SE International Journal of Computer Sciences and Engineering Open Access

Research Paper

Vol.-6, Issue-11, Nov 2018

E-ISSN: 2347-2693

Development and Analysis of Generalized Queuing Model

Sachin Kumar Agrawal^{1*}, B.K. Singh²

^{1, 2} Department of Mathematics, IFTM University, Moradabad, India

*Corresponding Author: sachin269mit@gmail.com

Available online at: www.ijcseonline.org

Accepted: 21/Nov/2018, Published: 30/Nov/2018

Abstract— In the present work a generalized queuing model has been developed to investigate the various queuing characteristics in steady state. The model consists of two global servers having three servers each which are connected in tricum biserial way. The comprehensive governing equations has been given in mathematical formulation which has been used to find the various output parameters i.e., queue lengths, variances, joint probabilities, traffic intensities, average waiting time for customers. The present model is named a generalized queuing model because several models available in the literature can be developed as the special cases.

Keywords- Queue length, Average waiting time, Poisson Law, Moment generating function, Probability.

I. INTRODUCTION

Queuing (waiting line) is pretty common in various real time situations e.g., in a shopping complex, in banks, at mobile phone exchange, at railway station, etc. Extensive investigations have been carried out which dealt with the development of various queuing models to facilitate the customer for better decision in practical problems. In this context, Jacksons [1] took the first step to investigate the various characteristics of phase type service based queue Maggu [2] considered the time-dependent system. probability generating function to investigate the various characteristics of biserial based phase type service queuing model. Arya [3] studied the system of two servers connected in biserial way with multiple service channel. Singh, Man [4] focused to investigate the Steady-state characteristics of serial queuing processes. Hassin and Haviv [5] provided an expressions for equilibrium behaviour in Queuing Systems for better decision making. Gupta et al [6] explored the various queuing model parameters consist of biserial and parallel channels connected with a common server. Singh et al [7, 8] examined the transient behaviour of a queuing network with parallel biserial queues. Authors further extended their work to investigate the steady state characteristics of a queue models with two sub systems connected in biserial way. Paoumy [9] considered various activities such as Balking, Reneging and Heterogeneous servers while studying the queuing model behaviour. Agrawal and Singh [10, 11, 12, 13] performed comprehensive investigation to find the various queuing model parameters of several recently developed tri-cum biserial network based queuing models.

II. PRACTICAL ENACTMENT OF THE MODEL

The developed queuing model can be useful in many problems i.e., if GSr₁ and GSr₂ represent the global server 1 and global server 2 respectively which consist of servers $Sr_{\alpha}, Sr_{\beta}, Sr_{\gamma}$ and $Sr_{\mu}, Sr_{\gamma}, Sr_{w}$ connected in tri cum biserial way as shown in figure 1. Suppose global servers GSr₁ and GSr₂ show the two floors of a commercial shopping complex which are dedicated to male and female sections. In each section, there are three sub sections such as clothing, footwear and cosmetic which are represented by the servers Sr_{α} , Sr_{β} , Sr_{γ} and Sr_{μ} , Sr_{γ} , Sr_{w} in global servers GSr_{1} and GSr_2 respectively. The customer first filtered at entry level where male customer will go to GSr1 and female customer will go to GSr₂. Further suppose a male customer who entered in GSr₁ can avail the facility at server Sr_{α} which is clothing section then he can go to Sr_{β} and Sr_{γ} which depends on his will and requirements. After availing all the facilities, he can exit from the server GSr₁ and move to the server Sr_d which represent the billing section. The same activities is possible while considering the global server GSr₂ which is dedicated to the female customers.

III. MATHEMATICAL DESCRIPTION OF THE MODEL

Let us assume that there are two global servers GSr_1 and GSr_2 . Each global server consist of three servers named Sr_{α} , Sr_{β} , Sr_{γ} and Sr_u , Sr_v , Sr_w which are connected in tri cum biserial way as shown in figure 1. It is evident from

the figure that customer entered in any of the global server can avail the facilities available at each server i.e., if customer entered in GSr_1 then he/she can avail the

facility Sr_{α} or Sr_{β} or Sr_{γ} and then exit from GSr₁ and move to Sr_{d} .

