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Abstract— Software quality metrics are part of software metrics focusing primarily on process, product and project quality 

aspects. Software quality metrics primarily focus on software measurement and its development process. The main objective of 

software testing is to enhance the quality of software. Many experts in the field of software testing propose various number of 

metrics. With the help of these we can detect trends and can prevent problems in efficient cost control, quality improvements, 

time and risk reduction with their probable solutions. Thus, in the global competitive market, it facilitates ensuring and 

achieving optimal business goals. 

  

Keywords—Software Testing, Software Testing Metrics, Software Testing Product Metrics, Software Testing Process Metrics. 

I.  INTRODUCTION  

Software testing plays a major role in the construction of 

critical and complex software systems and in the 

development of quality software engineering [4]. There's the 

question: Why are we testing? The two main reasons for this 

are: to assess acceptability or quality and to identify issues. 

While it is a costly business, the non-testing of software can 

result in costs that can be far higher than that of testing [1]. 

The primary benefit of the testing is that it can execute the 

developed software in the ideal environment and the test 

results along with test cases gives confidence that the 

software must meet user requirements and will perform as 

intended [12]. Object-oriented Software Engineering, 

classically refers to OOSE, is the object modeling 

methodology in software architectures [19]. 

Software metric is defined as an estimation of software 

properties or software specifications. Subsequently, 

quantitative ways have been verified influential within 

alternative sciences, theoreticians and computer science 

specialists done hard work to bring alike methodologies for 

development of software. The modern software developer 

may point out that ingenuous and simplified measurements 

may be harmful than good [9]. Tom DeMarco specified, 

“You can‟t control what you can't measure.” [3].  

In general, software metrics can be categorized as process 

metrics, product metrics and the project metrics. Process 

metrics are used for measuring the characteristics of software 

methods which are employed to develop the software it is 

also known as management metrics. It includes the effort 

metric, cost metric and reuse metric. The performance, 

complexity, size and quality of the product are measured by 

product metrics. Project metric describe the features and 

execution of the project.  

The prediction whether or not the software module is 

defective before the testing process is applied is done by the 

software fault prediction mechanism. In a module predicted 

to be as poor compared to a module predicted to be defective, 

more testing efforts are made [15]. If there is any bug 

undetected, severe damage can be caused in many software 

systems like financial systems, banking, satellite systems, 

medical systems etc. Therefore, testing is actually very 

important in software systems development [2]. In the event 

of a software failure prediction for inter releases software, 

the data of the previous version of software used for the 

classifier training may not always have the same granularity 

as the test data, which could be a major problem. In the cross 

project failure prediction, the same scenario may occur. 

Hence, there is a need to bring the metrics at the same level. 

In this paper, the class level software metrics are 

accumulated by calculating the IQR and AAD values for the 

class - level metrics. The most commonly used metrics for 

the fault prediction  are McCabes metrics, LOCs (Line Of 

Codes),   chidamber and kemerer(C&K) metrics , Halsteads 

metrics etc.  and naive bayes, techniques for machine 
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learning [17], [16], logistical regression [2], [18], artificial 

neural networks [10], and common machine learning 

techniques [18]. Three machine learning techniques were 

employed in this paper: logistic regression [2], decision 

making [6] and support vector [5] .For performance analyzes, 

four different performance assessment measures [2], i.e. 

precision, accuracy, recall and F -measure [16] [10]. The data 

sets in the public PROMISE [11] data repository is used for 

testing. The metrics are more precise when drained from well 

- defined product and intermediate product completion 

criteria [14]. 

Software development life cycle (SDLC) is generally much 

more vast and big life cycle in real that what it is exactly 

defined in books. We have categorized software development 

life cycle in slightly a different way which comprises the 

following phases in its life cycle- 

• Initiation 

• Planning 

• Resource Management 

• Configuration and Change 

• Reviews and Inspections 

• Customer Engagement 

• Monitoring and Control 

• Closure 

 

Figure 1.  Detailed Life Cycle of Development Projects 

This paper is comprised of three sections in which Section I 

contain the introduction of Software metrics, software testing 

and SDLC project management life cycle. Section II contain 

the analysis of software process metrics and the results of 

proposed software process metrics. Section III deals with 

conclusion report in which future scope of the proposed 

metrics introduced has been mentioned.  

