

 © 2022, IJCSE All Rights Reserved 13

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 10, Issue.1, January 2022 E-ISSN: 2347-2693

Simulation and Testing of Deterministic Finite Automata Machine

Kuldeep B. Vayadande

1*
, Parth Sheth

2
, Arvind Shelke

3
, Vaishnavi Patil

4
, Srushti Shevate

5
,

Chinmayee Sawakare
6

1,2,3,4,5,6Dept. of Artificial Intelligence and Data Science, Vishwakarma Institute of Technology, Pune, Maharashtra, India.

*Corresponding Author: kuldeep.vayadande1@vit.edu

DOI: https://doi.org/10.26438/ijcse/v10i1.1317 | Available online at: www.ijcseonline.org

Received: 22/Jan/2022, Accepted: 24/Jan/2022, Published: 31/Jan/2022

Abstract— This article describes a JavaScript and GUI-based visualization tool for constructing, debugging, and testing

DFA that can be utilized in the automata theory classroom. In automata, DFA is an important problem. What DFA is, DFA

refers to deterministic finite automata. Deterministic refers to the uniqueness of the computation. If the machine reads an

input string one symbol at a time, the finite automata are termed deterministic finite automata. In DFA, there is only one

path from the current state to the next state for specific input. The null move is not accepted by DFA, which means it

cannot change the state without any input character. Multiple final states can be found in DFA. Like other automata

visualization tools, users can edit and construct DFA by adding states and transitions and can observe transition execution

by providing string input for testing. This DFA simulator allows users to construct DFA by adding states, marking any

state as a final state, and also checking for string if it is valid for constructed DFA or not.

Keywords— HTML, CSS, jQuery, JavaScript, Bootstrap CSS, finite automata, visualization, simulator

I. INTRODUCTION

Many of the concepts and arguments covered in an

automata theory course may be viewed and interacted with

easily. The project includes drawing and simulating

theoretical DFAs and showing the derivations and proving

if the strings are accepted by the given DFA.

Construction type proofs, in which one representation of a

language is changed to another representation, are among

the proofs. In addition to the theoretical representation that

is typically offered in textbooks, visualization gives pupils

an alternative viewpoint [9][10]. Interaction also allows

students to explore concepts and proofs while also

receiving feedback. Studies in the field of algorithms

demonstrate that pupils require a different visual

representation with which to interact. It's usual for

automata theory textbooks to start with the simplest

principles and then skip through the more difficult

ones.[8][11]

It becomes quite theoretical at this point. As a result, in the

automata theory course, we developed a mechanism that

allows us to switch the course from a lecture-only style

with written exercises to a more interactive lecture format

with interactive lab and homework activities. In this paper

we describe a visualization tool for designing, debugging,

and testing DFA which will allow users to construct DFA

by adding states, marking any state as a final state, and also

checking for string if it is valid for constructed DFA or not.

II. LITERATURE REVIEW

Morazán MT, Schappel JM, Mahashabde S [1] shows how

to use FSM, a domain-specific language for automata

theory, to create a visualization tool for constructing and

debugging deterministic finite-state machines. Users can

edit machines and view their operation, just like with

previous automata visualization tools. The user is neither

burdened nor distracted by rendering a machine as a graph,

as is the case with other automata visualization tools.

Susan H. Rodger and Anna O. Bilska [2] provide a

collection of new and improved tools for learning about

formal languages and automata theory. The new Java-

based tools include JFLAP for creating and simulating

finite automata, pushdown automata, and Turing machines;

Parser for parsing restricted and unrestricted grammars and

converting context-free grammars to Chomsky Normal

Form; and Pump Lemma for proving specific languages

are not regular

.

Raffelt, Harald & Steffen, Bernhard & Tiziana, Margaria

[4] describe dynamic testing, a method for routinely testing

black-box systems using automata learning with absolutely

no precondition. Our method analyses the system under

test SUT sequentially based on interface descriptions while

also extrapolating a behavioral model. This information is

then used to guide the exploring process. Thanks to the

applied learning strategy, our method is excellent in that

the extrapolated models are the most concise in

consistently conveying all of the knowledge gathered

during the exploration.

 International Journal of Computer Sciences and Engineering Vol.10(1), Jan 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 14

Mr. Patil and Poornima Naik [5] propose a DFA parser for

HQL/SOQL token processing. For the numerous

HQL/SOQL tokens that we discovered, we generated a

state table and state diagrams. State information is stored in

a permanent database management system as a technique

to improve efficiency and flexibility. Only a few

commands are available in HQL/SOQL at the moment, but

more will be introduced soon.