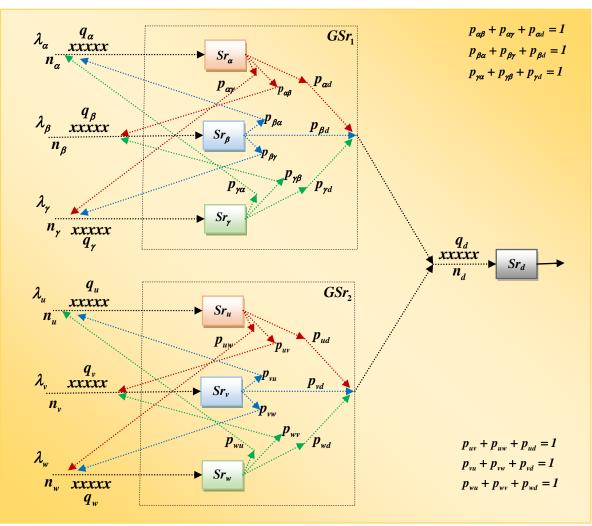


Figure 1. Generalized queuing network

The various combinations of the customer's movement at global servers GSr₁ and GSr₂ are as follows.

$$Sr_{\alpha} \rightarrow Sr_{d}, \quad Sr_{\beta} \rightarrow Sr_{d}, \quad Sr_{\gamma} \rightarrow Sr_{d}$$

$$Sr_{\alpha} \rightarrow Sr_{\beta} \rightarrow Sr_{d}, \quad Sr_{\alpha} \rightarrow Sr_{\gamma} \rightarrow Sr_{d}, \quad Sr_{\beta} \rightarrow Sr_{\alpha} \rightarrow Sr_{d}$$

$$Sr_{\beta} \rightarrow Sr_{\gamma} \rightarrow Sr_{d}, \quad Sr_{\gamma} \rightarrow Sr_{\alpha} \rightarrow Sr_{d}, \quad Sr_{\gamma} \rightarrow Sr_{\beta} \rightarrow Sr_{d}$$

$$Sr_{\alpha} \rightarrow Sr_{\beta} \rightarrow Sr_{\gamma} \rightarrow Sr_{d}, \quad Sr_{\alpha} \rightarrow Sr_{\gamma} \rightarrow Sr_{\beta} \rightarrow Sr_{d}, \quad Sr_{\beta} \rightarrow Sr_{\alpha} \rightarrow Sr_{\gamma} \rightarrow Sr_{d}$$

$$Sr_{\beta} \rightarrow Sr_{\gamma} \rightarrow Sr_{\alpha} \rightarrow Sr_{d}, \quad Sr_{\gamma} \rightarrow Sr_{\alpha} \rightarrow Sr_{\beta} \rightarrow Sr_{d}, \quad Sr_{\gamma} \rightarrow Sr_{\beta} \rightarrow Sr_{\alpha} \rightarrow Sr_{d}$$

$$Sr_{\mu} \rightarrow Sr_{\alpha} \rightarrow Sr_{d}, \quad Sr_{\gamma} \rightarrow Sr_{\alpha} \rightarrow Sr_{d}, \quad Sr_{\gamma} \rightarrow Sr_{\beta} \rightarrow Sr_{\alpha} \rightarrow Sr_{d}$$

$$Sr_{u} \rightarrow Sr_{u} \rightarrow Sr_{d}, \quad Sr_{u} \rightarrow Sr_{d}, \quad Sr_{w} \rightarrow Sr_{d}$$

$$Sr_{v} \rightarrow Sr_{w} \rightarrow Sr_{d}, \quad Sr_{w} \rightarrow Sr_{d}, \quad Sr_{w} \rightarrow Sr_{d}$$

