

 © 2019, IJCSE All Rights Reserved 1858

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Use of Software Metrics on Software Development Projects Life Cycles in

OOE to Improve Software Quality

Piyush Prakash
1*

, Sarvottam Dixit
2
, S. Srinivasan

3

1,2

Department of Computer Science, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
3
Department of Computer Science & Applications, PDM University, Bahadurgarh, Haryana, India

*Corresponding Author: piyush19sept@gmail.com, Tel.: +91-9466429362

DOI: https://doi.org/10.26438/ijcse/v7i5.18581864 | Available online at: www.ijcseonline.org

Accepted: 18/May/2019, Published: 31/May/2019

Abstract— Software quality metrics are part of software metrics focusing primarily on process, product and project quality

aspects. Software quality metrics primarily focus on software measurement and its development process. The main objective of

software testing is to enhance the quality of software. Many experts in the field of software testing propose various number of

metrics. With the help of these we can detect trends and can prevent problems in efficient cost control, quality improvements,

time and risk reduction with their probable solutions. Thus, in the global competitive market, it facilitates ensuring and

achieving optimal business goals.

Keywords—Software Testing, Software Testing Metrics, Software Testing Product Metrics, Software Testing Process Metrics.

I. INTRODUCTION

Software testing plays a major role in the construction of

critical and complex software systems and in the

development of quality software engineering [4]. There's the

question: Why are we testing? The two main reasons for this

are: to assess acceptability or quality and to identify issues.

While it is a costly business, the non-testing of software can

result in costs that can be far higher than that of testing [1].

The primary benefit of the testing is that it can execute the

developed software in the ideal environment and the test

results along with test cases gives confidence that the

software must meet user requirements and will perform as

intended [12]. Object-oriented Software Engineering,

classically refers to OOSE, is the object modeling

methodology in software architectures [19].

Software metric is defined as an estimation of software

properties or software specifications. Subsequently,

quantitative ways have been verified influential within

alternative sciences, theoreticians and computer science

specialists done hard work to bring alike methodologies for

development of software. The modern software developer

may point out that ingenuous and simplified measurements

may be harmful than good [9]. Tom DeMarco specified,

“You can‟t control what you can't measure.” [3].

In general, software metrics can be categorized as process

metrics, product metrics and the project metrics. Process

metrics are used for measuring the characteristics of software

methods which are employed to develop the software it is

also known as management metrics. It includes the effort

metric, cost metric and reuse metric. The performance,

complexity, size and quality of the product are measured by

product metrics. Project metric describe the features and

execution of the project.

The prediction whether or not the software module is

defective before the testing process is applied is done by the

software fault prediction mechanism. In a module predicted

to be as poor compared to a module predicted to be defective,

more testing efforts are made [15]. If there is any bug

undetected, severe damage can be caused in many software

systems like financial systems, banking, satellite systems,

medical systems etc. Therefore, testing is actually very

important in software systems development [2]. In the event

of a software failure prediction for inter releases software,

the data of the previous version of software used for the

classifier training may not always have the same granularity

as the test data, which could be a major problem. In the cross

project failure prediction, the same scenario may occur.

Hence, there is a need to bring the metrics at the same level.

In this paper, the class level software metrics are

accumulated by calculating the IQR and AAD values for the

class - level metrics. The most commonly used metrics for

the fault prediction are McCabes metrics, LOCs (Line Of

Codes), chidamber and kemerer(C&K) metrics , Halsteads

metrics etc. and naive bayes, techniques for machine

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1859

learning [17], [16], logistical regression [2], [18], artificial

neural networks [10], and common machine learning

techniques [18]. Three machine learning techniques were

employed in this paper: logistic regression [2], decision

making [6] and support vector [5] .For performance analyzes,

four different performance assessment measures [2], i.e.

precision, accuracy, recall and F -measure [16] [10]. The data

sets in the public PROMISE [11] data repository is used for

testing. The metrics are more precise when drained from well

- defined product and intermediate product completion

criteria [14].