Ficara, Domenico & Procissi, Gregorio & Vitucci, Fabio &

Antichi, Gianni & Pietro, Andrea [6] proposed that Delta

Finite Automata (FA) is a new representation for

deterministic finite automata (orthogonal to prior

solutions). It drastically reduces states and transitions and

only requires one transition per character, allowing for

quick matching. In addition, a unique state encoding

approach is created, and the entire programme is tested in

the packet categorization domain.

Kuldeep Vayadande, Ritesh Pokarne, Mahalaxmi

Phaldesai, Tanushri Bhuruk, Tanmai Patil, Prachi

Kumar[9] Demonstrate the use of experimental computer

simulations and propose large-scale extensions using novel

experimental testing. We used the game to study the

complexities of symbio poiesis and evo-devo, as well as

the abstract hypothesis: that similarities exist at many

levels, including cells, animals, natural communities, and

so on, as a result of comparable interactions between both

as a health-based game.

K. B. Vayadande, N. D. Karande, and S. Yadav[10]

describes many strategies for identifying moving objects

against a static or dynamic background. The issue with

dynamic backgrounds is that if they are not static, correct

foreground objects cannot be detected accurately (precision

and recall). The majority of the work reviewed in this

paper focuses on object detection in a static environment.

Varad Ingale, Kuldeep Vayadande, Vivek Verma,

Abhishek Yeole, Sahil Zawar, Zoya Jamadar [11] this

papers goal is to the operation of a lexical analyzer in the

most direct way in order to provide a thorough

comprehension of the lexical phase of the analyser.

Kuldeep Vayadande, Harshwardhan More, Omkar More,

Shubham Mulay, Atharva Pathak [12] says that because of

the widespread use of computer learning games in

institutions, game development has dropped significantly.

Playing computer games increases student engagement.

For example, many studies have demonstrated that using

versions of computer games shows improved focus,

stimulates students' motivation to study, hence the Pacman

game is presented. Such games have been demonstrated to

be effective in the classroom through experimental

research.

III. METHODOLOGY

The project consists of three major steps first being

constructing DFA using tools built using JavaScript to

describe transitions by creating states and assigning input

for each transition altogether forming a functional DFA.

The second step is to connect the transitions by connectors

describing transition status regarding input value and

connected state node. And the third step is to ensure and be

able to test the DFA by inputting a string and getting an

acknowledgment whether DFA accepts the string or not.

Building DFA
 We used JavaScript to represent properties of the states

and transitions like code snippet below-

let states = [

 {

 id: 0,

 connectedNodes: [],

 selected: false,

 final: false,

 },

];

We created a list of states and included properties of each

node like id for naming the state node, connected Node’s

list to store all the connected states which will be used in

step 2 to generate connecting links for the visual

representation of the DFA, and selected and final flags for

recognizing active state and final state.

The next task is to collect information about states and

transition from user forms by assigning event listeners to

the buttons provided to the user and appending it to the

state's list, also adding connected states to the connected

Nodes list.

Connecting the states

After having the connected Nodes list, we draw a line to

represent connected nodes by generating a transparent

rectangular block which will be a div in CSS; between

connected states and highlight the bottom-line using the

border-bottom property of CSS. This will generate the

effect of connecting the two nodes and the user will be able

to visualize connected states and observe transitions

written in each state node, the overall result imitating

simulation of DFA.

Testing DFA

This step consists of establishing logic for testing if all the

transitions of DFA are valid by checking the valid input

against each transition also checking with the states and

then being able to test a given string for the user-generated

DFA by simulating input given to each transition possible

and keeping a record of the final state. If the input string

passes all the checks above then output a line of text

mentioning the status of acceptance of input string and if

yes, mentioning final state.

A. Proposed System

There are very few tools aimed at teaching automata

theory, properties, and applications, the great majority of

them do not use real-time visualisation and are more

analogous to the traditional text and reading approach. This

 International Journal of Computer Sciences and Engineering Vol.10(1), Jan 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 15

project assists in the visualisation and real-time testing of

user-customizable DFA. The user can test the DFA by

providing an input string. This kind of system can also be

used in theory lectures to enable the students to understand

the topic and interpret how DFA works with specified

states and transitions, which is absolutely essential because

topics like automata theory can sometimes be difficult to

understand. Our project aims to address the above problem

by providing a real-time DFA builder and simulator web

app that will help learners in having better understanding

of the concepts.

B. Flowchart/ Algorithm

Fig 1: Flowchart

Algorithm

Step 1: - Adding new states

First, the user needs to add as many states as he wants, to

construct a DFA.

