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Abstract- In competitive electricity market worldwide raises many challenging tasks related to the economic and optimal 

operation of electric power systems. In deregulated market structure, the generation is being despatched by means of hourly 

power delivery. The penalty is improved on power producers, if they fail to attain the planned energy delivery. The inadequate 

hydel resources associated with environmental constraints of thermal plants necessiates a precise scheduling system to satisfy 

the ever growing power demand. The power generator in a hydrothermal has to manage the conflicting objectives of profit 

maximization and emission minimization. Normally, the multi-objective optimization problem is tuned for optimising the two 

or more conflicting objectives subject to some constraints. Short-term hydrothermal scheduling (STHTS) problem deals with 

more objective functions such as profit maximization and emission minimization. Hence it is necessary to evolve a constructive 

framework based on intelligent techniques. In this paper, a stochastic multi-objective model is derived for the flexible 

scheduling of hydrothermal plants with valve-point loading effects. A non-dominated sorting teaching learning based 

optimization (NSTLBO) algorithm is presented for solving STHTS problem. The proposed algorithm is applied to derive a pair 

of non-dominated results and then the fuzzy based methodology has been argued to choose the best solution. It is tested on a 

three thermal and four hydro test system with twenty four hour time period. The results are extracted by means of total profit 

and emission from the plants. Comparative studies have also been done to validate the viability of the proposed method. 

 

Keywords-  Deregulation, Hydrothermal Scheduling, Profit Maximization, Emission Limitations, Non-dominated Sorting 

TLBO algorithm. 

 
NOMENCLATURE 

 

PF Total Profit of GENCOs 

RV Total Revenue GENCOs 

TC Total fuel cost of GENCOs 

            Thermal and hydro power at hour of t 

          Reserve power and spot price of hydro 

power at hour of t 

  ,   ,   ,  ,   Emission coefficient of ith generator  

GENCOs Generation companies 

TRANSCOs Transmission companies 

DISCOs Distribution companies 

ISO Independent system operator 

PX Power exchanger 

IPP Independent power producer 

    
  Power generation of ith thermal unit for 

interval  

    
  Power generation of jth hydro for tth interval  

   
       

      Minimum and maximum operating limits of 

ith thermal unit 

   
       

     Minimum and maximum operating limits of 

jth hydro plant 

      
  Transmission loss for tth interval  

   
  Load demand for tth interval  

         Fuel cost coefficients of the ith thermal 

generating units 

         Power generation coefficients of jth hydro 

unit 

      Water discharge of jth hydro plant for  

interval   

   
       

     Lower and upper limits of reservoir water 

discharge of jth hydro plant 

      Water storage level of jth hydro reservoir for 

tth interval  

   
       

     Water storage level limits of jth hydro 

reservoir for tth interval  

     Spinning reserve for tth interval 

DP                            Dynamic programming 

LR                         Lagrangian relaxation 

MIP                       Mixed integer programming 

BD                         Benders decomposition 

NLP                       Nonlinear programming 

LP                          Linear programming 
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I. INTRODUCTION 

 

The planning and operation of hydrothermal system is 

considered to be a complex problem. The STHTS is one of 

the significant subject in a hydrothermal system and it assign 

the periodical scheduling of hydro and thermal generators 

around a pre-planned period [1]. The STHTS is a large scale 

non-convex, non-linear, Mixed-integer optimization 

problem. The power generators have the responsibility to 

meet the load demand at a minimized cost. So the objective 

of the problem has been designed to minimize the 

operational cost of the system and the problem is referred as 

cost based short-term hydrothermal scheduling (CBSTHTS). 

       Recent years have seen a worldwide pressure towards 

deregulation and unbundling of service providers by the 

utilization. The introduction of deregulation and 

restructuring in Electric power system creates a competitive 

open market scenario in order to enhance the performance 

and ideal operation of existing power plants. Generally the 

generation companies are expected to improve their own 

profit by minimize the total production cost. In view of this, 

the Genco’s are not necessarily to meet the system demand 

and reserve generation [2-3]. The UC performed by the 

Genco’s has a distinct objective than that of regular UC and 

is termed as profit based STHTS which emphasizes the 

significance of profit. 