Software development life cycle (SDLC) is generally much

more vast and big life cycle in real that what it is exactly

defined in books. We have categorized software development

life cycle in slightly a different way which comprises the

following phases in its life cycle-

• Initiation

• Planning

• Resource Management

• Configuration and Change

• Reviews and Inspections

• Customer Engagement

• Monitoring and Control

• Closure

Figure 1. Detailed Life Cycle of Development Projects

This paper is comprised of three sections in which Section I

contain the introduction of Software metrics, software testing

and SDLC project management life cycle. Section II contain

the analysis of software process metrics and the results of

proposed software process metrics. Section III deals with

conclusion report in which future scope of the proposed

metrics introduced has been mentioned.

II. ANALYSIS AND RESULTS OF SOFTWARE METRICS

A. Metrics for Software Development Projects

The metrics are the tools to measure the size, complexity,

defects, bugs fixing and various such more attributes in

software. The metrics for development projects play a very

important role as metrics can be used to detect the hidden

defects which give a clear blueprint of the efficiency of a

software project newly developed from scratch. The

following are the software development project metrics-

(i) Defects Metric (DM)

(ii) Total Defect Suppression Effectiveness Metric (TDSEM)

The metrics can be applied on the projects such as

development projects, conversion projects and maintenance

projects. There is some implementation of few metrics on the

basis of the data collected from an IT company.

(i) Defect Metric (DM)

Objectives of the Measure: -To measure and monitor the

quality of the product. Measuring defects provides us a basis

for model based defect prediction and management.

Collecting post-delivery metrics will provide us a measure of

client satisfaction. The defect data will be used to update

review checklists, standards and training materials.

 Implementation of Defect Metric: -any anomaly

from the expectations of users is treated as defect. The norms

for defect data collection as given below will be applied in

all defect related metrics. A defect metric can be used

specifically for development and conversion projects. Here

we are showing the implementation of Defect Metric for

software conversion metric as the data collected for this

metric is relevant to conversion projects.

Data on the defects found in the programming products such

as the SRS, code and test specifications should be collected.

During the analysis, design and coding phases, data on the

defects will be collected at the system level or at the

subsystem level. From the coding phase onwards, data on the

defects will be collected at the program level.

The following data has been collected for Defect Metric: -

• Error ID: - The Defect ID of defect metric is used for

identification of a particular defect in the coding. The coding

number can also be specified along with Defect ID.

• Date of Login: - It is the date which is required to

determine the date at which that particular defect is noticed

and recorded.

• Weighted Defect: - defect information is used to derive the

data. It is found that the severity of defects (that is how

important or serious the defect is) is important to software

quality when learning from real- life in-house tests. The

seriousness of a defect is related to a number. This is a

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1860

number between 1 to 5,where 1 is the most severe deficiency

while 5 is the least severe one. In Table 1 we define all

severity.
Table1 Description of Each Severity

SEVERITY WHAT IT MEANS

1 The basic product functionality failing or
product crashes.

2 Unexpected error condition or a
functionality not working.

3 A minor functionality is failing or
behaves differently than expected.

4 Cosmetic issue and no impact on the
users.

5 Least Serious Defects

• Status of Error: - It is basically done to make sure that the
errors or defects are closed and analyzed by more than one
person specially the persons other than the testing team.

• Root Cause of Errors: - The root cause of the defects is also
recorded so as to make it correct and also for the future
reference. The root cause can be any of the following:-

 Unwritten assumptions

 Fault state transactions

 Missing logic

 Conflicting requirements

 Unable to handle missing data

 Incorrect sequences

 Incorrect defined data types

 Faulty software requirements

 Faulty interface design

 Faulty detailed design

The data collected for above metric is shown in the following
table: -

Table 2 Data Collected for defects

Defect Logged for the month Sept-Oct 2018

Error
ID

Date of
Login

Weighted
Defects

(Severity)