II. ANALYSIS AND RESULTS OF SOFTWARE METRICS  

A. Metrics for Software Development Projects 

The metrics are the tools to measure the size, complexity, 

defects, bugs fixing and various such more attributes in 

software. The metrics for development projects play a very 

important role as metrics can be used to detect the hidden 

defects which give a clear blueprint of the efficiency of a 

software project newly developed from scratch. The 

following are the software development project metrics- 

(i) Defects Metric (DM) 

(ii) Total Defect Suppression Effectiveness Metric (TDSEM) 

The metrics can be applied on the projects such as 

development projects, conversion projects and maintenance 

projects. There is some implementation of few metrics on the 

basis of the data collected from an IT company. 

(i) Defect Metric (DM) 

Objectives of the Measure: -To measure and monitor the 

quality of the product. Measuring defects provides us a basis 

for model based defect prediction and management. 

Collecting post-delivery metrics will provide us a measure of 

client satisfaction. The defect data will be used to update 

review checklists, standards and training materials. 

 Implementation of Defect Metric: -any anomaly 

from the expectations of users is treated as defect. The norms 

for defect data collection as given below will be applied in 

all defect related metrics. A defect metric can be used 

specifically for development and conversion projects. Here 

we are showing the implementation of Defect Metric for 

software conversion metric as the data collected for this 

metric is relevant to conversion projects. 

Data on the defects found in the programming products such 

as the SRS, code and test specifications should be collected. 

During the analysis, design and coding phases, data on the 

defects will be collected at the system level or at the 

subsystem level. From the coding phase onwards, data on the 

defects will be collected at the program level. 

The following data has been collected for Defect Metric: -  

• Error ID: - The Defect ID of defect metric is used for 

identification of a particular defect in the coding. The coding 

number can also be specified along with Defect ID. 

• Date of Login: - It is the date which is required to 

determine the date at which that particular defect is noticed 

and recorded. 

• Weighted Defect: - defect information is used to derive the 

data. It is found that the severity of defects (that is how 

important or serious the defect is) is important to software 

quality when learning from real- life in-house tests. The 

seriousness of a defect is related to a number. This is a 
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number between 1 to 5,where 1 is the most severe deficiency 

while 5 is the least severe one. In Table 1 we define all 

severity. 
Table1 Description of Each Severity 

SEVERITY WHAT IT MEANS 

1 The basic product functionality failing or 
product crashes.  

2 Unexpected error condition or a 
functionality not working. 

3 A minor functionality is failing or 
behaves differently than expected. 

4 Cosmetic issue and no impact on the 
users. 

5 Least Serious Defects 

• Status of Error: - It is basically done to make sure that the 
errors or defects are closed and analyzed by more than one 
person specially the persons other than the testing team. 

• Root Cause of Errors: - The root cause of the defects is also 
recorded so as to make it correct and also for the future 
reference. The root cause can be any of the following:- 

 Unwritten assumptions 

 Fault state transactions 

 Missing logic 

 Conflicting requirements 

 Unable to handle missing data 

 Incorrect sequences 

 Incorrect defined data types 

 Faulty software requirements 

 Faulty interface design 

 Faulty detailed design 

The data collected for above metric is shown in the following 
table: - 

Table 2 Data Collected for defects 

Defect Logged for the month Sept-Oct 2018 

Error 
ID 

Date of 
Login 

Weighted 
Defects 

(Severity) 