      In regulated power industry, several methods several 

methods have been proposed for the solution of STHTS. The 

classical techniques such as Lagrangian relaxation, Mixed-

integer programming and Primal dual interior point method 

are not suitable when the system size increases. Further the 

computational requirement also increases with the classical 

methods. The amendment of clean air act 1990 [4], the 

conventional economic scheduling is not held good for 

STHTS problems and also the emission problem have to be 

addressed. 

     Therefore the researchers have suggested number of 

evolutionary algorithms in evolving the solution for STHTS 

problem. An approach based on simulated annealing has 

been analysed, where in the multi-objective function is 

transformed in to a single objective function by means of 

goal attainment algorithm [5, 6]. The major setback of this 

method is that an assumption has made in the process of 

decision maker in arriving goals. An improved version of 

genetic algorithm (GA) [7] by updating the multipliers is 

tested on STHST problems. Here the multi-objective 

function was handled by means of e-constraint technique. 

The method suffers from consuming much time and also 

obtains a weak pareto optimal solutions. 

      The hydrothermal scheduling problem were analysed in 

[8] by adapting self organising hierarchical Particle Swarm 

Optimization Algorithm. A solution to solve Fixed Head and 

Variable Head economical hydrothermal scheduling problem 

has been given in reference [9] using Non-Dominated 

Sorting Disruption Based Gravitational Search Algorithm. 

Besides several other methods were used to solve the self 

scheduling problem, including Mixed Integer Programming 

(MIP) [10], Lagrangian Relaxation-Evolutionary 

Programming (LR-EP) [11]. 

All evolutionary and swarm intelligence based optimization 

algorithm needs to have control components like population 

size, sequence of iterations, etc. The exact tuning of their 

algorithmic parameter decides the performance of the 

algorithm. The erroneous tuning of algorithmic parameters 

either burdens the computational effort or attains a local 

optimal solution. The methodological revolution in the 

energy market imposes the need for renewed formulation. 

In this article, a unique framework based on Non-Dominated 

Teaching Learning Based Optimization (NSTLBO) 

algorithm has been proposed for solving optimal scheduling 

of hydrothermal plants. This algorithm need not depend 

upon any tuning parameters like other algorithms. It has 

been modelled to solve multi-objective STHTS problem in 

the day-ahead energy markets. 

 

The presentation of this article can be summarized as 

follows. 

1. Section 2 elaborates the mathematical formulation of 

STHST problem. It has been modelled as a multi-

objective problem by taking in to allow profit and 

emission as Bi-objective. 

2. Section 3 proposes the solution methodology and it 

includes overview of Teaching-Learning-Based 

Optimization (TLBO), Non-dominated Sorting TLBO 

(NSTLBO) algorithm, and Fuzzy decision maker to find 

the best solutions. 

3. Section 4 presents the Implementation of NSTLBO 

algorithm for STHTS problem under regulated and 

deregulated environment. 

4. Section 5 explains the numerical example, and Section 6 

accommodates the conclusions. 

 

II. PROBLEM FORMULATION 

 

The multi-objective STHTS problem has been modelled 

with a view to maximize the profit and to minimize the 

emission level of Gencos. It also establish the optimal 

scheduling of hydrothermal system by satisfactory the 

system constraints. 

The proposed method for solving STHTS problem 

consisting of two objective functions, which can be 

mentioned as )(xf and )(xg where 

)(xf - Profit maximization function 

)(xg - Emission minimization function 

Where, f(x) and g(x) are the objective functions of STHTSS 

problem and mathematical model can be expressed as 

 

II.1. Profit maximization function 
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The profit of the concern is termed as the difference between 

revenue received from the sale of power with market price 

and total operating cost of the generation companies. 
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Mathematical model of thermal plant 

The total operational cost of a thermal plant is highly 

depends on its fuel cost. Moreover in real time, the value 

manipulates steam parring the turbine through a group of 

nozzle. The impact of their valve-point loading makes the 

fuel cost function as a non-convex curve which has been 

included in the problem. So the fuel cost equation of a 

thermal plant for the scheduling period can be formulated as 

  (   )        
                     (    

        ) 
      (5) 

Mathematical model of hydro plant 

The prime component of hydel power plant includes water 

discharge and reserve storage volume. The mathematical 

model of a hydro power plant can be formulated as 

          
        

                             

      (6) 

II.2. Modelling of emission 

Carbon and gaseous emission from the thermal power plant 

are treated as a second objective function. The emissions 

from this power plant are formulated by adding the quadratic 

and exponential function of thermal output. 