$$Sr_{v} \rightarrow Sr_{w} \rightarrow Sr_{d}, \quad Sr_{w} \rightarrow Sr_{v} \rightarrow Sr_{d}, \quad Sr_{v} \rightarrow Sr_{d} \rightarrow Sr_{w} \rightarrow Sr_{d}$$

$$Sr_{v} \rightarrow Sr_{w} \rightarrow Sr_{d}, \quad Sr_{w} \rightarrow Sr_{v} \rightarrow Sr_{d}, \quad Sr_{v} \rightarrow Sr_{w} \rightarrow Sr_{d}$$

$$Sr_{v} \rightarrow Sr_{w} \rightarrow Sr_{d}, \quad Sr_{w} \rightarrow Sr_{v} \rightarrow Sr_{d}, \quad Sr_{v} \rightarrow Sr_{w} \rightarrow Sr_{d} \rightarrow Sr_{w} \rightarrow Sr_{d} \rightarrow Sr_{w} \rightarrow Sr_{w}$$

Let λ_{α} , λ_{β} , λ_{γ} and n_{α} , n_{β} , n_{γ} show the mean arrival rate and number of customers at servers Sr_{α} , Sr_{β} , Sr_{γ} respectively whereas q_{α} , q_{β} , q_{γ} denote the queue length associated with these servers respectively. The customer n_{α} arriving with mean arrival rate λ_{α} entered to server Sr_{α} can avail the facility at Sr_{α} , Sr_{β} , Sr_{γ} such that the cumulative probability $p_{\alpha\beta} + p_{\alpha\gamma} + p_{\alpha d} = 1$. The same criterion will be applicable to those customers who entered in GSr₂. The various probabilities associated with the servers at GSr₁ and GSr₂ are as follows.

For
$$GSr_1 \quad p_{\alpha\beta} + p_{\alpha\gamma} + p_{\alpha d} = 1, \ p_{\beta\alpha} + p_{\beta\gamma} + p_{\beta d} = 1, \ p_{\gamma\alpha} + p_{\gamma\beta} + p_{\gamma d} = 1.$$

For $GSr_2 \quad p_{uv} + p_{uw} + p_{ud} = 1, \ p_{vu} + p_{vw} + p_{vd} = 1, \ p_{wu} + p_{wv} + p_{wd} = 1.$

