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Abstract— One of the important characteristics of the modern-day world is its high connectivity. While it has brought people 

closer and made lives easier, it has also paved way for harmful content, such as diseases, rumors, computer viruses, etc., to 

flow easily and spread even quicker. Therefore, finding the source of such unwanted diffusion processes becomes critical to 

mitigate the damages and avoid future threats. Consequently, infection source identification in complex networks has become 

an important problem with wide range of effective and meaningful applications. Researchers, over the years, have produced 

elegant and efficient solutions for the same. The main aim of this paper is to study the factors affecting locating a source of 

infection. This study largely focuses on four such factors: topology, graph density, infection probability and infection size. For 

performance analysis, three well known state-of-art source identification techniques, i.e., Dynamic Age (DA), Reverse 

Infection (RI) and Minimum Description Length (MDL), are employed. Largescale and extensive experiments conducted on 

various datasets indicate that all the four factors play critical roles in infection source identification, irrespective of the source 

identification technique employed. 
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I.  INTRODUCTION  

 

The modern-day world is characterized by its high 

connectivity. Be it rapid urbanization, where people live in 

tightly knit societies, emergence of social networks where 

any person could connect with any other person, or 

technologies like computer networks or power-grid 

networks, connections are multi-dimensional and present 

everywhere. While this connectivity is highly desired as well 

as required, it has its own shadowy patches with the potential 

of great harm. One such unwanted scenario of such high 

connectivity is the diffusion or the spreading of harmful 

content, generally referred to as infection. For example, a 

disease breaking in a densely populated area could spread 

easily and do so at the speed of knots, resulting in human 

casualties (Zika Virus, Ebola Virus) [1,2]. Similarly, a rumor 

or false news diffusing through online social networks, like 

Facebook and Twitter, could potentially have drastic effects 

on human societies [3,4,5]. Besides this, a virus or a 

malicious program propagating through computer networks 

could end up destroying sensitive data and, thereby, 

compromising security [6,7,8]. Therefore, to mitigate the 

harm caused by such diffusion processes and avoiding them 

in future, locating their sources becomes essential. This is  

 

 

where the study of infection source identification comes into 

picture. 

Given the importance of infection
1

source identification 

problem and its wide array of essential applications, 

researchers over the years have extensively studied it. Shah 

and Zaman, with their seminal work in the problem domain, 

studied infection source identification in tree-like networks 

under Susceptible-Infected (SI) model [9,10,11]. Following 

this, researchers approached the problem under similar 

conditions [12,13,14]. Afterwards, the problem was 

expanded and studied under more rigorous and testing 

conditions, i.e., under Susceptible-Infected-Recovered (SIR) 

and Susceptible-Infected-Susceptible (SIS) models 

[10,11,15,16,17]. Later on, researchers studied the problem 

in general graph networks by easing the constraints of tree-

like networks [18,19,20,21]. 

 

This paper analyzes various graph factors and their impact on 

infection source identification. Mainly, four such factors, i.e., 

graph topology, density, infection probability and infection 

size, are considered. A brief overview of these factors will be 

presented in Section IV. The main aim of this paper is to 

shed light over the factors playing key role in locating the 

                                                           
1
 An infection could be a rumor, a computer virus, a disease, etc.  
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source of infection, which, in turn, would help researchers 

choose or develop proper techniques under different 

prevailing conditions, thereby, approaching the problem with 

prior knowledge. For the same, both real world (Facebook 

and US Power Grid (USPG)) and synthetic networks (Erdos-

Renyi or ER-random and k-regular) are used, and classical 

Susceptible-Infected (SI) model (both homogeneous and 

heterogeneous) is employed to simulate infection diffusion 

over networks [22,23,24,25]. For performance analysis, three 

well-known state-of-art source identification techniques, i.e., 

Dynamic Age (DA), Reverse Infection (RI) and Minimum 

Description Length (MDL) are implemented in this paper 

[17,18,20,21]. Therefore, besides analyzing the impact the 

various graph factors, comparison of the performance of 

these methods are performed in various scenarios. The 

reason to choose these three techniques lies in the fact that all 

three techniques use contrasting approaches. While RI is 

Jordan-based, both DA and MDL are eigen-based, where DA 

works with eigen-vectors corresponding to largest eigen-

value and MDL works with eigen-vectors corresponding to 

the smallest. Besides this, in addition to infected nodes in a 

graph, MDL utilizes the information provided by non-

infected nodes as well. These methods will be discussed in 

detail in Section V.     

 

The effect of topology is analysed on four datasets, i.e., ER-

random, 4-regular, Facebook and US Power Grid (USPG), 

under heterogeneous SI model [22,23,24,25]. The results 

indicate that infection source identification is topology-

dependent with different methods producing topology-

specific results. Furthermore, it is observed that RI produces 

best results on ER-random graph and DA on Facebook. The 

analysis further shows that it is hard to detect infection 

sources on US Power Grid, a sparse graph with a very large 

diameter. Afterwards, analysis of the effect of graph density 

on source identification is performed on four ER-random and 

four k-regular graphs with different density. The results 

indicate that it is easier to find sources of infection if the 

underlying graph is dense as compared to sparse. Then, the 

third factor, i.e., the probability with which infection spreads 

across a network, is examined under homogeneous SI model 

on ER-random and Facebook networks, and it is found that 

higher infection probability leads to easier source detection. 