   ∑ ∑                 
        (      )

 
   

 
    (7) 

 

II.3. System and unit constraints 

1. Power balance constraints 

It is a power generation constraint that orients the total 

power generation of the hydro and thermal plant should be 

less than or equal to system demand for the planned 

scheduling interval at time ‘t’. 

∑     
 
    ∑     

 
       

     (8) 

 

2. Thermal generation limits 

The thermal limit of the power generator is marked by its 

lower and higher limits respectively. 

    
            

        (9) 

 

3. Hydro generation limits 

A hydel plant must be reported in a well defined upper and 

lower limit. 

   
            

        (10) 

4. Spinning reserve constraints 

The sum of the reserve power of scheduled thermal units 

during the planning period augurs to be less than or equal to 

total spinning reserve of the generating units and is written 

as in equation (11). 

∑         
 
            (11) 

       (    
        

   )  

              
     

 

5. Water discharge constraints 

The discharge of water to the turbine should be within the 

predefined maximum (   
   ) and minimum (   

   ) operating 

limits. 

   
            

         (12) 

 

6. Storage volume constraints 

The storage of water in the reservoir must be enough to meet 

the maximum (   
   ) and minimum (   

   ) limits. 

   
            

        (13) 

 

III. SOLUTION METHODOLOGY 

 

III.1 Overview of TLBO algorithm 

An exceptional optimization technique namely Teaching-

Learning-Based Optimization algorithm (TLBO), which has 

been recently introduced in the references [15-25]. It works 

around the philosophy of the effect of a teacher on the result 

of learners in the school and consequently learning by 

interaction between class members, which helps to improve 

their grades. The method works on the principle of the 

process of teaching and learning. 

      The heuristic technique outplays the classical 

mathematical methods, but its quality of the observation is 

more sensitive to the algorithmic parameters like population 

size and iterations. The main drawbacks of their kind of 

algorithm are the existence of different parameter that has to 

be neatly tuned to attain the expected performance. 

      The heuristic technique outplays the classical 

mathematical methods, but its quality of the observation is 

more sensitive to the algorithmic parameters like population 

size and iterations. The main drawbacks of their kind of 

algorithm are the existence of different parameter that has to 

be neatly tuned to attain the expected performance. 

     Presently, Teaching Learning Based Optimization 

(TLBO) algorithm has been introduced. It is an activity 

based algorithm that functions on the effect of teaching 

capacity of a teacher on the result of learners in a class. 

     It is dominant evolutionary algorithm that involves a 

population of students, where each and every student has 

been recognised as a potential solution to an optimization 

problem. 

      The searching process includes initialization of a class, 

teacher phase, learner phase and terminating point. The 

TLBO algorithm is simple and easy to implent in power 

system optimization problems. TLBO is a specific, 
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parameter less algorithm and does not require the tuning of 

any algorithmic parameters. It has the capacity of finding the 

global optimal solution for a non-convex, non-linear with 

less computational effort and high reliability. 

 

III.2 Non-dominated sorting TLBO algorithm 

This article presents an exceptional methodology for 

producing the pareto optimal solutions for the multi-

objective optimization problems namely (NSTLBO). The 

NSTLBO algorithm is an refurbished version of the TLBO 

algorithm [12]. The NSTLBO algorithm is an exclusive 

method for analysing multi-objective optimization problem 

and preserves the assorted set of solution. 

     It is very similar to a TLBO algorithm with teacher phase 

and a learner phase. On the other way with a view to manage 

the multiple objective effectively and efficiently. The 

NSTLBO algorithm is equipped with non-dominated sorting 

approach and crowding distance computation mechanism. 

[15] The teacher phase and learner phase confirms a better 

exploitation of the search space while non-dominated sorting 

approach assures that the selection process in the search 

space is consistently moves on the way of best solution and 

the population is rushed towards the pareto front in each 

iteration process. 

     The crowding distance assignment terminology ensures 

the choice of a teacher from the wide region of the search 

space. Hence the probability of premature convergence of 

the algorithm at local optima is averted. 

    In the NSTLBO algorithm, the updation of learners is 

done based on the teacher phase and learner phase of the 

TLBO algorithm. It is a simple matter in deciding the best 

solution in case of single objective optimization problem. 

But in multiple conflicting objectives, identifying the best 

solution from the set of solution is not easy job. 