Differential difference equation in steady (transient) state of the model is

$$\lambda_{\alpha} + \lambda_{\beta} + \lambda_{\gamma} + \lambda_{u} + \lambda_{v} + \lambda_{w} + \mu_{\alpha} + \mu_{\beta} + \mu_{\gamma} + \mu_{u} + \mu_{v} + \mu_{w} + \mu_{d} \end{bmatrix} P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}} = \lambda_{\alpha}P_{n_{\alpha}-1,n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}} + \lambda_{\beta}P_{n_{\alpha},n_{\beta}-1,n_{\gamma},n_{u},n_{v},n_{w},n_{d}} + \lambda_{\gamma}P_{n_{\alpha},n_{\beta},n_{\gamma}-1,n_{u},n_{v},n_{w},n_{d}} + \lambda_{u}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u}-1,n_{v},n_{w},n_{d}} + \lambda_{v}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v}-1,n_{w},n_{d}} + \lambda_{w}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}} + \mu_{\alpha}P_{\alpha\beta}P_{n_{\alpha}+1,n_{\beta}-1,n_{\gamma},n_{u},n_{v},n_{w},n_{d}} + \mu_{\alpha}P_{\alpha\gamma}P_{n_{\alpha}+1,n_{\beta},n_{\gamma}-1,n_{u},n_{v},n_{w},n_{d}} + \mu_{\alpha}P_{\alphad}P_{n_{\alpha}+1,n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}-1} + \mu_{\beta}P_{\beta\alpha}P_{n_{\alpha}-1,n_{\beta}+1,n_{\gamma},n_{u},n_{v},n_{w},n_{d}} + \mu_{\beta}P_{\beta\gamma}P_{n_{\alpha},n_{\beta}+1,n_{\gamma}-1,n_{u},n_{v},n_{w},n_{d}} + \mu_{\beta}P_{\beta d}P_{n_{\alpha},n_{\beta}+1,n_{\gamma},n_{u},n_{v},n_{w},n_{d}-1} + \mu_{\gamma}P_{\gamma\alpha}P_{n_{\alpha}-1,n_{\beta},n_{\gamma}+1,n_{u},n_{v},n_{w},n_{d}} + \mu_{\gamma}P_{\gamma\beta}P_{n_{\alpha},n_{\beta}-1,n_{\gamma}+1,n_{u},n_{v},n_{w},n_{d}} + \mu_{\mu}P_{\mu}P_{\mu}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u}+1,n_{v},n_{w},n_{d}-1} + \mu_{u}P_{uv}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u}-1,n_{v}+1,n_{w},n_{d}} + \mu_{w}P_{wv}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u}+1,n_{v},n_{w}-1,n_{d}} + \mu_{w}P_{wd}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}-1} + \mu_{w}P_{wu}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u}-1,n_{v}+1,n_{w}} + \mu_{w}P_{wv}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v}-1,n_{w}+1,n_{d}} + \mu_{w}P_{wd}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}-1} + \mu_{w}P_{wu}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u}-1,n_{v},n_{w}+1,n_{d}} + \mu_{w}P_{wv}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v}-1,n_{w}+1,n_{d}} + \mu_{w}P_{wd}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w}+1,n_{d}-1} + \mu_{u}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{\gamma},n_{w}+1,n_{d}} + \mu_{w}P_{wv}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v}-1,n_{w}+1,n_{d}} + \mu_{w}P_{wd}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w}+1,n_{d}-1} + \mu_{u}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{\gamma},n_{w}+1,n_{d}} + \mu_{w}P_{wv}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v}-1,n_{w}+1,n_{d}} + \mu_{w}P_{wd}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w}+1,n_{d}-1} \\ + \mu_{u}P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{\gamma},n_{w}+1,n_{d}}$$

IV. SOLUTION METHODOLOGY

To solve the governing Equation, Generating function is assumed as

$$F(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) = \sum_{n_{\alpha}=0}^{\infty} \sum_{n_{\beta}=0}^{\infty} \sum_{n_{\gamma}=0}^{\infty} \sum_{n_{\nu}=0}^{\infty} \sum_{n_{\nu}=0}^{\infty} \sum_{n_{\nu}=0}^{\infty} \sum_{n_{\nu}=0}^{\infty} \sum_{n_{\nu}=0}^{\infty} \sum_{n_{\mu}=0}^{\infty} \sum_{n_{\mu$$

Also, taking partial generating function as

$$F_{n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}}\left(X_{1}\right) = \sum_{n_{\alpha}=0}^{\infty} P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}} \cdot X_{1}^{n_{\alpha}}$$
(3)

$$F_{n_{\gamma},n_{u},n_{\nu},n_{w},n_{d}}\left(X_{1},X_{2}\right) = \sum_{n_{\beta}=0}^{\infty} F_{n_{\beta},n_{\gamma},n_{u},n_{\nu},n_{w},n_{d}}\left(X_{1}\right) \cdot X_{2}^{n_{\beta}}$$
(4)

$$F_{n_{u}, n_{v}, n_{w}, n_{d}}\left(X_{1}, X_{2}, X_{3}\right) = \sum_{n_{\gamma}=0}^{\infty} F_{n_{\gamma}, n_{u}, n_{v}, n_{w}, n_{d}}\left(X_{1}, X_{2}\right) X_{3}^{n_{\gamma}}$$
(5)

$$F_{n_{v}, n_{w}, n_{d}}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) = \sum_{n_{u}=0}^{\infty} F_{n_{u}, n_{v}, n_{w}, n_{d}}\left(X_{1}, X_{2}, X_{3}\right) \cdot X_{4}^{n_{u}}$$
(6)