Status
of

Error
Root Cause of

Errors

D001 4-Sep-18 4 Closed
Unwritten

assumptions

D002 4-Sep-18 2 Closed
Fault state

transactions

D003 5-Sep-18 2 Closed Missing logic

D004 6-Sep-18 3 Closed
Conflicting

requirements

D005 7-Sep-18 2 Closed
Unable to

handle missing
data

D006 7-Sep-18 3 Closed
Incorrect

sequences

D007 11-Sep-18 3 Closed
Incorrect

defined data
type

D008 11-Sep-18 3 Closed
Faulty

software
requirements

D009 12-Sep-18 3 Closed
Faulty

interface
design

D010 13-Sep-18 3 Closed
Faulty detailed

design

D011 14-Sep-18 2 Closed Missing logic

D012 19-Sep-18 3 Closed
Conflicting

requirements

D013 20-Sep-18 2 Closed
Unable to

handle missing
data

D014 21-Sep-18 3 Closed
Incorrect

sequences

D015 21-Sep-18 4 Closed
Unwritten

assumptions

D016 21-Sep-18 3 Closed
Incorrect

sequences

D017 21-Sep-18 4 Closed
Unwritten

assumptions

D018 24-Sep-18 2 Closed
Fault state

transactions

D019 24-Sep-18 2 Closed Missing logic

D020 25-Sep-18 3 Closed
Conflicting

requirements

D021 25-Sep-18 2 Closed
Unable to

handle missing
data

D022 26-Sep-18 3 Closed
Incorrect

sequences

D023 28-Sep-18 3 Closed
Incorrect

defined data
type

D024 28-Sep-18 3 Closed
Faulty detailed

design

D025 1-Oct-18 2 Closed Missing logic

D026 3-Oct-18 3 Closed
Conflicting

requirements

D027 4-Oct-18 2 Closed
Unable to

handle missing
data

D028 4-Oct-18 3 Closed
Incorrect

sequences

The next table shows the defects list along with the Error ID
Table 3 Defect Causes

Root Cause Count of Error

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1861

Unwritten Assumptions 3

Fault State Transactions 3

Missing Logic 4

Conflicting Requirements 4

Unable to Handle Missing Data 4

Incorrect Sequences 5

Incorrect Defined Data Type 2

Faulty Software Requirements 1

Faulty Interface Design 1

Faulty Detailed Design 2
The following chart will show the defects and percentage of

possible cause

Figure 2. Percentage of Defect causes in overall Life Cycle

Figure 3. Defect Count Measurement

(ii) Total Defect Suppression Effectiveness Metric (TDSEM)

This is a mandatory metric to be collected by all projects
which can be conversion and development. These are
requires to be collected for deliverables upon acceptance.

 Objectives of the Measure: -The objective of this
measure is to Increase Defect
Suppression.Specifically, it answers the question -
 "What is the efficacy of the defect detection process currentl
y known before release?" Analysis of escaped defects feeds
back into the checklists and standards of appropriate life
cycle stages and technologies.

 What to collect: - Data on the number of defects
accepted for a deliverable detected prior and during
acceptance for a deliverable. Defects for various severity
levels need to be observed at the minimum for acceptance
defects so that can gauge the productiveness of pre-delivery
excellence guaranteed processes.

For code deliverable, if the client has additionally performed
code review, include the code review defects in acceptance
defects; otherwise take only test defects into consideration.
For analysis/design documents, consider the review defects
found in the pre-delivery and acceptance phases.

In case the development is done offshore, all errors reported
by onsite team and client, which have been accepted may be
measured separately, but both need to be included under
acceptance errors. This is because this metric is intended to
address all escaped defects after the delivery from the
development site.

In some projects, the contract and plan define that some
kinds of testing will be carried out onsite only, by either the
onsite team or the customer. For example, this could be due
to integration with components not developed as part of the
offsite project or machine access limitations from offsite.
Errors detected in these activities should be reported back to
offsite in the respective phase, and classified as pre-delivery
defects.

 When to collect: -This metric should be collected for
every anticipated outcome as specified in the plan. In the
acceptance phase, data will be collected during acceptance
test of the deliverable.

Factors affecting the Metric: -Some of the factors that affect
the number of defects are:

 Complexity

 Skill Levels

 Applicability and appropriateness of Standards

 Efficiency of V & V process

 Automation

 Degree of adherence to process

 Extent of conformity among the acceptance test plan
Phase and baseline requisites.

Metrics for Total Defect Suppression Effectiveness Metrics
(TDSEM) is

TDSEM *100

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1862

Where dp means total number of defects detected in
detection phase and di means total number of defects injected
in each phase.