     In this algorithm, the process of finding the best solution 

is done by comparing the rank of which is assigned to the 

solution based on the non-dominated idea and the crowding 

distance value. 

 

Initialization 

The algorithm is initialized by a matrix of N rows and D 

columns with some arbitrarily generated values in the search 

space. In this case, the value of N indicates the population 

size of the ‘class’. The value D gives the total number of 

subjects offered which is equal to the dimensionality of the 

problem considered. The algorithm is framed to run for ‘g’ 

number of iterations. The following equation is used to 

assign the values of j
th

 parameter of the i
th

 vector in the 

initial stage of iteration. 

 (   )
    

        (   )  (  
      

   )   (14) 

Where rand(i,j) denotes a uniformly distributed random 

variable within the limit (0,1). The components of the i
th

 

vector for the generation ‘g’ is shown by 

  
 

 ⌊ (   )
 

  (   )
 

    (   )
 

    (   )
 

⌋   (15) 

The column vector is formed by the objective values at a 

particular generation. Two objective functions occupies the 

similar row vector in this kind of bi-objective problem. The 

bi-objective (a and b) can be formulated as 

[
 

 
 
 

 
 
 
 
]  [

  ( ( )
 

)

  ( ( )
 

)
]    (16) 

Where i = 1,2,...,N; j = 1,2,...,D; g = 1,2,...,G 

 

Teacher phase 

The mean vector which consists of the mean learners in the 

class for each subject is calculated. So the mean vector   is 

shown as 

   [

    (  (   )
 

    (   )
 

    (   )
 

    (  (   )
 

    (   )
 

    (   )
 

    (  (   )
 

    (   )
 

    (   )
 

]

 

  (17) 

 

Then    ⌊  
 
   

 
     

 
     

 
⌋  (18) 

 

The best vector with less objective function value is 

considered as the teacher for this iteration. 

The algorithm progress well by moving the mean of the 

learners in the direction of the teacher. The current mean and 

competent mean vector are added to the present population 

of learners in order to form a advanced set of improved 

learners. 

    ( )
 

  ( )
 

       (        
 

    
 ) (19) 

Hence TF is the teaching factor in the process of iteration 

which may be either 1 or 2. 

The more skilful learners in the matrix Xnew displace the sub 

standard learners in matrix S using the non-dominated 

sorting algorithm. 

 

Learner phase 

This phase is dedicated to interaction of learners among 

themselves. The practice of mutual interaction results in the 

improvement of the expertise of the learner. Each learner 

collaborates randomly with other learners and hence 

expedite the sharing of knowledge. A particular learner (
g

iX )( ), and the other learner (
g

rX )( ) has been randomly 

chosen ( ri  ). Finally the i
th

 vector of the matrix Xnew in 

the learner phase seems 

    ( )
 

 

{
 ( )

 
     ( )

 
 ( ( )

 
  ( )

 
)               (  

 
   

 
)

 ( )
 

     ( )
 

 ( ( )
 

  ( )
 

)                              
}(20) 

In multi-objective optimization problem, there is a 

possibility of multiple Xnew matrices in the learner phase. So 

in case of a bi-objective problem the performance of learner 

phase may have formulation as. 
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Fig. 1. Flow chart for proposed method to solve multi objective STHTSS problem generation 

Read the input data of the hydrothermal system (hydro unit data, thermal unit and emission data with 

system demand) 

 

Generate the initial population of all dependent variables like water discharge (Q), volume, hydro power (Pht) and 
thermal power (Pit)  

 

Formulate fuzzy membership function for objective functions and find best comprise 

solution  

 Iter=1 

Select           based on the fuzzy membership function 

Update      values using Equation (19) 

 

Evaluate objective functions using modified      values 

Compare solution results and keep the best 

Modify      values using Equations (21)-(22) 

Compute objective function values using modified      values 

Iter=Iter+1 

Calculate Fuzzy membership function values and then compare solution results and 

retain the best 

Print optimal solution (Maximizing the profit and minimizing 

the emission) 

START 

STOP 

    
          

Is 
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Finally, the X matrix and the Xnew matrices are processed 

together in the NDSA, which gives the ‘N’ best learners 

for the ensuring iteration. The algorithm will be terminated 

after ‘G’ number of iteration is over Fig. 1. 