As for demonstrating the impact of infection size, two 

topologies, i.e., ER-random (with different properties) and 

Facebook are picked. The experimental results show that 

when the infection size is smaller, the source identification 

becomes easier. However, it is extremely hard to find 

infection sources when infection covers most of the 

underlying graph.   

 

The contributions of this paper are three-fold: 

1. A large-scale analysis of infection source identification 

is performed on different types of graphs. 

2. Impact of various factors (topology, graph density, 

infection probability, infection size) on source 

identification is thoroughly examined. 

3. The performance of three state-of-the-art source 

identification techniques, one Jordan-center based and 

two eigen based, is analyzed with respect to different 

factors on a multitude of graphs.  

 

The rest of the paper is organized as follows. Section II 

provides a comprehensive literature on infection source 

identification problem. Section III presents a brief, technical 

overview of the source identification problem and Section IV 

explains various factors affecting source identification used 

in this study. In Section V, all the three source identification 

techniques are fully explained with technical aspects of their 

source estimation. Section VI presents a complete 

experimental layout and all the relevant aspects, i.e., 

experimental framework, theoretical description of SI model, 

datasets used, general experimental framework and 

evaluation measures used in this study. Results obtained and 

the relevant discussions can be found in Section VII and 

finally Section VIII provides a brief conclusion of this study 

and possible future directions.  

 

II. RELATED WORK  

 

Given its wide range of effective and important applications, 

infection source identification has gained a substantial 

amount of attention over the past decade. Early on, the 

problem was studied in its most ideal form under SI model 

while assuming the underlying topology is tree-like 

networks, and started off with the original work of Shah and 

Zaman [9]. They introduced the concept of rumor centrality 

of a node u in graph which is defined as the number of 

unique diffusion paths emanating from u. The node with the 

highest rumor centrality is called the rumor center and is 

considered to be the source. Later on, Shah and Zaman 

extended the concept of rumor centrality for locating the 

source of infection in general graphs by using BFS trees as a 

representation of the original graphs. Other works followed 

suit and studied the problem under the similar assumptions, 

i.e., the underlying graph topology is tree-like and infection 

spreads under SI model [10,11,12,13,14]. However, with SI 

model we get complete observation of infection graphs, i.e., 

we can easily tell which nodes are infected and which or not, 

but in real-world complete observations are hard to get. 

Therefore, researchers tackled the source identification 

problem under SIR (Susceptible-Infected-Recovered) and SIS 

(Susceptible-Infected-Susceptible) models, i.e., with partial 

observations [10,11]. Reference [17] proposed a sample 

path-based approach to identify infection source in tree 

graphs under SIR model and proved that the source 

associated with the optimal sample path is the Jordan center. 

Later on, Lou, et al., studied the sample path-based approach 

under SI and SIS models of infection and came to the same 
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conclusion [13,15]. Moving away from trees and on to 

generic graphs, to find the infection source, researchers 

relaxed the constraints of tree networks [18,19,20,21]. 

Reference [18] introduced the concept of dynamical age 

(DA) of a node inspired by its dynamical significance [26]. 

DA computes the amount of reduction in the largest 

eigenvalue of adjacent matrix, corresponding to a graph, after 

a node is removed. The node with the largest reduction is 

considered to be the source.  Furthermore, researchers 

introduced the concept of minimum description length 

(MDL) for source identification [20,21]. They first compute 

the Laplacian matrix L corresponding to the graph and then 

identify the eigenvector corresponding to the smallest 

eigenvalue of L. A node with highest score in this 

eigenvector is considered to be the source. Reference [27] 

proposed K-Center to identify multiple sources of infection 

and works much like K-Means Distance heuristic. Picking 

the K initial centroids at random (where K is the number of 

sources), it partitions the graph into K partitions using 

Voronoi partitioning and updates the centers in each partition 

using effective distance [28,29]. When the convergence is 

reached, the centers in each partition are considered as 

sources. Furthermore, Label Propagation based Source 

Identification (LPSI) exploits the concept of source 

prominence to find the source using label propagation 

mechanism much like a Markov chain process [30]. 

Reference [31] studied the problem of multiple source 

detection under heterogeneous SIR model. To this end, they 

introduced the concept of Jordan cover - a set of nodes which 

covers all the observable infected nodes within minimum 

radius. This Jordan cover is considered to be the set of 

infection sources.  

 

Infection source identification has also been studied under 

sensor-based observation. Sensors are special kind of nodes 

placed into a given network whose purpose is to provide 

information on their states (susceptible, infected or 

recovered), the infection direction and the time when they 

got infected. The advantage of using sensors is that they 

reduce the search for source to one specific part of the 

network. Pinto et al. provided a Gaussian method for single 

source estimation while assuming the infection propagation 

follows SI model in tree-like networks [32]. Later on, Louni 

and Subbalakshmi used high betweenness values of sensors 

to identify the bridges between communities in a network 

and showed that it was possible to reduce the number of 

sensors in a network and yet achieve better results [33]. In 

addition to this, Agaskar and Lu used Monte-Carlo method to 

identify sources in generic networks using sensors [34]. 

Reference [35] used Bayesian belief propagation model and 

Xie et al. employed moon-walk technique to identify sources 

under sensor observations [36].    