Status 
of 

Error 
Root Cause of 

Errors 

D001 4-Sep-18 4 Closed 
Unwritten 

assumptions 

D002 4-Sep-18 2 Closed 
Fault state 

transactions 

D003 5-Sep-18 2 Closed Missing logic 

D004 6-Sep-18 3 Closed 
Conflicting 

requirements 

D005 7-Sep-18 2 Closed 
Unable to 

handle missing 
data 

D006 7-Sep-18 3 Closed 
Incorrect 

sequences 

D007 11-Sep-18 3 Closed 
Incorrect 

defined data 
type 

D008 11-Sep-18 3 Closed 
Faulty 

software 
requirements 

D009 12-Sep-18 3 Closed 
Faulty 

interface 
design 

D010 13-Sep-18 3 Closed 
Faulty detailed 

design 

D011 14-Sep-18 2 Closed Missing logic 

D012 19-Sep-18 3 Closed 
Conflicting 

requirements 

D013 20-Sep-18 2 Closed 
Unable to 

handle missing 
data 

D014 21-Sep-18 3 Closed 
Incorrect 

sequences 

D015 21-Sep-18 4 Closed 
Unwritten 

assumptions 

D016 21-Sep-18 3 Closed 
Incorrect 

sequences 

D017 21-Sep-18 4 Closed 
Unwritten 

assumptions 

D018 24-Sep-18 2 Closed 
Fault state 

transactions 

D019 24-Sep-18 2 Closed Missing logic 

D020 25-Sep-18 3 Closed 
Conflicting 

requirements 

D021 25-Sep-18 2 Closed 
Unable to 

handle missing 
data 

D022 26-Sep-18 3 Closed 
Incorrect 

sequences 

D023 28-Sep-18 3 Closed 
Incorrect 

defined data 
type 

D024 28-Sep-18 3 Closed 
Faulty detailed 

design 

D025 1-Oct-18 2 Closed Missing logic 

D026 3-Oct-18 3 Closed 
Conflicting 

requirements 

D027 4-Oct-18 2 Closed 
Unable to 

handle missing 
data 

D028 4-Oct-18 3 Closed 
Incorrect 

sequences 
 

 

 

The next table shows the defects list along with the Error ID 
Table 3 Defect Causes  

Root Cause Count of Error 
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Unwritten Assumptions 3 

Fault State Transactions 3 

Missing Logic 4 

Conflicting Requirements 4 

Unable to Handle Missing Data 4 

Incorrect Sequences 5 

Incorrect Defined Data Type 2 

Faulty Software Requirements 1 

Faulty Interface Design 1 

Faulty Detailed Design 2 
The following chart will show the defects and percentage of 

possible cause 

 

Figure 2.  Percentage of Defect causes in overall Life Cycle  

 
Figure 3.  Defect Count Measurement  

(ii) Total Defect Suppression Effectiveness Metric (TDSEM) 

This is a mandatory metric to be collected by all projects 
which can be conversion and development. These are 
requires to be collected for deliverables upon acceptance.  

 Objectives of the Measure: -The objective of this 
measure is to Increase Defect 
Suppression.Specifically, it answers the question -
 "What is the efficacy of the defect detection process currentl
y known before release?" Analysis of escaped defects feeds 
back into the checklists and standards of appropriate life 
cycle stages and technologies. 

 What to collect: - Data on the number of defects 
accepted for a deliverable detected prior and during 
acceptance for a deliverable. Defects for various severity 
levels need to be observed at the minimum for acceptance 
defects so that can gauge the productiveness of pre-delivery 
excellence guaranteed processes. 

For code deliverable, if the client has additionally performed 
code review, include the code review defects in acceptance 
defects; otherwise take only test defects into consideration. 
For analysis/design documents, consider the review defects 
found in the pre-delivery and acceptance phases. 

In case the development is done offshore, all errors reported 
by onsite team and client, which have been accepted may be 
measured separately, but both need to be included under 
acceptance errors. This is because this metric is intended to 
address all escaped defects after the delivery from the 
development site. 

In some projects, the contract and plan define that some 
kinds of testing will be carried out onsite only, by either the 
onsite team or the customer. For example, this could be due 
to integration with components not developed as part of the 
offsite project or machine access limitations from offsite. 
Errors detected in these activities should be reported back to 
offsite in the respective phase, and classified as pre-delivery 
defects. 

 When to collect: -This metric should be collected for 
every anticipated outcome as specified in the plan. In the 
acceptance phase, data will be collected during acceptance 
test of the deliverable. 

Factors affecting the Metric: -Some of the factors that affect 
the number of defects are: 

 Complexity 

 Skill Levels 

 Applicability and appropriateness of Standards 

 Efficiency of V & V process 

 Automation 

 Degree of adherence to process 

 Extent of conformity among the acceptance test plan 
Phase and baseline requisites. 

 

 

 

 

Metrics for Total Defect Suppression Effectiveness Metrics 
(TDSEM) is 

TDSEM *100 
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Where dp means total number of defects detected in 
detection phase and di means total number of defects injected 
in each phase. 