 

III.3 Fuzzy membership function 

 

The prime objective of the system engineer is to carry out 

the conflicting parameters by satisfying the constraints of 

the system. In most of the cases the results, constraints and 

outcomes of the suggested mechanism are not derived 

precisely. Much of this error is not accessible. It may be 

due to vague, erroneous or fuzzy information. By looking 

on the imperfect manner of the decision maker’s 

behaviour, it is understood that the decision maker may 

substitute fuzzy or erroneous goals for each objective 

function. The fuzzy sets are governed by equations called 

membership function. These functions are assigned by the 

values ranging from 0 to 1. By considering the minimum 

and maximum standards of objective function combined 

with rate of change of membership function, the decision 

maker must identify the membership function 
 ij

 in a 

constructive manner. 

It is considered that 
 

gj
 happened to be a linear 

decreasing and continuous function and is formulated as 

 (  )  

{
 

 
                                 

    

  
      

  
      

                         
          

   

                                           
                  

              (  

          )      (23) 

where 
min

gj  and 
max

gj   are the minimum and maximum 

values of objective function where in the solution is to be 

landed. 

obN denotes the number of objective function in the 

problem. 

Normalized membership values 
k  for each non-

dominated solution is calculated by the following equation. 

   
∑   

     
   

∑ ∑   
     

   

    
   

     (24) 

Where, Mnds is the number of non-dominated solutions. 

Choose the best comprise solution that is having the 

greatest value of μ
k
. 

 

IV. SIMULATION RESULTS 

 

The simulation were carried out by programming the 

MATLAB 14.0 software on a computer with i3 processor, 

Intel (R), Core i3 supported by 4 GB RAM with  2.4 GHZ 

clock speed. The proposed NSTLBO algorithm has been 

executed with number of iterations and then the best 

solution is presented. It is worth mention to note then this 

algorithm is not having any parameter to be tuned to have 

global optimal solution. 

      In this analysis, the parameters like water discharge, 

water storage volume, revenue fuel cost, profit and 

emission are considered. 

      The proposed algorithm was subjected to the training 

process with a population size of 40 and the iteration was 

approximately 250. The proposed hydrothermal system 

comprises of multi-chain cascade of four hydro plants and 

three thermal plants with twelve hours scheduling period. 

The model diagram of the cascaded multi-chain hydro 

system is shown in Fig. 2. The forecasted load demand, 

reserve demand and forecasted market price of the system 

is adapted from the reference [13, 14] and is given in Table 

1.  

       The unit cost coefficients, emission coefficients and 

operating limits of three thermal units are considered from 

the same reference which is given in Table 2 & 3. The 

coefficients of hydraulic system, the inflows to the 

reservoir and limits of the reservoir are considered from 

reference [11] and is given in Table 4 to 6. The analysis of 

test system has been divided into two cases, according to 

the mode power generation and constraints. 

Fig. 2. Standard multi-chain four hydro System network 
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Table 1. Load demand and market price of four hydro 

three thermal unit test system 

 

Table 2. Cost curve coefficients and operating limits of 

thermal generators 

Un

it 
     
(

  
 ) 

     

(  
   

) 

     

(  
(  )  

) 

     
(

  
 ) 

    
 

(1/M

W) 

   
    

(M

W) 

   
     

(M

W) 

1 10

0 

2.45 0.0012 16

0 

0.038 20 175 

2 12

0 

2.32 0.0010 18

0 

0.037 40 300 

3 15

0 

2.10 0.0015 20

0 

0.035 50 500 

 

Table 3. Emission coefficients of thermal generators 

U

nit 
   (I

b/h) 

   (Ib/

MWh) 

   (Ib/(M

W)2h) 

   (I

b/h) 

   (1/

MW) 

1 60 -1.355 0.0105 0.49

68 

0.0192

5 

2 45 -0.600 0.0080 0.48

60 

0.0169

4 

3 30 -0.555 0.0120 0.50

35 

0.0147

8 

 

Table 4. Hydro power generation coefficients 

 

Plant                         

1 -0.0042 -0.42 0.030 0.90 10.0 -50 

2 -0.0040 -0.30 0.015 1.14 9.5 -70 

3 -0.0016 -0.30 0.014 0.55 5.5 -40 

4 -0.0030 -0.31 0.027 1.44 14.0 -90 

 

 

Table 5. Reservoir inflows (      ) 

 

Hour 

(h) 