 

III. INFECTION SOURCE IDENTIFICATION PROBLEM 

 

Given an infection graph, , with unknown source 

, the goal is to estimate the source of infection, . For 

better accuracy, sometimes, researchers also make use of 

underlying graph, , where, besides infected nodes, 

non-infected nodes are utilized as well [20,21]. In addition to 

this, researchers also assume that infection probability or the 

time of infection is known, thereby, making it comparatively 

easier to locate the source of infection [27,37]. It is important 

to note that while under SIR and SIS models, only partial 

observations of infection are available, however, under SI 

model, nodes are distinguishable from infected to non-

infected. Therefore, having the prior knowledge of the 

underlying model of infection is crucial for determining the 

applicable source identification technique. 

 

IV. OVERVIEW OF THE FACTORS 

 

Since this paper deals with understanding and demonstrating 

the effects of graph topology, density, infection probability 

and size on infection source identification, it becomes 

pertinent to briefly discuss them at first. 

 

(a)                                          (b) 

 

                                                (c) 
Figure 1. Graphs with different topologies: (a) ER-random, (b) 2-

regular and (c) graph topology with scale-free property 

 

 Graph Topology: Infection may break in any type of 

network. It could be a real-world social network like 

Facebook where a person may start a rumor and with the 

help of friendship ties it diffuses through it. How a rumor 

may spread would depend on the type and the number of 

connections the user has with his/her friends and how, in 

turn, are they connected with other users. If a user doesn't 

have many active friends, the rumor may take time to spread 
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or may not catch at all. Therefore, this diffusion highly is 

governed by the scale-free property of a social network. Or, 

for example, in a human society, a human being with a 

contagious disease may spread it by being in contact with 

others. The spreading of a disease, therefore, would depend 

on the structure of the society. Therefore, the topology of a 

network over which an infection diffuses is imperative to the 

diffusion process itself.  Figure 1 shows graphs with different 

topologies. In Figure 1(a), there is an ER-random graph 

topology of 10 nodes, while in Figure 1(b), there is a 2-

regular graph topology of 10 nodes. Figure 1(c) shows a 

graph topology with scale-free property, prevalent in online 

social networks, like Facebook and Twitter. Node at the 

center in Figure 1(c) is more likely to easily diffuse content 

in the network compared to nodes at boundary.   

          (a)                   (b) 

 
Figure 2. Graphs with different densities: (a) a sparse graph and 

(b) a dense graph. 

 

  Graph Density: Graph density is defined as the ratio of the 

number of edges in a graph to the total possible edges which 

it could have. How connected a node is to other nodes in a 

network may determine its spreading power. If the 

underlying network is very sparse, the infection would in 

turn become sparse and might be hard to localize. On the 

other hand, if the underlying topology is dense, infection 

would find it easier to spread and if caught on time, might be 

easier to localize and quarantine. The general rule of an 

infection spreading process is that there is higher density of 

infected nodes closer to the source than infected nodes 

farther away from it [30]. Therefore, if the underlying graph 

is sparse to begin with, it essentially becomes a hard task to 

distinguish the source node from a non-source node. Figure 2 

shows two graphs with 10 nodes each. Due to the lesser 

number of edges, the graph in Figure 2(a) is comparatively 

sparser than the graph in Figure 2(b). 

 

Infection Probability: The infection probability is defined as 

the intensity of infection diffusion between any two given 

nodes. It can be understood as the strength of friendship ties 

between two users in a social network. The stronger this tie, 

the higher the chances of each other sharing one another's 

content. Therefore, in any given network where nodes are 

actively tied with one another, there are higher chances of 

infection to spread quickly and have a far reach. Figure 3 

shows a sample infection graph with node 5 as the source. 

The infection probability between node 5 and node 7 is 0.1 

(10%) which can be considered as low infection probability, 

meaning it will be hard for infection to spread from node 5 to 

node 7. On the other hand, the infection probability between 

node 5 and node 8 is 0.7 (70%), a high infection probability, 

meaning it will be easier for infection to diffuse from node 5 

to node 8.  

 

Infection Size: Infection size is defined in terms of the 

number of infected nodes in a given infection graph. 

Generally, the longer the time given to an infection to spread, 

the larger the infection size, assuming the infection 

probability stays constant. Furthermore, the size of an 

infection intuitively depends on graph density factor as well. 

Again, by referring to Figure 3, it can be seen that, here, the 

infection size is 6 nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  A sample graph of 9 nodes depicting infection of size 6. 

All the colored nodes are infected and nodes left uncolored are non-

infected. Red node (node 5) is the source of infection. The weights 

on the edges indicate infection probability.  

 

V. INFECTION SOURCE IDENTIFICATION METHODS 

 

This study analyzes the impact of various factors on infection 

source identification using three well known state-of-the-art 

techniques: Dynamic Age (DA), Reverse Infection (RI) and 

Minimum Description Length (MDL) [17,18,20,21]. 

DA exploits the idea of dynamic age of a node [18]. The 

dynamic age of any node  in an infection graph , 

where source is unknown, is defined as the absolute 

difference between the largest eigenvalue of  and the largest 

eigenvalue of  when node  is removed from . Any node 

 in  with the highest dynamic age is considered 

to be the source. Formally, 

                              (1) 

where  is largest eigenvalue of the adjacency matrix 

corresponding to the infection graph  and  is the 

largest eigenvalue when  is removed from . 