Vol.6(11), Nov 2018, E-ISSN: 2347-2693

$$F_{n_{w},n_{d}}\left(X_{1},X_{2},X_{3},X_{4},X_{5}\right) = \sum_{n_{v}=0}^{\infty} F_{n_{v},n_{w},n_{d}}\left(X_{1},X_{2},X_{3},X_{4}\right) \cdot X_{5}^{n_{v}}$$
(7)

$$F_{n_d}\left(X_1, X_2, X_3, X_4, X_5, X_6\right) = \sum_{n_w=0}^{\infty} F_{n_w, n_d}\left(X_1, X_2, X_3, X_4, X_5\right) \cdot X_6^{n_w}$$
(8)

$$F(X_1, X_2, X_3, X_4, X_5, X_6, X_7) = \sum_{n_d=0}^{\infty} F_{n_d}(X_1, X_2, X_3, X_4, X_5, X_6) X_7^{n_d}$$
(9)

Now, on making n_{α} , n_{β} , n_{γ} , n_{u} , n_{ν} , n_{w} , n_{d} equal to zero with various combinations such as one by one then after considering two of them pairwise, etc. will lead to the development of 128 equations. Now solving equation (1) by using generating function set of equations and the technique given in [2, 7], we can find the probability distribution function in steady (transient) state. We get the subsequent equation

$$\begin{split} \lambda_{\alpha}(1-X_{1}) + \lambda_{\beta}(1-X_{2}) + \lambda_{\gamma}(1-X_{3}) + \lambda_{\omega}(1-X_{4}) + \lambda_{\gamma}(1-X_{5}) + \lambda_{w}(1-X_{6}) \\ + \mu_{\alpha} \left\{ 1 - \frac{p_{\alpha\beta}}{X_{1}} X_{2} - \frac{p_{\alpha\gamma}}{X_{1}} X_{3} - \frac{p_{\alpha\beta}}{X_{1}} X_{7} \right\} + \mu_{\beta} \left\{ 1 - \frac{p_{\beta\alpha}}{X_{2}} X_{1} - \frac{p_{\beta\gamma}}{X_{2}} X_{3} - \frac{p_{\beta\alpha}}{X_{2}} X_{7} \right\} \\ + \mu_{\gamma} \left\{ 1 - \frac{p_{\gamma\alpha}}{X_{3}} X_{1} - \frac{p_{\gamma\beta}}{X_{3}} X_{2} - \frac{p_{\alpha\beta}}{X_{3}} X_{7} \right\} + \mu_{\omega} \left\{ 1 - \frac{p_{\alpha\nu}}{X_{4}} X_{5} - \frac{p_{\alpha\nu}}{X_{4}} X_{5} - \frac{p_{\alpha\mu}}{X_{4}} X_{7} \right\} \\ - \mu_{\psi} \left\{ 1 - \frac{p_{\gamma\alpha}}{X_{5}} X_{4} - \frac{p_{\gamma\nu}}{X_{5}} X_{7} \right\} + \mu_{\omega} \left\{ 1 - \frac{p_{\alpha\nu}}{X_{6}} X_{4} - \frac{p_{\alpha\nu}}{X_{6}} X_{5} - \frac{p_{\alpha\beta}}{X_{6}} X_{7} \right\} + \mu_{d} \left\{ 1 - \frac{1}{X_{7}} \right\} \\ = \mu_{\alpha} \left\{ 1 - \frac{p_{\alpha\beta}}{X_{1}} X_{2} - \frac{p_{\alpha\gamma}}{X_{1}} X_{2} - \frac{p_{\alpha\beta}}{X_{1}} X_{7} \right\} + \rho_{0} (X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) \\ + \mu_{\beta} \left\{ 1 - \frac{p_{\gamma\alpha}}{X_{2}} X_{1} - \frac{p_{\beta\gamma}}{X_{2}} X_{3} - \frac{p_{\alpha\beta}}{X_{1}} X_{7} \right\} F_{0} (X_{1}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) \\ + \mu_{\mu} \left\{ 1 - \frac{p_{\gamma\alpha}}{X_{3}} X_{1} - \frac{p_{\gamma\beta}}{X_{2}} X_{3} - \frac{p_{\beta\beta}}{X_{2}} X_{7} \right\} F_{0} (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) \\ + \mu_{\mu} \left\{ 1 - \frac{p_{\gamma\alpha}}{X_{3}} X_{1} - \frac{p_{\gamma\beta}}{X_{3}} X_{2} - \frac{p_{\gamma\beta}}{X_{3}} X_{7} \right\} F_{0} (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) \\ + \mu_{\mu} \left\{ 1 - \frac{p_{\alpha\alpha}}{X_{3}} X_{1} - \frac{p_{\alpha\beta}}{X_{3}} X_{2} - \frac{p_{\gamma\beta}}{X_{3}} X_{7} \right\} F_{0} (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) \\ + \mu_{\mu} \left\{ 1 - \frac{p_{\alpha\alpha}}{X_{4}} X_{5} - \frac{p_{\alpha\alpha}}{X_{5}} X_{6} - \frac{p_{\alpha\beta}}{X_{5}} X_{7} \right\} F_{0} (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) \\ + \mu_{\omega} \left\{ 1 - \frac{p_{\alpha\alpha}}{X_{5}} X_{4} - \frac{p_{\alpha\nu}}{X_{5}} X_{5} - \frac{p_{\alpha\beta}}{X_{5}} X_{7} \right\} F_{0} (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{7}) \\ + \mu_{\omega} \left\{ 1 - \frac{p_{\alpha\alpha}}{X_{5}} X_{4} - \frac{p_{\alpha\nu}}{X_{5}} X_{5} - \frac{p_{\alpha\beta}}{X_{5}} X_{7} \right\} F_{0} (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{7}) \\ + \mu_{\omega} \left\{ 1 - \frac{p_{\alpha\alpha}}{X_{5}} X_{4} - \frac{p_{\alpha\alpha}}{X_{5}} X_{5} - \frac{p_{\alpha\beta}}{X_{5}} X_{7} \right\} F_{0} (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{7}) \\ + \mu_{\omega} \left\{ 1 - \frac{p_{\alpha\alpha}}{X_{5}} X_{4} - \frac{p_{\alpha\alpha}}{X_{5}} X_{5} - \frac{p_{\alpha\beta}}{$$