Plant 

      1              2             3                4 

1 10 8 8.1 2.8 

2 9 8 8.2 2.4 

3 8 9 4 1.6 

4 7 9 2 0 

5 6 8 3 0 

6 7 7 4 0 

7 8 6 3 0 

8 9 7 2 0 

9 10 8 1 0 

10 11 9 1 0 

11 12 9 1 0 

12 10 8 2 0 

 

 

Table 6. Reservoir storage capacity limits, plant discharge 

limits, reservoir end  

Conditions (      ) and plant generation limits (mw) 

 

Pla

nt 
   

       
                 

       
       

       
    

1 80 150 10

0 

12

0 

5 15 0 500 

2 60 120 80 70 6 15 0 500 

3 100 240 17

0 

17

0 

10 30 0 500 

4 70 160 12

0 

14

0 

6 20 0 500 

 

 

Case-A: Multi-Objective STHTSS without Reserve Power 

Generation 

 

In this test case, the fuel cost and emission components of 

thermal units form the quadratic equation by considering 

valve point loading effect. The total profit, revenue and 

fuel cost parameter of Case-I are represented by the 

following equation. 

Maximize TCRVPF   
   ∑ ∑            

 
     

   ∑ ∑            
 
   

 
     (25) 

   ∑ ∑    (    )      
   ∑ ∑       

 
   

 
   

 
     (26) 

 

 

 

Hour 

 (h) 

Forecasted  

Demand  

(MW) 

Forecasted  

Reserve 

 (MW) 

Forecasted 

 Market 

 Price  

( /MWh) 

1 750 20 10.55 

2 780 25 10.35 

3 700 40 9.00 

4 650 55 9.45 

5 670 70 10.00 

6 800 95 11.25 

7 950 100 11.30 

8 1010 80 10.65 

9 1090 65 10.35 

10 1080 35 11.20 

11 1100 40 10.75 

12 1150 55 10.60 
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Table 7. Water discharge and water storage volume of proposed four hydro systems 

Hour 

(h) 
Water Discharge (      ) Volume (      ) 

 Plant1 Plant2 Plant3 Plant4 Plant1 Plant2 Plant3 Plant4 

1 9.2661 6.5965 16.5344 13.7843 95.0000    73.1240 148.1030  100.6460 

2 10.1344 9.1504 24.4233 7.5658 95.7339    74.5275  139.6686  89.6617 

3 11.0221 11.3187 19.4287 6.3723 94.5995    73.3771   133.4453 90.4959 

4 6.7322 7.5930 12.6037 8.2055 91.5774    71.0584  127.2827  91.7236 

5 10.6081 10.3477 10.8560 16.5056 91.8452    72.4654 133.4099  89.5181 

6 7.7901 11.4980 21.5373 7.0266 87.2371     70.1177 145.7264 89.5469 

7 5.0474 6.2434 23.6008 10.3524 86.4470     65.6197  146.2400  106.9436 

8 5.4013 12.8595 11.4094 11.6203 89.3996     65.3763  143.8403  116.0199 

9 7.9115 7.4039 17.7914 14.8600 92.9983     60.0000  152.5687  117.0033 

10 5.3099 7.3086 10.5845 20.0000 95.0868     60.5961 152.3227  112.9993 

11 7.4438 7.0481 10.7343 16.1023 100.7769    62.2875 154.3829  114.5366 

12 8.2709 9.9661 13.9669 11.3053 105.3331    64.2394  165.4196  122.0351 

 

 

Table 8. Hydro and thermal generation of proposed four hydro and three thermal systems 

Hour  

(h) 

Hydro power generation  

(MW) 

Thermal power generation  

(MW) 

Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 

1 80.6029 48.8209 49.5679 196.0775 0 180.9585 193.9723 

2 84.9812 64.7832 8.7413 121.4874 0 300.0070 200.000 

3 88.0306 73.6649 34.8156 107.9399 0 195.5491 200.000 

4 63.9788 53.7400 48.2077 131.1682 0 167.7481 185.1573 

5 85.2782 69.0341 49.5267 201.3830 0 114.8701 149.9079 

6 69.3507 71.9312 29.4099 114.9470 0 314.3612 200.000 

7 49.2793 41.3463 17.2386 171.2905 0 400.000 200.00 

8 53.1382 72.5986 52.6833 193.9123 0 400.00 200.00 

9 72.2731 44.5552 47.5635 223.9454 198.4791 303.1836 200.00 

10 54.0079 44.4421 53.8308 251.4321 0 400.00 200.00 

11 71.7147 44.1282 54.4479 230.4271 0 400.00 200.00 

12 78.3142 61.2104 57.8402 196.9564 223.0276 332.6512 200.00 

 