Implementation of Defect Phase Suppression Metric:
This is a mandatory metric to be collected by all conversion
and development projects and requires to be collected for

deliverables upon acceptance. The objective of this measure
is to Increase Defect Suppression. - This metric should be

composed for every anticipated outcome as specified in the
plan. In the acceptance phase, data will be collected during
acceptance test of the deliverable. The data collected for the

implementation of this metric contains the following: -

 Injection Phase: - As the objective of this metric is
to increase to defects so as to determine the
effectiveness of the defect detection process, hence
the defects are introduced in the injection phase.
Injection phases will remain the usual SDLC phases
such as: -

 Requirement Analysis

 High Level Design

 Low Level Design

 Construction and Unit Testing (UT)

 System Testing (ST)

 User Acceptance Testing (AT)

 Detection Phase: - The following items will be used
for calculation defect detection percentage.

 Total Defect Suppression: - This will be
the count of total defects contained in each
phase.

 Phase Suppression Effectiveness: - This
will be the percentage of the defects
detected in a particular phase in respect to
the total defects injected in each phase.

 Defect Density Mean: - The next step is to calculate
the defect density mean for each phase. The Lower
and Upper limits for defects are already specified.
The mean is then compared with the specified limit
and then the effectiveness of defect detection
process is ascertained.

The following table contains the data collected related to this
metric:-

Table 4 Data Collection for Defect Density

Injection

Phase

Detection Phase To

tal

Er

ror

s

Inj

ect

ed

in

Ea

ch

Ph

ase

TDSEM
Requir

ement

Analys

is

Hig

h

Lev

el

Desi

gn

Low

Lev

el

Desi

gn

Con

stru

ctio

n &

Unit

Test

ing

Sys

te

m

Te

sti

ng

Us

er

Ac

cep

tan

ce

Te

sti

ng

Requiremen

t Analysis
134 34 23 12 4 0

20
7

64.73%

High Level

Design
NA 86 12 30 2 0

13
0

66.15%

Low Level

Design
NA NA 190 20 14 10

23
4

81.19%

Constructio

n & Unit

Testing

NA NA NA 65 14 6 85 76.47%

System

Testing
NA NA NA NA 30 7 37 81.08%

User

Acceptance

Testing

NA NA NA NA NA 6 6 100%

Total

Errors

Detected in

all Phase

134 120 225 127 64 29
69
9

The next table will focus on the Defect Density Mean and the
lower and higher range

Table 5 A glance at Defect Density Mean

Platform SDLC Phase

Defect
Density

(Defects/FP)

Predicted
Mean

Defect Density
(Defects/FP)

90% Confidence Interval

Lower
Limit

Upper Limit

C# (1100-
2200 FP)

Requirement
Analysis

0.0928 0.064 0.1216

High Level Design 0.2146 0.148 0.2812

Low Level Design 0.4031 0.278 0.5282

Construction &
Unit Testing

0.0928 0.064 0.1216

System Testing 0.0319 0.022 0.0418

User Acceptance
Testing

0.0464 0.032 0.0608

The next table also shows the defect density on a broader
way: -

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1863

Table 6 Defect density mean of each phase with lower and upper limits

The following chart shows the results of the above metric
implementation based on the data collected.

Figure 4. Results of Implementation of Defect Suppression Metric

III. CONCLUSIONS

This discussion imitates the importance along with the

advantage of usage of defect density throughout the method

of package development. However defect density is treated

insignificant as well as unessential by many software

engineers, it‟s one amongst the finest approach to decide the

area unit as that are extremely plagued by errors and bugs.

A recognised business common place, Defect Density may

be a metric that describes that, “The additional defects within

the package, the inferior the standard is”. Consequently, it

compute the defects that resides within the package and

divided by the whole size of package or a module being

measured. By the help of this metric, package engineers,

testers, developers and additional can estimate the

differentiate defects as well as testing effectiveness in

software modules.

Furthermore, they will conjointly measure the testing and the

need of rework because of the discovered bugs and defects.

Hereafter, by accomplishing defect density, one cannot

solely compute or estimate the defects per developed

package, however, also can guarantee its performance,

quality, effectiveness and more.

REFERENCES

[1] Aggarwal, K.K., Singh, Y., Kaur, A., and Maihotra, R. (2005),

„Software Reuse Metrics for Object-Oriented Systems‟ ,

Proceedings of the 2005 Third ACIS Int‟l Conference on Software

Engineering Research, Management and Applications (SERA „05).

[2] Arar, O. F. and Ayan, K. (2016). Deriving thresholds of ¨ software

metrics to predict faults on open source software: Replicated case

studies. Expert Systems with Applications, 61:106–121.