Assuming

$$F_{0}(X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) = F_{\alpha}, \quad F_{0}(X_{1}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) = F_{\beta}, \quad F_{0}(X_{1}, X_{2}, X_{4}, X_{5}, X_{6}, X_{7}) = F_{\gamma}$$

$$F_{0}(X_{1}, X_{2}, X_{3}, X_{5}, X_{6}, X_{7}) = F_{u}, \quad F_{0}(X_{1}, X_{2}, X_{3}, X_{4}, X_{6}, X_{7}) = F_{v}, \quad F_{0}(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{7}) = F_{w}$$

$$F_{0}(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}) = F_{d}$$

We get,

$$\begin{aligned} \mu_{\alpha} \left\{ 1 - \frac{p_{\alpha\beta}}{X_{1}} X_{2} - \frac{p_{\alpha\gamma}}{X_{1}} X_{3} - \frac{p_{\alphad}}{X_{1}} X_{7} \right\} F_{\alpha} + \mu_{\beta} \left\{ 1 - \frac{p_{\beta\alpha}}{X_{2}} X_{1} - \frac{p_{\beta\gamma}}{X_{2}} X_{3} - \frac{p_{\beta\beta}}{X_{2}} X_{7} \right\} F_{\beta} \\ + \mu_{\gamma} \left\{ 1 - \frac{p_{\gamma\alpha}}{X_{3}} X_{1} - \frac{p_{\gamma\beta}}{X_{3}} X_{2} - \frac{p_{\gamma d}}{X_{3}} X_{7} \right\} F_{\gamma} + \mu_{u} \left\{ 1 - \frac{p_{uu}}{X_{4}} X_{5} - \frac{p_{uu}}{X_{4}} X_{6} - \frac{p_{ud}}{X_{4}} X_{7} \right\} F_{u} \\ + \mu_{\gamma} \left\{ 1 - \frac{p_{\gamma\alpha}}{X_{5}} X_{4} - \frac{p_{\nu\nu}}{X_{5}} X_{6} - \frac{p_{\nu d}}{X_{5}} X_{7} \right\} F_{\nu} + \mu_{w} \left\{ 1 - \frac{p_{uu}}{X_{6}} X_{4} - \frac{p_{uv}}{X_{6}} X_{5} - \frac{p_{ud}}{X_{4}} X_{7} \right\} F_{\nu} \\ F(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) = \frac{+\mu_{d} \left\{ 1 - \frac{1}{X_{7}} \right\} F_{w} \\ \lambda_{\alpha} \left(1 - X_{1} \right) + \lambda_{\beta} \left(1 - X_{2} \right) + \lambda_{\gamma} \left(1 - X_{3} \right) + \lambda_{u} \left(1 - X_{4} \right) + \lambda_{\nu} \left(1 - X_{5} \right) + \lambda_{w} \left(1 - X_{6} \right) \\ + \mu_{\alpha} \left\{ 1 - \frac{p_{\alpha\beta}}{X_{1}} X_{2} - \frac{p_{\alpha\gamma}}{X_{1}} X_{3} - \frac{p_{\alpha\beta}}{X_{1}} X_{7} \right\} + \mu_{\beta} \left\{ 1 - \frac{p_{\beta\alpha}}{X_{2}} X_{1} - \frac{p_{\beta\beta}}{X_{2}} X_{3} - \frac{p_{\beta\beta}}{X_{2}} X_{7} \right\} \\ + \mu_{\gamma} \left\{ 1 - \frac{p_{\alpha\beta}}{X_{1}} X_{2} - \frac{p_{\alpha\gamma}}{X_{1}} X_{3} - \frac{p_{\alpha\beta}}{X_{1}} X_{7} \right\} + \mu_{\mu} \left\{ 1 - \frac{p_{\beta\alpha}}{X_{2}} X_{1} - \frac{p_{\beta\beta}}{X_{2}} X_{3} - \frac{p_{\beta\beta}}{X_{2}} X_{7} \right\} \\ + \mu_{\gamma} \left\{ 1 - \frac{p_{\alpha\beta}}{X_{1}} X_{2} - \frac{p_{\alpha\gamma}}{X_{1}} X_{3} - \frac{p_{\alpha\beta}}{X_{1}} X_{7} \right\} + \mu_{\mu} \left\{ 1 - \frac{p_{\beta\alpha}}{X_{2}} X_{1} - \frac{p_{\beta\beta}}{X_{2}} X_{3} - \frac{p_{\beta\beta}}{X_{2}} X_{7} \right\} \\ + \mu_{\gamma} \left\{ 1 - \frac{p_{\alpha\alpha}}{X_{3}} X_{1} - \frac{p_{\gamma\beta}}{X_{3}} X_{2} - \frac{p_{\gamma\beta}}{X_{3}} X_{7} \right\} + \mu_{\mu} \left\{ 1 - \frac{p_{\alpha\alpha}}{X_{4}} X_{5} - \frac{p_{\alpha\alpha}}{X_{4}} X_{6} - \frac{p_{\alpha\alpha}}{X_{4}} X_{7} \right\} \\ + \mu_{\nu} \left\{ 1 - \frac{p_{\gamma\omega}}{X_{5}} X_{4} - \frac{p_{\gamma\omega}}{X_{5}} X_{6} - \frac{p_{\gamma\beta}}{X_{5}} X_{7} \right\} + \mu_{w} \left\{ 1 - \frac{p_{\alpha\omega}}{X_{6}} X_{4} - \frac{p_{\omega\omega}}{X_{6}} X_{5} - \frac{p_{\alpha\alpha}}{X_{6}} X_{7} \right\}$$
(10) \\ + \mu_{\mu} \left\{ 1 - \frac{1}{X_{7}} \right\}