Originally used under SIR model, RI uses reverse infection 

strategy [17]. Each infected node sends its information to its 

neighbors and the one receiving the information of all the 
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infected nodes first is considered to the source. The ties are 

broken using closeness centrality [38,39]. The source 

estimated by RI is the Jordan center of the graph. However, 

instead of SIR, this study uses RI under SI model where the 

complete information of the infection status of all the nodes 

is given, as has been previously done in [40]. Therefore, 

source estimation using RI under SI model could be formally 

defined as, 

                                  (2)                                                  

MDL uses Laplacian matrix  corresponding to the 

underlying graph  and extracts the sub-matrix  

from  corresponding to the infection graph  

[20,21]. Then the node with the largest component of the 

eigenvector corresponding to the minimum eigenvalue of  

is considered to be the source. Mathematically, 

                                      (3) 

where  is the eigenvector corresponding to the smallest 

eigenvalue of  and  is u
th

 component of this vector. 

 

VI. RESEARCH METHODOLOGY 

 

In this section, a detailed outlay of the experimentations used 

in this study is provided. Firstly, a general three-module 

experimental framework is presented and discussed. 

Secondly, the theoretical foundation of SI infection model - 

model with which infection process is simulated in this study 

- is explained. Thirdly, a brief overview of the datasets used 

in experiments is provided. Besides this, general 

experimentation set-up and evaluation measures are 

discussed in detail. Finally, all the three state-of-the-art 

source estimation techniques, i.e., DA, MDL and RI, used to 

study the impact of various factors on source identification, 

are explored with all the technical aspects thoroughly 

explained.  

 

A. Experimental Framework 

The experimental framework of this study is composed of 

three modules: (a) Infection Graph Generation Module, (b) 

Infection Source Estimation Module and (c) Evaluation 

Module.  

 

 Infection Graph Generation Module: In this module, firstly, 

a node is generated randomly from an input graph . 

This node is considered as the actual source of infection, . 

Then together with , input graph is fed to SI model, which 

starts infection spreading process originating from  and 

produces an infection graph, . This infection graph 

serves as input to Infection Source Estimation Module. 

 

Infection Source Estimation Module: In this module, an 

infection graph is provided as input to a source identification 

technique. A source identification technique then produces a 

node as output which is most likely to be the source of 

infection. This node is referred to as estimated source,  and 

serves as one of the inputs to the Evaluation Module. 

 

Evaluation Module: This module takes input the infection 

graph and actual source s* from the Infection Graph 

Generation Module, and estimated source from the 

Evaluation Module. With the help of these inputs, this 

module evaluates the performance of source identification 

techniques by comparing  and  in the infection graph. 

 

Figure 4 provides an illustration of all the modules and their 

individual components with intra-modular and inter-modular 

connections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Three-module experimental framework used in this study. 

 

B. Infection Model (SI) 

Given a graph , where  is the set of nodes and  is 

the set of edges and an infection source , this study 

employs the classical SI (Susceptible-Infected) model to 

simulate the process of infection spreading on G [3,4]. In his 

Randomly pick a node 

Input Graph 

Evaluation  

Methods 

  Infection Graph Generation Module 

Evaluation 

Module Source Identification  

Techniques 

E  im     So         

Infection Source Estimation 

Module 

SI 

Model 

Actual Source (s*) 

Infection Graph 



   International Journal of Computer Sciences and Engineering                                     Vol. 7(5), May 2019, E-ISSN: 2347-2693 

© 2019, IJCSE All Rights Reserved                                                                                                                                        1796 

model, there are two possible states for any node: susceptible 

(S) or Infected (I). A node may get infected by either 

receiving infection from its adjacent infected neighbors or 

simply by being the source. When it gets infected, it stays 

infected forever, i.e., it cannot change its state. The non-

infected neighbors of an infected node are said to be 

susceptible to infection. In each time step (discrete in this 

study), each infected node tries to infect their susceptible 

neighbors with some probability , where  depends on the 

strength of infection. The stronger the infection probability  

between two nodes, the easier it is for infection to spread 

between them. In this study, two types of SI model are used, 

i.e., homogeneous and heterogeneous, depending on the 

factor to be analyzed. In homogeneous SI model, the 

infection probability is kept same across each edge in the 

graph. While in heterogeneous SI model, the infection 

probability varies across edges. In this study, when the 

infection model is heterogeneous SI, the infection 

propagation probability on each edge is uniformly distributed 

over (0,1) and it is assumed the infections are independent of 

each other [15,17,27,41]. If at any given time step t, a node w 

is susceptible to infection from any two of its neighbors, u 

and v, w gets infection with probability 

, where  and  are the 

infection probabilities (edge weights) between u and w, and v 

and w, respectively. This is illustrated in Figure 5. The 

infection is stopped when the desired number of nodes are 

infected (infection size), resulting in an infection graph 

, where  is the set of infected nodes,  is the set 

of edges between them and  is the actual source of 

infection. It is important to note that any source identification 

technique, used to identify the source in a given infection 

graph , does not have any information on the 

location of .  

 

Figure 5. A sample example . Nodes u and v are infected and both 

are trying to infected w with probabilities 0.2 and 0.8, respectively. 

Therefore, the overall probability with which u and v both try to 

infect w is given as p=1-(1-0.2)(1-0.8)=.84. 