Implementation of Defect Phase Suppression Metric: 
This is a mandatory metric to be collected by all conversion 
and development projects and requires to be collected for 

deliverables upon acceptance. The objective of this measure 
is to Increase Defect Suppression. - This metric should be 

composed for every anticipated outcome as specified in the 
plan. In the acceptance phase, data will be collected during 
acceptance test of the deliverable. The data collected for the 

implementation of this metric contains the following: -  

 Injection Phase: - As the objective of this metric is 
to increase to defects so as to determine the 
effectiveness of the defect detection process, hence 
the defects are introduced in the injection phase. 
Injection phases will remain the usual SDLC phases 
such as: - 

 Requirement Analysis 

 High Level Design 

 Low Level Design 

 Construction and Unit Testing (UT) 

  System Testing (ST) 

 User Acceptance Testing (AT) 

 Detection Phase: - The following items will be used 
for calculation defect detection percentage. 

 Total Defect Suppression: - This will be 
the count of total defects contained in each 
phase. 

 Phase Suppression Effectiveness: - This 
will be the percentage of the defects 
detected in a particular phase in respect to 
the total defects injected in each phase. 

 Defect Density Mean: - The next step is to calculate 
the defect density mean for each phase. The Lower 
and Upper limits for defects are already specified. 
The mean is then compared with the specified limit 
and then the effectiveness of defect detection 
process is ascertained. 

The following table contains the data collected related to this 
metric:- 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Data Collection for Defect Density 

 

 

Injection 

Phase 

 

 

Detection Phase To

tal 

Er

ror

s 

Inj

ect

ed 

in 

Ea

ch 

Ph

ase 

TDSEM 
Requir

ement 

Analys

is 

Hig

h 

Lev

el 

Desi

gn 

Low 

Lev

el 

Desi

gn 

Con

stru

ctio

n & 

Unit 

Test

ing 

Sys

te

m 

Te

sti

ng 

Us

er 

Ac

cep

tan

ce 

Te

sti

ng 

Requiremen

t Analysis 
134 34 23 12 4 0 

20
7 

64.73% 

High Level 

Design 
NA 86 12 30 2 0 

13
0 

66.15% 

Low Level 

Design 
NA NA 190 20 14 10 

23
4 

81.19% 

Constructio

n & Unit 

Testing 

NA NA NA 65 14 6 85 76.47% 

System 

Testing 
NA NA NA NA 30 7 37 81.08% 

User 

Acceptance 

Testing 

NA NA NA NA NA 6 6 100% 

Total 

Errors 

Detected in 

all Phase 

134 120 225 127 64 29 
69
9 

  

The next table will focus on the Defect Density Mean and the 
lower and higher range  

Table 5 A glance at Defect Density Mean 

Platform SDLC Phase 

Defect 
Density 

(Defects/FP)     
 
   

Predicted 
Mean 

Defect Density  
(Defects/FP)  

 
90% Confidence Interval 

Lower 
Limit 

Upper Limit 

C# (1100-
2200 FP) 

Requirement 
Analysis 

0.0928 0.064 0.1216 

High Level Design 0.2146 0.148 0.2812 

Low Level Design 0.4031 0.278 0.5282 

Construction & 
Unit Testing 

0.0928 0.064 0.1216 

System Testing 0.0319 0.022 0.0418 

User Acceptance 
Testing 

0.0464 0.032 0.0608 

The next table also shows the defect density on a broader 
way: -  

 

 



   International Journal of Computer Sciences and Engineering                                     Vol. 7(5), May 2019, E-ISSN: 2347-2693 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        1863 

Table 6 Defect density mean of each phase with lower and upper limits 

 
 

The following chart shows the results of the above metric 
implementation based on the data collected. 

 

Figure 4.  Results of Implementation of Defect Suppression Metric  

III. CONCLUSIONS 

This discussion imitates the importance along with the 

advantage of usage of defect density throughout the method 

of package development. However defect density is treated 

insignificant as well as unessential by many software 

engineers, it‟s one amongst the finest approach to decide the 

area unit as that are extremely plagued by errors and bugs. 

A recognised business common place, Defect Density may 

be a metric that describes that, “The additional defects within 

the package, the inferior the standard is”. Consequently, it 

compute the defects that resides within the package and 

divided by the whole size of package or a module being 

measured. By the help of this metric, package engineers, 

testers, developers and additional can estimate the 

differentiate defects as well as testing effectiveness in 

software modules.  

Furthermore, they will conjointly measure the testing and the 

need of rework because of the discovered bugs and defects. 

Hereafter, by accomplishing defect density, one cannot 

solely compute or estimate the defects per developed 

package, however, also can guarantee its performance, 

quality, effectiveness and more. 
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