[3] DeMarco, T. (2013), „Controlling Software Projects:

Management, Measurement and Estimation.‟ ISBN 0-13-171711-

1.

[4] Dhavachelvan,P., V.S.K. Uma, Venkatachalapathy G. V. (2006)

„A new approach in development of distributed framework for

automated software testing using agents’ , Volume 19, Issue 4.

[5] Erturk, E. and Sezer, E. A. (2015). A comparison of some soft

computing methods for software fault prediction. Expert Systems

with Applications, 42(4):1872–1879.

[6] Ghotra, B., McIntosh, S., and Hassan, A. E. (2015). Revisiting the

impact of classification techniques on the performance of defect

prediction models. In Proceedings of the 37th International

Conference on Software Engineering-Volume 1, pages 789–800.

IEEE Press.

[7] Honglei, T., Wei, S., and Yanan, Z. (2009). The research on

software metrics and software complexity metrics. In Computer

Science-Technology and Applications, 2009. IFCSTA‟09.

International Forum on, volume 1, pages 131–136. IEEE.

[8] Kamei, Y. and Shihab, E. (2016). Defect prediction:

Accomplishments and future challenges. In Software Analysis,

Evolution, and Reengineering (SANER), 2016 IEEE 23rd

International Conference on, volume 5, pages 33–45. IEEE

[9] Karner, C. and Bond, W.P. (2004), „Software Engineer Metrics:

What do they measure and how do we know?‟ Proceeding of the

10th International Software Metrics Symposium, Metrics.

[10] Kumar, L., Misra, S., and Rath, S. K. (2017). An empirical

analysis of the effectiveness of software metrics and fault

prediction model for identifying faulty classes. Computer

Standards & Interfaces, 53:1–32.

[11] Menzies, T., Krishna, R., and Pryor, D. (2015). The promise

repository of empirical software engineering data (2015).

[12] Ogasawara, H., Yamada, A. and Kojo, M. (1996) „Experiences of

software Quality Management Using Metrics through Life cycle’,

Proceedings of ICSE.

[13] Paul, C. (2002) „Software Testing - A Craftsman’s Approach

Second Edition‟ CRC Press.

[14] Prakash, P. (2018). „Using weighted defects metrics to improve

software quality: An analysis and review’. International

conference on recent trends and advances in computer science and

engineering, LIET, Alwar, Rajasthan, India, 14-15 April, 2018,

pages 50-53.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1864

[15] Rathore, S. S. and Kumar, S. (2017). Linear and non-linear

heterogeneous ensemble methods to predict the number of faults in

software systems. Knowledge-Based Systems, 119:232–256.

[16] Turhan, B., Mısırlı, A. T., and Bener, A. (2013). Empirical

evaluation of the effects of mixed project data on learning defect

predictors. Information and Software Technology, 55(6):1101–

1118.

[17] Yang, X., Lo, D., Xia, X., and Sun, J. (2017). Tlel: A two layer

ensemble learning approach for just-in-time defect prediction.

Information and Software Technology, 87:206–220.

[18] Zhao, Y., Yang, Y., Lu, H., Liu, J., Leung, H., Wu, Y., Zhou, Y.,

and Xu, B. (2017). Understanding the value of considering client

usage context in package cohesion for fault-proneness prediction.

Automated Software Engineering, 24(2):393–453.

[19] Aanchal, Kumar S. (2013). „Metrics for Software Components in

Object Oriented Environments: A Survey’ International Journal of

Scientific Research in Computer Science and Engineering,

Volume-1, Issue-2, March-April-2013: pp. 25-29.

Authors Profile

Mr. Piyush Prakash is a PhD student in the

Department of Computer Science, Mewar

University. He earned his MCA & M.Tech

degrees from West Bengal University of

Technology and Maharshi Dayanand

University, Rohtak, India. His research

interests include software testing and software engineering.

Dr. Sarvottam Dixit earned his PhD from

Agra University, India in 1990. Currently,

he is serving as the Professor and Advisor

to Chancellor at Mewar University, India.

His general research interests includes

artificial intelligence, software engineering,

multiagent etc.

Dr. S. Srinivasan e completed his PhD from

the Madurai Kamraj University, Madurai in

1978. Presently, he is a Professor at the PDM

University, Bahadurgarh, Haryana – 124507.

His research interests include artificial

intelligence, software engineering, software

testing etc.

