 2% = 98%

Figure 1. Analyzation results for web application 1

B. Web Application 2: Test scripts are formed and analyzed

in Selenium IDE and Selenium WebDriver based on the

following data.

No of Test Data Iterations: 60

No of Verification Points: 20

No of corrections made to Verification Points: 3

Table 2. Analyzation results for web application 2

Parameters Selenium

WebDriver

Selenium IDE

Mutation

Rate

(3/60) * 100 = 5% [(60 * 3)/60] *

100 = 300%

Error Rate [(0.01 * 3) / 60] *

100 = 0.05%

[(0.01 * 3 * 60) /

60] * 100 = 3%

Accuracy 100% - 0.05% =

99.95%

100% - 3% = 97%

Figure 2. Analyzation results for web application 2

C. Web Application 3: Test scripts are formed and analysed

in Selenium IDE and Selenium WebDriver based on the

following data.

No of Test Data Iterations: 70

No of Data Fields: 30

No of corrections made to Data Fields: 7

Table 3. Analyzation results for web application 3

Parameters Selenium WebDriver Selenium IDE

Mutation

Rate

(7/70) * 100 = 10% [(70 * 7)/70] * 100 =

700%

Error Rate [(0.01 * 7) / 70] * 100 =

0.1%

[(0.01 * 7 * 70) / 70]

* 100 = 7%

Accuracy 100% - 0.1% = 99.9% 100% - 7% = 93%

Figure 3. Analyzation results for web application 3

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 221

D. Web Application 4: Test scripts are formed and analysed

in Selenium IDE and Selenium WebDriver based on the

following data.

No of Test Data Iterations: 80

No of Verification Points: 40

No of corrections made to Verification Points: 4

Table 4. Analyzation results for web application 4

Parameters Selenium

WebDriver

Selenium IDE

Mutation

Rate

(4/80) * 100 = 5% [(80 * 4)/80] *

100 = 400%

Error Rate [(0.01 * 4) / 80] *

100 = 0.05%

[(0.01 * 4 * 80) /

80] * 100 = 4%

Accuracy 100% - 0.05% =

99.95%

100% - 4% =

96%

Figure 4. Analyzation results for web application 4

E. Web Application 5: Test scripts are formed and analysed

in Selenium IDE and Selenium WebDriver based on the

following data.

No of Test Data Iterations: 90

No of Locators: 50

No of corrections made to Locators: 6

Table 5. Analyzation results for web application 5

Parameters Selenium WebDriver Selenium IDE

Mutation Rate (6/90) * 100 = 6.67% [(90 * 6)/90] * 100

= 600%

Error Rate [(0.01 * 6) / 90] * 100

= 0.067%

[(0.01 * 6 * 90) /

90] * 100 = 6%

Accuracy 100% - 0.067% =

99.933%

100% - 6% = 94%

Figure 5. Analyzation results for web application

VI. CONCLUSION and Future Scope

For a test execution tool to offer benefits, it must meet a need

within the organization and resolve this need effectively and

efficiently. Furthermore, the test execution tool should help to

exploit the strengths of the organization and address its

weaknesses. The organization must be prepared for the

changes that will be provided with the new test execution

tool. If current testing practices are not good and the

organization is not mature, it is generally more convenient to

improve testing practices than to try to find tools that support

bad practices.

Selenium IDE and Selenium WebDriver test scripts for

dummy web applications are compared based on user-

friendliness, technical skills required, re-usability of scripts,

alteration of scripts, handling of multiple test data, duplicity

of scripts, component based approach and maintenance of

scripts.

Table 6. Comparing Selenium WebDriver and Selenium IDE (Integrated

Development Environment)

Parameter Selenium IDE Selenium

WebDriver

Scripts Alteration High Low

Scripts Duplicity High Low

Test Suite User

Friendliness

High Low

Scripts Re- Usability High Low

Handling Multiple

Test Data

High NA

Scripts Maintenance High Low

Technical Skills

Required

Low High

REFERENCES

[1] R. Chauhan, I. Singh, "Latest Research and Development on

Software Testing Techniques and Tools", INPRESSCO

International Journal of Current Engineering and Technology,

2014.