 

C. Datasets 

For each category of factors, i.e., graph topology, density, 

infection probability and size, different types of graphs are 

used. For analyzing the effect of topology, two synthetic 

networks, i.e., Erdos-Renyi or ER-random graph and 4-

regular graph, and two real-world networks, i.e., Facebook 

and US Power Grid (USPG) [22,23,24,25]. For density, 

employ four ER-random and four k-regular graphs of four 

different types of densities are used. To analyze the behavior 

of source identification with respect to infection probability, 

one ER-random and Facebook is used and probability on 

graph edges is varied among {20%, 40%, 60%, 80%}.  As 

for infection size, again ER-random graph and Facebook 

networks are used and four different infection graph sizes for 

each are taken. Table 1 summarizes the types of graphs used 

in studying these factors. The detailed datasets statistics will 

be provided in subsequent sections. 

 

Table 1. Different types of graphs used in studying various 

factors. 
Graphs Used 

Factor k-

regular 

ER-

random 

Facebook USPG 

Topology ☒          ☒       ☒     ☒ 

Graph Density ☒          ☒       ☐     ☐ 

Infection Probability ☐          ☒       ☒     ☐ 

Infection Size ☐          ☒       ☒     ☐ 

 

D. General Experimental Set-up 

By employing the above defined SI model, infection 

spreading process is simulated on a given graph , 

where  is the number of nodes and  is the number of 

edges. For any given graph , a source  is picked at 

random, and the infection spreading process, beginning from 

, is simulated on . This process is repeated over 100 

independent runs while picking  randomly in each run. In 

each run, the infection process is continued until the desired 

number of nodes are infected. This results in 100 infection 

graphs,  for any given graph. Note that in 

each infection graph,  is unknown. All the returned results 

are then averaged over these 100 runs and reported. 

   

While this is a general experimental set-up and is applicable 

to all the analyses performed in this study, the type of SI 

model (homogeneous/heterogeneous) employed or the 

number of infected nodes (infection size) will depend on the 

type of factor being analyzed. Therefore, wherever 

necessary, factor-depended experimental parameters will be 

provided in the subsections of Section VII. 

 

E. Evaluation Measures 

To evaluate the performance of the source identification 

techniques used in this study (Section V), two traditional 

evaluation measures, i.e., average hop error and accuracy, are 

used.  

 

0.8 0.2 

u v 

w 
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       Average Hop Error: Given an estimated source  and the 

actual source , hop error, , is calculated as the minimum 

distance  between  and . Formally, . Since, 

in this study, 100 infection graphs are generated for any 

given graph, therefore, to calculate the average hop error 

(AHE), the average of hop errors, , between s* and s^, 

produced over all infection graphs, is taken.  

  

       Accuracy: Accuracy is defined as the number of 

correctly identified sources (i.e.  = 0) over all the infection 

graphs (100 in this study).  

   

VII. RESULTS AND DISCUSSIONS 

In this section, for each factor, factor-specific experiment 

outlay will be presented and the effects of each on infection 

source identification will be implored. 

A. Impact of Topology 

In order to understand the effect of topology on infection 

source identification, four different graphs are used - two 

synthetic, i.e., ER-random and 4-regular, and two real-world, 

i.e., Facebook and US Power Grid (USPG). The reason to 

pick these four graphs is embedded in varied characteristics 

of each and how each one of them is different from the other. 

The complete dataset statistics of each is given in Table 2. 

While the general experimental set-up is same as given in 

Section, here heterogeneous SI model is used and infection 

size is kept constant across all the topologies at 2-5%, i.e., 

infection spreading process is stopped when the 2-5% nodes 

of all the nodes are infected in any given topology. 

Afterwards, source identification techniques, defined in 

Section V, are employed on the resulting infection graphs. 

Upon investigating the results, it is found that source 

identification is highly topology dependent and, therefore, 

topology plays an important role in identifying the source of 

infection in a given graph. Figure 6 and Figure 7 show the 

average hop error and accuracy, respectively, as produced by 

different source identification techniques on various 

topologies. The results are discussed topology-wise.  

Table 2. Dataset statistics of networks used to study impact of topology and 

infection size on source identification.  

Topology Nodes Edges Avg. deg. Density  

4-Regular  5,000 10,000     4.0    0.001 

Random  5,000 24,943    9.98    0.002 

Facebook  4,039 88,234   43.69    0.011 

USPG  4,941  6,594    2.67   0.0005 

1) 4-Regular: Figure 6(a) shows average hop error as 

produced by various source identification techniques on 4-

Regular graph. It is understood that RI performs the best  

 

Figure 6: Average hop error (AHE) produced by various infection 

source identification (ISI) methods across different topologies: (a) 

4-regular, (b) ER-random, (c) Facebook and (d) US Power Grid.  

Figure 7: Accuracy produced by various infection source 

identification (ISI) methods across different topologies: (a) 4-

regular, (b) ER-random, (c) Facebook and (d) US Power Grid. 
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amongst the three methods with average hop error of 0.34, 

which means it, generally, estimates a source less than half a 

hop away from the actual source. RI is followed by DA with 

average hop error of 0.86 and MDL remains the worst 

performing source estimation method estimating a source 

1.34 hops away from the actual. This is further supplemented 

by the accuracy of finding the source as shown in Figure 

7(a). RI, with 66% accuracy, has the best accuracy among 

the employed methods, followed by DA with 41% and MDL 

with 20%. Therefore, here it can be concluded that on 4-

Regular graph RI performs the best and has a good accuracy 

and average hop error.  