Step 2: - Assign transitions between the states.
After adding states, the user needs to assign transitions

between the states as per his/her wish.

Step 3: - Marking a state as a final state.
After the user has finished assigning the transitions, he/she

will have to assign any state as the final state for further

testing.

Step 4: - Testing a string.

At last, after finishing all the above steps, the simulator

will ask the user to input a string and will check if the

constructed DFA reaches the final state using the input

string.

IV. RESULTS AND DISCUSSION

On opening the simulator, it will show a basic home page

(consider Fig 2).

First, the user needs to add as many states as he wants, to

construct a DFA (consider Fig 3 and Fig 5).

After adding states, the user needs to assign transitions

between the states as per his/her wish (consider Fig 4).

After the user has finished assigning the transitions, he/she

will have to assign any state as the final state for further

testing (consider Fig 5).

The simulator asks the user to input a string and will check

if the constructed DFA reaches the final state using the

input string (consider Fig 6).

The simulator will give the results if the given string is

accepted by the constructed DFA or not (consider Fig 7).

Fig 2: Basic home page.

On opening the simulator, it will show a basic home page

mentioning rules for DFA, console to show state and logs,

buttons to build DFA and window below to interact with it.

(Consider Fig 2).

Fig 3: New state added.

There is an Add State button using which the user can add

a state to the DFA he's trying to build and this is the first

step to construct the DFA. Users also have access to the

Delete State button in order to delete a state if required.

(Consider Fig 3 and Fig 5).

 International Journal of Computer Sciences and Engineering Vol.10(1), Jan 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 16

Fig 4. Assigned transition between two states.

After adding states, the user needs to assign transitions

between the states and properly construct DFA following

rules defined for DFA. If rules are not followed correctly,

validations are put in place to notify the user about it.

(Consider Fig 4).

Fig 5: Assigned Q3 as the final state.

After the user has finished assigning the transitions, can

proceed to mark final states as per requirements using the

Mark Final State button as DFA needs at least one final

state before moving on to testing. (Consider Fig 5).

Fig 6: Giving input string to test the constructed DFA.

After completion of construction, user will be able to test

the DFA by using the Test String button also providing an

input a string in order to check if the DFA accepts the

string and validate the result in the console (Consider Fig 6

and Fig 7).

Fig 7: Given input string accepted by the DFA.

After completion of construction, the user is able to test the

DFA by the use of the Test String button also providing an

input of a string in order to check if the DFA accepts the

string and validate the result in the console (Consider Fig 6

and Fig 7).

V. CONCLUSION AND FUTURE SCOPE

In this research, we describe a visualization tool for

designing, debugging, and testing Deterministic Finite

Automata (DFA) which will allow users to construct DFA

by adding states, marking any state as a final state, and also

checking for string if it is valid for constructed DFA or not.

This project makes the study of DFA practically possible

and not theoretical. But there are few limitations of this

project. Those are as follows:

1. Our simulator is limited to DFA only.

2. The simulator cannot perform operations on NFA

3. This simulator is limited to only one operation of DFA

In the future, we can add an option to construct NFA. We

can add a simulator to perform operations on NFA like

testing a string on NFA, converting NFA epsilon to NFA.

We can add a converter in which it will convert NFA to

DFA or NFA epsilon to DFA.

ACKNOWLEDGMENT

I wish to express my sincere gratitude to Dr. Kuldeep

Vayadande, Asst Professor Vishwakarma Institute of

Technology for providing us an opportunity to do the

course project on this topic and also thank him for

supporting us till the end. We also thank the International

Journal of Computer Science and Engineering for

accepting our project paper and giving us an opportunity to

publish it.

 International Journal of Computer Sciences and Engineering Vol.10(1), Jan 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 17

REFERENCES

[1] M. T. Morazán, J. M. Schappel, and S. Mahashabde, “Visual

designing and debugging of deterministic finite-state machines

in FSM,” Electronic Proceedings in Theoretical Computer

Science, vol. 321, pp. 55–77, 2020.

[2] S. H. Rodger, A. O. Bilska, K. H. Leider, M. Procopiuc, O.

Procopiuc, J. R. Salemme, and E. Tsang, “A collection of tools

for making automata theory and formal languages come alive,”

Proceedings of the twenty-eighth SIGCSE technical symposium

on Computer science education - SIGCSE '97, 1997.

[3] H. Raffelt, M. Merten, B. Steffen, and T. Margaria, “Dynamic

testing via Automata Learning,” International Journal on

Software Tools for Technology Transfer, vol. 11, no. 4, pp.

307–324, 2009.

