Scse International Journal of Computer Sciences and Engineering Open Access

Volume-4, Issue-4

E-ISSN: 2347-2693

Trend Analysis Comparison of Forecasts For New Student

Yulia Yudihartanti

Department of Information System, College of Informatics and Computer Management Banjarbaru, Indonesia

Available online at: www.ijcseonline.org

Received: Mar/22/2016	Revised: Apr /02/2016	Accepted: Apr/20/2016	Published: Apr/30/2016
Abstract— The number of	new students who register	annually less stable, increasing	and decreasing. This has caused
difficulties in the adjustmen	t including adjustment of the	number of classrooms and lecture	rs that will impact on the ratio of
lecturers. Thus the need to	do forecasting or prediction	of the number of new students ea	ach year. To get the most precise
predictions in this study use	d four methods on Trend Ana	lysis namely methods of semi on	average, the least squares method,
the method of quadratic tren	nd, exponential trend method,	which will be compared to deterr	nine the method with the smallest
error rate.			

Keywords—Prediction; Forecast; Comparison; Trend Analysis

I. INTRODUCTION

Acceptance of new students is a very important thing for any college, both public universities and private colleges. Each college has the following criteria and their respective advantages offered to new students. For community college to get qualified students with the desired amount is straightforward. Every college wants to get a good quality students and the maximum quantity in accordance with the quota of the college. Public universities have a system that makes it easier to get new students. Unlike the private universities should strive more to get new students. Then the college should have a strategy to compete in attracting new students. Many different strategies employed by private universities, among others, with open enrollment for new students early [1]. Make estimates of future enrollment accurately is very important for a college because a lot of decisions that may be taken from the forecasting method [2]. Prediction accurately the number of new students is important to do because of the predicted outcome can be taken many decisions as necessary adjustments to classroom students, adjusting the number of lecturers, and the adjustment means of support other teaching and learning activities. Several studies have been conducted to estimate the number of new students [3]. The purpose of this study is to determine an accurate method for the prediction of new students each year. The benefits derived from this research is to produce an accurate method for the prediction of new students, adjustment of the classroom and the number of lecturers become easier, better planning can be done in accordance with the vision, mission, goals and objectives.

II. TREND ANALYSIS

Trend analysis is an analytical method that is intended to make an estimate or forecast the future. To do forecasting with both the needs of various kinds of information (data) is quite a lot and observed in a period of relatively long, so that the results of the analysis can be known how many large fluctuations and the factors that influence those changes. In theoristis, in time series analysis of the most decisive is the quality or accuracy of the information or the data obtained and the time or period of the data collected. Time series analysis is important because we can use the sequential results of a variable for a time period, to forecast the future behavior or to discover the possible causes behind the results [1,4]. Trend is a tendency to move up or down in the long term is derived from the average change over time and the value is quite flat (smooth). An increasing trend called a positive trend and declining trend called the negative trend. Trend shows the changes in a relatively long and stable. To perform the analysis of trend forecasting, there are several ways: (a) Semi average method, (b) Least squares method, (c) Quadratic trend method, (d). Exponential trend method.

A. Semi Average Method

Semi average methods in principle is to divide the data into two parts: the first group and the second group. Furthermore, the two groups were used as the basis for the calculation of trends and forecasting. Steps in obtaining the trend line with this method are: (a) Grouping the data into two parts. If the amount of data is odd, then the middle one can be omitted or counted twice, one part menjad first group and the first part into the second group, (b) Calculating the arithmetic mean first group K1 and K2 the second group, K1 is placed in the middle of the group 1 and K2 is placed in the middle of the group 2. Values K1 and K2 is a constant value (a) and lies in the base year. Value K1 and K2 be the intercept in the equation trends, (c). Calculates the difference between (e) To determine the magnitude of the upcoming trend can just enter a value (X) in the equation.

Vol.-4(4), PP(145-148) April 2016, E-ISSN: 2347-2693

B. Least Square Method

Trend by the least squares method is obtained by determining the trend line that has the smallest sum of the squares of the difference between the original data with the data on the trend line. If Y describes the original data and Y 'is the trend data, the method formulated smallest. Trend with the smallest method can be described on the following pages.

C. Quadratic Trend Method

Trends that are short and medium term, it is likely the trend will follow a linear pattern. One that is not linear is quadratic method.

D. Exponential Trend Method

The exponential trend is a trend that has promoted or exponent of his time.

E. Choosing a Better Trends

To determine which one is better used measure of accuracy is how well a forecasting tool that suspect the actual incident. More precise tools will have a smaller degree of error. To measure the accuracy of the required value of the difference between the data with forecasting the smallest. If the value smallest, then these methods are felt most appropriate, or having a smaller error rate [5].

III. DATA PROCESSING

This study uses data of new students who register start the academic year 2006/2007 up to 2015/2016 for the study program Informatics Techniques and Information Systems.