 

 
Fig. 3. Comparison of power generation and power demand of the Proposed test system (Case A) 
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Fig. 4. Revenue, Fuel cost and Profit of the proposed test system (Case A) 

 

 

Table 9. Simulation results of proposed four hydro and three thermal systems without reserve generation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Comparison of profit and emission level of the Proposed test system (Case A) 

Hour 

(h) 

Load 

demand 

 (MW) 

Total power 

generation 

(MW) 

Revenue  

($/h) 

Fuel Cost  

($/h) 

Profit  

($/h) 

Emission  

(Tons/h) 

1 750 750.0000 7912.50 1186.35 6726.15 652.01 

2 780 780.0000 8073.00 1536.02 6536.98 1132.51 

3 700 700.0000 6300.00 1241.91 5058.09 716.10 

4 650 650.0000 6142.50 1127.57 5014.93 584.70 

5 670 670.0000 6700.00 898.20 5801.79 366.62 

6 800 800.0000 9000.00 1578.14 7421.86 1216.00 

7 950 879.1547 9934.44 1840.72 8093.71 1248.07 

8 1010 973.3324 10365.99 1840.72 8525.26 1248.07 

9 1090 1090.0000 11281.50 2178.85 9102.65 1317.13 

10 1080 1003.7129 11241.58 1840.72 9400.85 1248.07 

11 1100 1000.7179 10757.71 1840.72 8916.98 1248.07 

12 1150 1150.0000 12190.00 2338.51 9851.49 1591.92 

Total Profit ($)                                                                 90450.76 12569.30 



   International Journal of Computer Sciences and Engineering                                      Vol.6(8), Aug 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        200 

 

The proposed NSTLBO algorithm is tested on the sample 

system not only to maximize the profit of the system but 

also to minimize the emission at the same time. The best 

hydro discharge rate and storage volume of the proposed 

test system are shown in Table 7. The detailed optimal 

schedules of hydro and thermal power generations are 

given in Table 8. Fig. 3 elaborates the comparative studies 

of generated power are load demand of the proposed test 

system. The hourly revenue, fuel cost and profit are 

displayed in Fig. 4.  

      The simulation results test cases are presented in Table 

9. This table summarizes the revenue, fuel cost profit and 

emission without considering the reserve power 

generation. Finally the profit and emission levels has been 

compared and graphically represented in Fig. 5. 

Case-B: Multi-Objective STHTSS with Reserve Power 

Generation 

 

In this case, an attempt has been made to achieve more 

profit by considering the reserve power generation. In the 

reserve market operation, GENCOs profit can be 

calculated by energy price in the reserve market and the 

amount of reserve capacity allocated and hence actually 

been dispatched.  From the literature reviews, it is learnt 

that the reserve allocation is usually ten percent of the 

forecasted load demand. In STHTSS problem, satisfying 

reserve demand is no longer an obligation of reserve 

generation. Table 10 demonstrates the power generation 

and reserve allocation of the proposed hydro thermal 

system in detail and graphically reported in Fig. 6. 

 

Table 10. Hydro and thermal power with reserve generation of proposed four hydro and three thermal systems 

 

 

Hours  

(h) 

Hydro power  

Generation (MW) 

Thermal power 

Generation (MW) 

Reserve power 

Generation (MW) 

Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 R1 R2 R3 

1 80.6029         48.8209 49.5679 196.0775 0 180.9585 193.9723 0 98.9723 6.0277 

2 84.9812         64.7832 8.7413 121.4874 0 300.0070 200.00 0 78 0 

3 88.0306         73.6649 34.8156 107.9399 0 195.5491 200.00 0 70 0 

4 63.9788         53.7400 48.2077 131.1682 0 167.7481 185.1573 0 50.1573 14.8427 

5 85.2782       69.0341   49.5267 201.3830 0 114.8701 149.9079 0 16.9097 50.0903 

6 69.3507     71.9312   29.4099   114.9470 0 314.3612 200.00 0 80 0 

7 49.2793     41.3463   17.2386   171.2905 0 400.00 200.00 0 0 0 

8 53.1382      72.5986   52.6833 193.9123 0 400 200.00 0 0 0 

9 72.2731        44.5552 47.5635 223.9454 198.4791 303.1836 200.00 49.5547 59.4453 0 