[4] P. G. Naik, S. G. Patil, and G. R. Naik, “Natural language

interface for querying hardware and software configuration of a

local area network,” International Journal of Computer Sciences

and Engineering, vol. 7, no. 2, pp. 949–963, 2019.

[5] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and

A. Di Pietro, “An improved DFA for fast regular expression

matching,” ACM SIGCOMM Computer Communication

Review, vol. 38, no. 5, pp. 29–40, 2008.

[6] Jiwei Xue, Yonggao Li and Bo Nan, "Application research of

finite automaton in distance education," 2010 4th International

Conference on Distance Learning and Education, 2010, pp. 129-

133, doi: 10.1109/ICDLE.2010.5606024.

[7] Raza, Mir Adil, Kuldeep Baban Vayadande, and H. D.

Preetham. "DJANGO MANAGEMENT OF MEDICAL STORE.",

International Research Journal of Modernization in Engineering

Technology and Science, Volume:02 Issue:11 November -

2020

[8] K.B. Vayadande, Nikhil D. Karande,” Automatic Detection and

Correction of Software Faults: A Review Paper”, International

Journal for Research in Applied Science & Engineering

Technology (IJRASET) ISSN: 2321-9653, Volume 8 Issue IV

Apr 2020.

[9] Kuldeep Vayadande, Ritesh Pokarne, Mahalaxmi Phaldesai,

Tanushri Bhuruk, Tanmai Patil, Prachi Kumar, “SIMULATION

OF CONWAY’S GAME OF LIFE USING CELLULAR

AUTOMATA” International Research Journal of Engineering

and Technology (IRJET), Volume: 09 Issue: 01 | Jan 2022, e-

ISSN: 2395-0056, p-ISSN: 2395-0072

[10] K. B. Vayadande, N. D. Karande, and S. Yadav, “A review

paper on detection of moving object in dynamic background,”

International Journal of Computer Sciences and Engineering,

vol. 6, no. 9, pp. 877–880, 2018.

[11] Varad Ingale, Kuldeep Vayadande, Vivek Verma, Abhishek

Yeole, Sahil Zawar, Zoya Jamadar. “Lexical analyzer using

DFA”, International Journal of Advance Research, Ideas and

Innovations in Technology, www.IJARIIT.com.

[12] Kuldeep Vayadande, Harshwardhan More, Omkar More,

Shubham Mulay, Atharva Pathak, Vishwam Talnikar, “ Pac

Man: Game Development using PDA and OOP”, International

Research Journal of Engineering and Technology (IRJET),

Volume: 09 Issue: 01 | Jan 2022, e-ISSN: 2395-0056, p-ISSN:

2395-0072

[13] Rohit Gurav, Sakshi Suryawanshi, Parth Narkhede, Sankalp

Patil, Sejal Hukare, Kuldeep Vayadande,” Universal Turing

machine simulator”, International Journal of Advance Research,

Ideas and Innovations in Technology, (Volume 8, Issue 1 -

V8I1-1268, ISSN: 2454-132X

AUTHORS PROFILE

Kuldeep B Vayadande completed

Bachelor of Engineering in Computer

Science & Engineering from Shivaji

University, Kolhapur in 2009. He

completed his M.Tech in Computer

Science & Technology from Shivaji

University in 2014. He is currently

pursuing Ph.D. in Computer Science & Engineering from

Career Point University, Kota, Rajasthan.

Parth Sheth is currently studying BTech

in Artificial intelligence and data science

at Vishwakarma Institute of Technology,

Pune. He completed his schooling from

Deccan Education Society, Pune. He

completed his 11th and 12th from Ashok

Vidyalaya, Pune.

Arvind Shelke is currently studying

BTech in Artificial intelligence and data

science at Vishwakarma Institute of

Technology, Pune. He completed his

schooling from Gurukul English school,

Beed.

Vaishnavi Vishwas Patil is currently

studying BTech in Artificial Intelligence

and Data Science in Vishwakarma

Institute of Technology, Pune. She

completed her schooling till 10th from

Kendriya Vidyalaya CRPF, Talegaon

Dhabhade, Pune and then went to

Kendriya Vidyalaya no. 2 Dehu Road ,Pune with a science

field.

Srushti Shevate is currently studying

BTech in Artificial intelligence and data

science at Vishwakarma Institute of

Technology, Pune. She completed her

schooling from Mount Carmel Convent

High School, Pune

Chinmayee Sawakare is currently

studying BTech in Artificial Intelligence

and Data Science in Vishwakarma

Institute of Technology, Pune. She

completed her schooling from Podar

International School, Nashik