Table 1. Data sets				
Year	Number of New Students			
2006	422			
2007	345			
2008	512			
2009	398			
2010	440			
2011	439			
2012	293			
2013	298			
2014	387			
2015	289			

Semi Average Method, of which year group divide to K1 and K2 group.

Table 2. Semi Average Method								
	Year	Numbering of New Students	Average	Value 2008	of X 2013			
	2006	422		-2	-7			
	2007	345		-1	-6			
K1	2008	512	423,4	0	-5			
	2009	398		1	-4			
	2010	440		2	-3			
	2011	439		3	-2			
	2012	293		4	-1			
K2	2013	298	341,2	5	0			
	2014	387		6	1			
	2015	289		7	2			

Next, counting table with Least square method.

Table 3. Least Square Method							
Year	Numbering of New Students	Kode X (Tahun)	Y.X	X^2			
2006	422	-4,5	-1899	20,25			
2007	345	-3,5	-1207,5	12,25			
2008	512	-2,5	-1280	6,25			
2009	398	-1,5	-597	2,25			
2010	440	-0,5	-220	0,25			
2011	439	0,5	219,5	0,25			
2012	293	1,5	439,5	2,25			
2013	298	2,5	745	6,25			
2014	387	3,5	1354,5	12,25			
2015	289	4,5	1300,5	20,25			
Amount	3823		-1144,5	82,5			

And then, counting with Quadratic method.

Table 4	Quadratic	Method
1 auto 4.	Quadratic	witchiou

rable 4. Quadratic Method						
Year	Y	Х	XY	X^2	(X^2)Y	X^4
2006	422	-4,5	-1899	20,25	8545,5	410,0625
2007	345	-3,5	-1207,5	12,25	4226,25	150,0625
2008	512	-2,5	-1280	6,25	3200	39,0625
2009	398	-1,5	-597	2,25	895,5	5,0625
2010	440	-0,5	-220	0,25	110	0,0625
2011	439	0,5	219,5	0,25	109,75	0,0625
2012	293	1,5	439,5	2,25	659,25	5,0625
2013	298	2,5	745	6,25	1862,5	39,0625

2014	387	3,5	1354,5	12,25	4740,75	150,0625
2015	289	4,5	1300,5	20,25	5852,25	410,0625
Amount	3823		-1144,5	82,5	30201,75	1208,625

Next, counting table with Exponential method.

Table 5 Exponential M	ethod

Year	Y	Х	LN Y	X^2	X LN Y
2006	422	-4,5	6,045005314	20,25	-27,202524
2007	345	-3,5	5,843544417	12,25	-20,452405
2008	512	-2,5	6,238324625	6,25	-15,595812
2009	398	-1,5	5,986452005	2,25	-8,979678
2010	440	-0,5	6,086774727	0,25	-3,0433874
2011	439	0,5	6,084499413	0,25	3,0422497
2012	293	1,5	5,680172609	2,25	8,5202589
2013	298	2,5	5,697093487	6,25	14,242734
2014	387	3,5	5,958424693	12,25	20,854486
2015	289	4,5	5,666426688	20,25	25,49892
Amount	3823		59,28671798	82,5	-3,1151574

The table below describes the results of the calculation of the value of a, b, and c to establish equality of each method. The equation can be calculated from the predicted values for 2016 and 2020. In order to obtain different values. So by using this equation can predict the number of new students for a particular year who want predictable.

Table 6. Predicted value with Semi Average Method

Semi Average Method					
Value of a					
Value of b	-16,44				
Value of c					
Equation					
2008	Y'=423,4 - 16,44 X				
2013	Y =341,2 - 16,44 X				
Predicted value for 2016					
2008	291,88				
2013	291,88				
Predicted value for 2020					
2008	226,12				
2013	226,12				

Table 7. Predicted value with Least Square Method

Least Square Method					
Value of a			382,3		

International Journal of Computer Sciences and Engineering Vol.-4(4), PP(145-148) April 2016, E-ISSN: 2347-2693

Value of b	-13,87272727
Value of c	
Equation	Y' = 382,3 - 13,87 X
Predicted value for 2016	306
Predicted value for 2020	250,5090909

Table 8. Predicted value with Quadratic Method

Quadratic method				
Value of a	403,20625			
Value of b	-13,87272727			
Value of c	-2,534090909			
Equation	Y' = 403,21 - 13,87 X -2,53 X^2			
Predicted value for 2016	250,25			
Predicted value for 2020	42,71363636			

Table 9. Predicted value with Exponential Method

Exponential method					
Value of a	375,6552362				
Value of b	-0,037055484				
Value of c					
Equation	$Y = 375,66 (1 - 0,037) ^{x}$				
Predicted value for 2016	305,3089484				
Predicted value for 2020	262,5697447				

IV. METHOD COMPARISON

Analysis of calculation with some of these methods. The calculations for the prediction of the academic year 2016/2017 and 2020/2021 determine the best method of trend analysis that has the smallest error rate with equation below.