10 54.0079      44.4421   53.8308 251.4321 0 400.00 200.00 0 0 0 

11 71.7147      44.1282   54.4479 230.4271 197.4010 301.8811 200.00 50.0028 59.9973 0 

12 78.3142     61.2104   57.8402   196.9564 223.0276 332.6512 200.00 52.281 62.7191 0 

 

 
Fig. 6. Comparison of power generation and power demand of the Proposed test system (Case B) 

 

 

 



   International Journal of Computer Sciences and Engineering                                      Vol.6(8), Aug 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        201 

Table 11. Simulation results of proposed four hydro and three thermal systems with reserve generation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Revenue, Fuel cost and Profit of the proposed test system (Case B) 

 

 
Fig. 8. Comparison of profit of Case A and Case B 

 

Hour  

(h) 

Load 

demand 

 (MW) 

Total 

power 

generation 

(MW) 

Forecasted 

Reserve 

(MW) 

Total 

Reserve 

generation 

(MW) 

Revenue 

($/h) 

Fuel 

Cost 

($/h) 

Profit 

($/h) 

Emission 

(Tons/h) 

1 750 750.0000 75 75 8703.75 1392.30 7311.45 897.46 

2 780 780.0000 78 78 8880.30 1769.87 7110.43 1723.99 

3 700 700.0000 70 70 6930.00 1436.59 5493.41 962.65 

4 650 650.0000 65 65 6756.75 1303.02 5453.73 782.78 

5 670 670.0000 67 67 7370.00 1071.73 6298.27 525.06 

6 800 800.0000 80 80 9900.00 1820.44 8079.56 1908.92 

7 950 879.1547 95 0 9934.44 1840.72 8093.71 1248.07 

8 1010 973.3324 101 0 10365.99 1840.72 8525.26 1248.07 

9 1090 1090.0000 109 109 12409.70 2504.31 9905.34 1943.03 

10 1080 1003.7129 108 0 11241.58 1840.72 9400.85 1248.07 

11 1100 1000.7179 110 110 13007.50 2500.10 10507.40 1933.14 

12 1150 1150.0000 115 115 13409.00 2689.04 10720.00 2443.17 

Total Profit ($)                                                                                                           96899.10 16864.40 
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Fig. 9. Comparison of emission level of Case A and Case B 

 

 

The simulation results of revenue, fuel cost, profit and 

emission level of GENCOs are represented in Table 11. The 

best profit of proposed test system is $ 96899.10 and 

minimum emission is 16864.40 tons. In Fig. 7 the revenue, 

total cost and profit of the GENCOs are displayed in a 

hourly schedule of the day-ahead energy market. A 

comprehensive comparison has been made to analyse the 

profit of the system with/without power generation which is 

seen in Fig. 8. 

     Moreover the emission levels of the system with and 

without reserve generations are presented in Fig. 9. From the 

results, it has been noticed that the proposed method 

significantly improves the profit and minimizes the emission 

level of the GENCOs with less computational time by 

considering reserve power generation. 

 

V. CONCLUSION 

 

This paper projects a practical methodology for analysing 

the conflicting objectives of hydrothermal power producers 

in a day-ahead energy market. The approach is based on the 

multi-objective optimizational for simultaneously optimizing 

the expected profits and minimizing the total emission level 

in the presence of standard hydro and thermal constraints. 

Non-dominated sorting based teaching-learning optimization 

(NSTLBO) algorithm has been used to solve the multi-

objective STHTSS problem. 

      The proposed NSTLBO algorithm identifies a set of non-

dominated solutions which includes revenue, fuel cost, profit 

and emission level. The fuzzy model has also been 

employed to find the global best solution among the pareto 

parameters. The proposed method has been tested on four 

hydro and three thermal units with 12 hour scheduling 

period. The simulations has been carried out on the test 

system in order to evolve the water discharge and water 

storage volume, hydro and thermal power generation, 

reserve power allocation, revenue, fuel cost, profit and 

emission level by considering with/without reserve 

generation. From the results, it is observed that the proposed 

approach provides more profit, with minimized emission. 

Also the proposed approach may not impose any constraints 

on the number of objective function and its extension to 

include more objectives is a straightforward process. 
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