[2] S. P, D. N, "Automation of Software Testing in Agile Development -

An Approach and Challenges with Distributed Database Systems",

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 222

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS,

Vol. 3, pp.1-7, 2014.

[3] N. Bhateja, "A Study on Various Software Automation Testing

Tools", International Journal of Advanced Research in Computer

Science and Software Engineering, Vol. 5, pp.1-6, 2015.

[4]. S. Sharma, "Study And Analysis Of Automation Testing

Techniques", Journal of Global Research in Computer Science,

Vol. 3, pp.1-12, 2012.

[5] "Analysis of Automation and Manual Testing Using Software Testing

Tool", IJIACS, Vol. 4, 2017, ISSN ISSN 2347 − 8616.

[6] S. Thummalapenta, S. Sinha, N. Singhania, "Automating Test

Automation", IBM T. J. Watson Research Center IBM Research-

India, Vol. 2017.

[7] “An Approach of Software Design Testing Based on UML

Diagrams", International Journal of Advanced Research in

Computer Science and Software Engineering, Vol. 4, pp.1-2, 2014.

[8] "A Unique Technique to Handle the Complexity and Improve the

Effectiveness of Test Cases in Software Testing", Journal of

Innovative Technology and Education, Vol. 2, 2015.

[9] M. Dande and N. Galla, "Automation Testing Frameworks for

SharePoint application", International Journal of Computer

Sciences and Engineering, Vol.3, Issue.11, pp.33-38, 2015.

[10] R. Sharma, R. Dadhich, "Implications of Software Testing

Strategies at Initial Level of CMMI: An Analysis", International

Journal of Computer Sciences and Engineering, Vol.6, Issue.5,

pp.1055-1061, 2018.

[11] N. Kaur, J. Kaur, J. S. Budwal, "Application of ACO in Model

Based Software Testing: A Review", International Journal of

Computer Sciences and Engineering, Vol.6, Issue.3, pp.370-374,

2018.

[12] B. Saha, D. Mukherjee, "Analysis of Applications of Object

Orientation to Software Engineering, Data Warehousing and [13]

Teaching Methodologies", International Journal of Computer

Sciences and Engineering, Vol.5, Issue.9, pp.244-248, 2017.

[14] N. Sudheer, V. Sarma, N. Ahmad, "Implementing Different Types

and Variants for Software Testing Process and Techniques",

International Journal of Computer Sciences and Engineering,

Vol.5, Issue.4, pp.34-39, 2017.

[15] A. Verma, A. Khatana, S. Chaudhary, "A Comparative Study of

Black Box Testing and White Box Testing", International Journal of

Computer Sciences and Engineering, Vol.5, Issue.12, pp.301-304,

2017.

[16] N. Sudheer, S.H. Raju, "Different approach Analysis for Static

Code in Software Development", International Journal of Computer

Sciences and Engineering, Vol.4, Issue.9, pp.111-118, 2016.

[17] R. K. Sahoo, D. P. Mohapatra, M. R. Patra, "A Firefly Algorithm

Based Approach for Automated Generation and Optimization of

Test Cases", International Journal of Computer Sciences and

Engineering, Vol.4, Issue.8, pp.54-58, 2016.

[18] N. Sudheer, V. Sharma and S. H. Raju, "A Process Web Application

Testing Using TAO Tool Search Based Genetic Algorithm",

International Journal of Computer Sciences and Engineering,

Vol.4, Issue.7, pp.94-100, 2016.

[19] S. Kannan, T. Pushparaj, "A study on variations of Bottlenecks in

Software Testing", International Journal of Computer Sciences and

Engineering, Vol.2, Issue.5, pp.8-14, 2014.

[20] S. Bharti and S. N. Singh, "Improvised Agile SCRUM Using Test-

Asa-Service", International Journal of Computer Sciences and

Engineering, Vol.3, Issue.3, pp.166-171, 2015.

Authors Profile

Ms. S. Garg pursed Bachelor of Information Technology from Rayat
Bahra University, Mohali, India in 2013 and currently pursuing
Master of Computer Science from Giani Zail Singh Campus College
of Engineering and Technology, Bathinda, India. Her main research
work focuses on Quality Assurance, Software Engineering,
Automation Testing, SDLC, Static and Dynamic Testing, Agile
Methodologies, Test Management.