 

2) ER-Random: As, can be seen from Figure 6(b) and 

Figure 7(b), both RI and DA work even better on ER-

Random graph for both average hop error and accuracy. With 

the same infection size, RI generally finds a source within 

0.05 hops with staggering accuracy of 95%, a clear 

improvement when compared against 4-Regular graph. DA 

as well improves its source identification with accuracy of 

60% and average hop error of 0.44, again a clear 

improvement over 4-Regular. While RI and DA both 

improve their source identification on ER-Random graph, 

MDL performs worse when compared against its results on 

4-Regular graph, with only 3% accuracy (Figure 7(b)) and 

2.53 average hop error (Figure 6(b)). 

 

3) Facebook: While it was seen that RI and DA had 

improved performance on ER-Random graph, both equally 

take a dip when analyzed under Facebook topology. RI, 

whose accuracy was 95% in ER-Random graph, comes up 

with only 2% accuracy on Facebook (Figure 7(c)) and even 

worse average hop error of 1.09 (Figure 6(c)). DA, for a 

change, performs better than RI on Facebook, but when 

compared against its performance on 4-regular and ER-

random graphs, it comes off worse with only 10% accuracy 

(Figure 7(c)) and 1.01 average hop error (Figure 6(c)). MDL 

continues to be the worst performing source identification 

method on Facebook as well. However, it has a better 

average hop error of 1.77 (Figure 6(c)) than was found in 

ER-Random graph.  

 

4) US Power Grid (USPG): US Power Grid being a very 

sparse network, has a telling effect on all the three source 

identification methods. DA and RI, which produced good 

results on ER-random and 4-regular graphs, come up with 

meager 2% and 3% accuracy to locate a source as can be 

observed in Figure 7(d), respectively. Interestingly, MDL 

turns out to be the best for USPG with 4% accuracy. As for 

average hop error, RI estimates source closest to the actual 

source with 3.33 average hop error, followed by MDL and 

DA with 4.31 and 4.39 average hop error, respectively, as 

can be observed from Figure 6(d).  

To supplement and summarize what is discussed above, 

Table 3 shows the best and worst performing source 

identification methods across the four employed topologies 

on average hop error and accuracy. It can be easily seen 

whil  DA p  fo m  b    on F   book, i   p  fo m n   i n’  

as good on other topologies. While MDL has the best 

accuracy on USPG network, RI, on the same network, 

produces estimated sources which are closest to the actual 

source than any other method. Besides this, Figure 8 shows 

the performance (average hop error in Figure 8(a) and 

accuracy in Figure 8(b)) of individual methods on different 

topologies. It is quite clear from this figure that RI performs 

better on synthetic networks, while its performance takes a 

dip in real-world networks, while MDL, somewhat, tends to 

work better on real-world networks. DA works best for 

Facebook topology, and therefore, should be more applicable 

to find sources in graphs with similar topology than any other 

comparing methods. 

                  (a)  

              (b) 

Figure 8. Performance of various source identification techniques 

on different topologies: (a) average hop error and (b) accuracy. 

Therefore, from the discussion above, it can be understood 
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the easiest source identification taking place in ER-Random 

graph, followed by 4-regular, Facebook and US Power Grid. 

RI works the best for ER-Random graph and 4-regular, while 

DA tends to perform better on Facebook. For a very sparse 

graph like US Power Grid, the detection becomes very hard, 

irrespective of the method used. Therefore, from this section 

it is established that source identification is topology-

dependent and different kinds of source identification 

methods work best for different topologies. 

Table 3. Best performing methods on average hop error (AHE) and accuracy 

(Acc.) across various topologies. 

B. Impact of Graph Density 

In the above subsection, it is understood that it is very hard to 

detect a source on US Power Grid which is a very sparse 

graph. Therefore, to analyze the impact of graph density on 

infection source identification, four ER-random graphs with 

different densities are picked, i.e., Very Sparse (VS), Sparse 

(S), Dense (D) and Very Dense (VD). Besides ER-random, 

the impact of graph density is also analysed using four 

regular graphs of different densities: 3-regular, 5-regular, 7-

regular and 10-regular. The statistics of these graphs have 

been presented in Table 4. Again, heterogeneous SI model is 

used and the infection graph size for each of the four ER-

random and k-regular graphs is kept at the minimum of 5%. 

This, on an average, yields 50 nodes, 100 nodes, 150 nodes 

and 400 nodes for ER-random very sparse (VS), sparse (S), 

dense (D) and very dense (VD) graphs, respectively. For 

regular graphs, average infected nodes produced are 60 

nodes, 75 nodes, 85 nodes and 140 nodes for 3-regular, 5-

regular, 7-regular and 10-regular, respectively. 

Table 4. Dataset statistics of various networks used to study the impact of 

graph density on source identification. 

Topology Nodes Edges Avg. degree Density  

3-Regular  1,000  1,500        3.0   0.003 

5-Regular  1,000  2,500        5.0   0.005 

7-Regular  1,000  3,500        7.0   0.007 

10-Regular  1,000  5,000       10.0    0.01 

Random (VS)  1,000  2,526       5.05   0.005 

Random (S)  1,000  3,570       7.14   0.007 

Random (D)  1,000 10,050       20.1    0.02 

Random (VD)  1,000 25,037       50.1    0.05 

The results indicate that graph density plays an important 

role in the performance of source identification methods. It is 

seen that, irrespective of the technique used, as the graph 

density is increased, source identification becomes easier. 