Table 10. Error rate of Semi Average Method

Semi Average Method					
Y	Х	Y'	Y - Y'	(Y-Y')^2	
422	-4,5	497,38	-75,38	5682,144	
345	-3,5	480,94	-135,94	18479,68	
512	-2,5	464,5	47,5	2256,25	
398	-1,5	448,06	-50,06	2506,004	
440	-0,5	431,62	8,38	70,2244	
439	0,5	415,18	23,82	567,3924	
293	1,5	398,74	-105,74	11180,95	
298	2,5	382,3	-84,3	7106,49	
387	3,5	365,86	21,14	446,8996	
289	4,5	349,42	-60,42	3650,576	
				51946,61	

International Journal of Computer Sciences and Engineering Vol.-4(4), PP(145-148) April 2016, E-ISSN: 2347-2693

Table 11. Error rate of Least Square Method

Least Square Method				
Y	х	Y'	Y - Y'	(Y-Y')^2
422	-4,5	444,7272727	-22,7273	516,5289
345	-3,5	430,8545455	-85,8545	7371,003
512	-2,5	416,9818182	95,01818	9028,455
398	-1,5	403,1090909	-5,10909	26,10281
440	-0,5	389,2363636	50,76364	2576,947
439	0,5	375,3636364	63,63636	4049,587
293	1,5	361,4909091	-68,4909	4691,005
298	2,5	347,6181818	-49,6182	2461,964
387	3,5	333,7454545	53,25455	2836,047
289	4,5	319,8727273	-30,8727	953,1253
				34510,76

Table 12. Error rate of Quadratic Method

Quadratic Method				
Y	х	Y'	Y - Y'	(Y-Y')^2
422	-4,5	414,3181818	7,681818	59,01033
345	-3,5	420,7181818	-75,7182	5733,243
512	-2,5	422,05	89,95	8091,003
398	-1,5	418,3136364	-20,3136	412,6438
440	-0,5	409,5090909	30,49091	929,6955
439	0,5	395,6363636	43,36364	1880,405
293	1,5	376,6954545	-83,6955	7004,929
298	2,5	352,6863636	-54,6864	2990,598
387	3,5	323,6090909	63,39091	4018,407
289	4,5	289,4636364	-0,46364	0,214959
				31120,15

Table 15. Error rate of Exponential Method
--

Exponential Method				
Y	х	Y'	Y - Y'	(Y-Y')^2
422	-4,5	445,1195427	-23,1195	534,5133
345	-3,5	428,6501196	-83,6501	6997,343
512	-2,5	412,7900652	99,20993	9842,611
398	-1,5	397,5168328	0,483167	0,233451
440	-0,5	382,8087099	57,19129	3270,844
439	0,5	368,6447877	70,35521	4949,856
293	1,5	355,0049305	-62,0049	3844,611
298	2,5	341,8697481	-43,8697	1924,555
387	3,5	329,2205674	57,77943	3338,463

289	4,5	317,0394064	-28,0394	786,2083
				35489,24

ACKNOWLEDGMENT

From the calculation results can be seen that the smallest error value is 31120.15 with Quadratic methods. With this method the predicted number of new students will be closer to the truth.

REFERENCES

- Santoso, B., "Comparative Analysis of Algorithms Naïve [1] Bayes and C4.5 for Prediction Student Registration at the Dian Nuswantoro University", Department of Computer Science, Journal of Dian Nuswantoro University, Page No. (1-4), 2015.
- Rahanimi, "Forecasting Number of Students Apply search [2] was interest and ability of the Department of Mathematics Automatic Clustering Method Using Fuzzy Logic And Relationships (Case Study at the Institute of Technology Surabaya)", ITS Undergraduate Paper 13455, Page No. (1-3), Dec 2013.
- [3] Abdullah, M. F., "Methods of Use Automatic Clustering and Fuzzy Logical Relationship To Predict Number of New Students Bogor Agricultural Institute", Departement of Mathematics dan Natural Science Bogor Agricultural Institute, Bogor, 2015.
- Arpit Baheti and Durga Toshniwal, "Trend Analysis of [4] Time Series Data Using Data Mining Techniques", IEEE International Congress on Big Data, 2014, pp.430-437.
- Suharyadi, and Purwanto, "Statistics: For Economics & Finance Modern Book 1", Four Salemba Publisher, First [5] Edition-2003, ISBN: 979-691-162-0.

Authors Profile

Yulia Yudihartanti is lecturer in College of Informatics and Computer Management Banjarbaru, South Kalimantan, Indonesia, since 2004 until now on Department of Information System. Graduated in Department of Informatics Techniques, Dian Nuswantoro University of Semarang,

Indonesia at 2011. Research interests include expert system and decision support system. Member of IJCSE since April 2016.