That is to say that source identification is easier on denser 

graphs than on comparatively lesser dense graphs. Figure 9 

shows average hop error (Figure 9(a)) and accuracy (Figure 

9(b)) of various source identification methods on ER-random 

graphs of different densities. As can be observed from this 

Figure 9(a), the average hop error produced by all the 

techniques is larger on sparse infection graphs as compared 

to the dense graphs. Average hop error is worst in ER-

random very sparse (VS) graph and the best in very dense 

(VD). It is important to note that this observation holds true 

even when there are more infected nodes in denser graphs 

than in comparatively sparser graphs. This finding is further 

supplemented by noticing the accuracy of source 

identification techniques in Figure 9(b). Both MDL and RI 

show better performance as the graph density increases, 

incredibly, irrespective of the infection size. This shows the 

stability of these methods. While DA improves as well with 

the increase in graph density, however, it experiences 

comparatively lower performance in very dense (VD) graph 

as the number of nodes increase. Having said that, DA still 

performs better on very dense (VD) ER-random graph when 

compared against its performance on sparse (S) and very 

sparse (VS) graphs. As was seen in the precious subsection, 

RI continues to outperform every other state-of-the-art 

source identification technique on ER-random graph, finding 

 

Figure 9. Performance evaluation of different infection source 

identification (ISI) methods, DA, RI and MDL, on ER-random 

graph having different densities, i.e., Very Sparse (VS), Sparse (S), 
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Dense (D) and Very Dense (VD) in terms of (a) average hop error 

and (b) accuracy. 

the source with 100% accuracy on dense (D) and very dense 

(VD) graphs, irrespective of the infection size or graph 

density.  

A similar trend can be observed on four k-regular with 

different densities. All the three employed techniques, i.e., 

DA, RI and MDL, find it relatively easier locate a source 

under 10-regular, a very dense k-regular graph, than under 3-

regular, a very sparse k-regular graph. Figure 10 shows 

average hop error (Figure 10(a)) and accuracy (Figure 10(b)) 

of various source identification methods on k-regular graphs 

of different densities. As can be seen from this figure, both 

the average hop error and detecting accuracy of all the three 

methods are worst on 3-regular graph, but all three show 

continuous improvement on higher density k-regular graphs, 

i.e., 5, 7 and 10-regular. Besides this, as was seen in previous  

subsection, RI continues to be the best source identification 

method on k-regular graphs, followed by DA and MDL. 

Figure 10. Performance evaluation of different infection source 

identification (ISI) methods, DA, RI and MDL, on k-regular graph 

with k=3,5,7 and 10 in terms of (a) average hop error and (b) 

accuracy. 

C. Impact of Infection Probability 

Since, how an infection would spread across a given network 

would depend on the infection probability between any two 

given nodes, the third factor analyzed in context to infection 

source identification is the infection probability. For the 

same, Facebook graph (used in Section VII(A)) an ER-

random graph of 500 nodes and 1301 edges are used. Table 5 

summarizes the statistics of the ER-random graph used in 

this part of study. The statistics of Facebook network can be 

found in Table 2. For this analysis, however, instead of 

heterogeneous SI model, homogeneous SI model, defined in 

Section VI(B), is employed. Furthermore, four different 

infection probabilities, 20%, 40%, 60% and 80% are used to 

simulate infection diffusion. Therefore, 100 infection graphs 

are generated for any given a graph (e.g., ER-Random) and 

infection probability (e.g., 40%), i.e., 4 sets of 100 infection 

graphs for each network. The infection size is kept between 

100 and 150 nodes for ER-random graph and between 100 

and 200 nodes for Facebook (due to higher density), and the 

performance of the source identification methods is analyzed.  
 

Table 5. Dataset statistics of ER-random graph used to study the impact of 

infection probability on source identification. 

 
Topology Nodes Edges Avg. deg. Density  

ER-random   500  1,301     5.20    0.01 

 

Figure 11. Performance evaluation of different infection source 

identification (ISI) methods, DA, RI and MDL, on ER-random 

graph with different infection probabilities, p=0.2 (20%), 0.4 

(40%), 0.6 (60%) and 0.8 (80%) in terms of (a) average hop error 

and (b) accuracy. 

 

The results indicate that source identification is highly 

dependent on the infection probability of the underlying 

graph. Figure 11 shows the average hop error (Figure 11(a)) 

and accuracy (Figure 11(b)) as produced by different source 
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identification techniques with different infection probabilities 

on ER-random graph. Each of the methods, i.e., DA, RI and 

MDL, perform the worst when the infection probability is the 

least, i.e., 20%. However, when the infection probability is 

increased, the performance of each consistently gets better. 

For example, from Figure 11(a) it can been seen that at 20% 

infection probability, the average hop error produced by RI is 

1.47. However, at 80% infection probability, the average hop 

error becomes 0.12, a drastic improvement. Accuracy (Figure 

11(b)), generally, as well tends to improve for both RI and 

DA. MDL performs the worst as far as the accuracy is 

concerned and doesn't show much improvement there as the 

infection probability increases. 

 

A similar pattern could again be observed on Facebook. 

Figure 12 shows the average hop error (Figure 12(a)) and 

accuracy (Figure 12(b)) as produced by different source 

identification techniques with different infection probabilities 

on Facebook graph. As far as average hop error is concerned, 

as indicated in Figure 12(a), DA and RI perform almost in 

equal terms, while MDL continues to perform worse than the 

former two, as shown in fig. However, the improvement in 

all the three methods as the infection probability increases 

can be observed. Barring MDL, whose accuracy is almost 

negligible, both DA and RI improve their performance of 

accurately finding the infection source as the infection 

probability increases from 20% to 80% as shown in Figure 

12(b).      

Figure 12. Performance evaluation of different infection source 

identification (ISI) methods, DA, RI and MDL, on Facebook graph 

with different infection probabilities, p=0.2 (20%), 0.4 (40%), 0.6 

(60%) and 0.8 (80%) in terms of (a) average hop error and (b) 

accuracy. 

From the above discussion, it can be understood that high 

infection probability tends to make it easier to locate a 

source, irrespective of the method used. The reason for the 

same comes down to the density of the infection graph. 

When the infection probability is low, it is intuitive to think 

that it gets hard to spread an infection. This very fact makes 

tends to generate infection graphs which very sparsely 

connected, i.e., the diameter of such graphs tends to be 

relatively larger, consequently, producing graphs with longer 

average path distances. This is similar to spreading infection 

on a graph like US Power Grid where it was hard to locate an 

infection source as was seen in Section. On the other hand, 

when the infection probability is high, it gets easier to spread 

infection, thereby, the chances of denser infection graphs 

increase. Therefore, in a nutshell, it can be argued that low 

infection probability translates to generating sparse infection 

graphs and high infection probability translates to generating 

dense infection graphs. And, as was seen in Section, it is 

easier to locate a source on dense graphs than sparse ones. 

 

D. Impact of Infection Size 

The fourth and the last factor analyzed in this study in 

context to infection source identification is infection size. For 

the same, ER-random and Facebook graphs are used, as were 

used in Section VII(A), whose statistics can be found in 

Table 2. Besides the general experimental set-up (Section), 

the model of infection used is heterogeneous SI. For each 

network, again four sets of 100 infection graphs of four 

different sizes 2-5%, 20-25%, 40-60%  n  ≥80% are 

generated. Figure 13 and Figure 14 show the performance of 

various source identification techniques on ER-random and 

Facebook. 

 

As can be seen from Figure 13 and Figure 14, source 

identification is greatly dependent on infection size, 

irrespective of the topology. When the infection size is 

smaller, all the three techniques tend to find sources at 

relatively closer distances. However, as the infection size 

increases, it becomes hard to detect a source as average hop 

error drastically increases and accuracy decreases. For 

example, on ER-random graph, RI, the best performing 

source identification method on ER-random graphs (Section 

VII(A)), estimates sources 0.05 hops away from the actual 

source on average when the infection size is 2-5% as can be 

observed from Figure 13(a). However, when the infection 

size becomes ≥ 80% of  h  o igin l g  ph, i   p  fo m n   

gets reduced to a whopping 3.73 average hop error, which is 

even worse than DA (3.57). Accuracy of finding a source, as 

well, takes a dip, as can be seen in Figure 13(b). At 2-5% 

infection size, RI has an accuracy of 95%, but as the 

infection size grows, the accuracy of RI comes down to 0% 

when the infection size is ≥80%. This reduction in 
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performance, as the infection size increases, is reported by 

MDL as well as DA. On Facebook (Figure 14), a similar 

pattern can be seen, further testifying the fact that increasing 

infection sizes corresponds to worse source detection, 

regardless of the topology or the method employed. 

From the discussion above, it can be concluded that if 

infection in a graph is somewhat localized, i.e., considerably 

smaller in size than the underlying graph, it is easier to 

distinguish a source node from non-source. As infection 

spreads and engulfs most of the underlying graph, the 

detection becomes almost impossible. 

Figure 13. Performance evaluation of different infection source 

identification (ISI) methods, DA, RI and MDL, on ER-random 

graph with different infection sizes, s=2-5%, 20%, 40% and ≥80% 

in terms of (a) average hop error and (b) accuracy. 

VIII. CONCLUSION AND FUTURE WORK 

This paper aimed to analyse and understand the impact of 

various graph factors, i.e., graph topology, density, infection 

probability and infection size, on infection source 

identification, which, in turn, would prove helpful to 

researchers choose or develop proper techniques under 

different prevailing conditions. For the same, various 

networks were used and for analyses different types of 

source identification techniques were employed. Therefore, 

besides analyzing the impact the various graph factors, 

comparison of the performance of these methods in various 

scenarios were performed. The results showed that infection 

source identification is topology-dependent with different 

methods producing topology-specific results. Furthermore, it 

was observed that RI produced best results on ER-random 

graph and DA on Facebook. This analysis further went onto 

indicate that it is hard to detect infection sources on US 

Power Grid, a sparse graph with a very large diameter. 

Afterwards, analysis of the effect of graph density on source 

identification indicated that it is easier to find sources of 

infection if the underlying graph is dense as compared to 

sparse. Then, the third factor, i.e., infection probability, 

examined under homogeneous SI model showed that higher 

infection probability leads to easier source detection. 

Furthermore, analysing the impact of infection size 

demonstrated that when the infection size is smaller, the 

source identification becomes easier. However, it is 

extremely hard to find infection sources when infection 

covers most of the underlying graph. In future, researchers 

may take this work further and provide a theoretical 

explanation of why such an impact of the analysed factors is 

observed. Furthermore, based on the evidences, researchers 

maybe able to develop a general framework which, upon 

inspecting the type of graph under consideration, may be able 

to identify the technique best suited to identify an infection 

source in that graph.  

 

Figure 14: Performance evaluation of different ISI methods DA, RI 

and MDL on Facebook graph with different infection size s=2-5%, 

20%, 40% and ≥80% in terms of (a) average hop error and (b) 

accuracy. 
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