As F(1, 1, 1, 1, 1, 1, 1) = 1, the entire probability. On considering $X_1 = 1$ as $X_2 \rightarrow 1$, $X_3 \rightarrow 1$, $X_4 \rightarrow 1$, $X_5 \rightarrow 1$, $X_6 \rightarrow 1$, $X_7 \rightarrow 1$, eq (10) $F(X_1, X_2, X_3, X_4, X_5, X_6, X_7)$ is of (0/0) form, which is indeterminate. Therefore, by L-Hospital rule, differentiating eq (10) w.r.t. X_1 , we get

$$1 = \frac{\mu_{\alpha} \left(p_{\alpha\beta} + p_{\alpha\gamma} + p_{\alpha d} \right) F_{\alpha} + \mu_{\beta} \left(-p_{\beta\alpha} \right) F_{\beta} + \mu_{\gamma} \left(-p_{\gamma\alpha} \right) F_{\gamma}}{-\lambda_{\alpha} + \mu_{\alpha} \left(p_{\alpha\beta} + p_{\alpha\gamma} + p_{\alpha d} \right) + \mu_{\beta} \left(-p_{\beta\alpha} \right) + \mu_{\gamma} \left(-p_{\gamma\alpha} \right)}$$

where $p_{\alpha\beta} + p_{\alpha\gamma} + p_{\alpha d} = 1$

$$\mu_{\alpha}F_{\alpha} - \mu_{\beta}p_{\beta\alpha}F_{\beta} - \mu_{\gamma}p_{\gamma\alpha}F_{\gamma} = -\lambda_{\alpha} + \mu_{\alpha} - \mu_{\beta}p_{\beta\alpha} - \mu_{\gamma}p_{\gamma\alpha}$$
(11)

Again differentiating numerator and denominator of eq (10) separately w.r.t. X_2 by taking $X_2 = 1$ as $X_1 \rightarrow 1$, $X_3 \rightarrow 1$, $X_4 \rightarrow 1$, $X_5 \rightarrow 1$, $X_6 \rightarrow 1$, $X_7 \rightarrow 1$, we get

$$1 = \frac{\mu_{\alpha} \left(-p_{\alpha\beta}\right) F_{\alpha} + \mu_{\beta} \left(p_{\beta\alpha} + p_{\beta\gamma} + p_{\beta d}\right) F_{\beta} + \mu_{\gamma} \left(-p_{\gamma\beta}\right) F_{\gamma}}{-\lambda_{\beta} + \mu_{\alpha} \left(-p_{\alpha\beta}\right) + \mu_{\beta} \left(p_{\beta\alpha} + p_{\beta\gamma} + p_{\beta d}\right) + \mu_{\gamma} \left(-p_{\gamma\beta}\right)}$$

where $p_{\beta\alpha} + p_{\beta\gamma} + p_{\beta d} = 1$

$$-\mu_{\alpha}p_{\alpha\beta}F_{\alpha} + \mu_{\beta}F_{\beta} - \mu_{\gamma}p_{\gamma\beta}F_{\gamma} = -\lambda_{\beta} - \mu_{\alpha}p_{\alpha\beta} + \mu_{\beta} - \mu_{\gamma}p_{\gamma\beta}$$
⁽¹²⁾

Again differentiating numerator and denominator of eq (10) separately w.r.t. X_3 by taking $X_3 = 1$ as $X_1 \rightarrow 1$, $X_2 \rightarrow 1, X_4 \rightarrow 1, X_5 \rightarrow 1, X_6 \rightarrow 1, X_7 \rightarrow 1$, we get

$$1 = \frac{\mu_{\alpha}\left(-p_{\alpha\gamma}\right)F_{\alpha} + \mu_{\beta}\left(-p_{\beta\gamma}\right)F_{\beta} + \mu_{\gamma}\left(p_{\gamma\alpha} + p_{\gamma\beta} + p_{\gamma d}\right)F_{\gamma}}{-\lambda_{\gamma} + \mu_{\alpha}\left(-p_{\alpha\gamma}\right) + \mu_{\beta}\left(-p_{\beta\gamma}\right) + \mu_{\gamma}\left(p_{\gamma\alpha} + p_{\gamma\beta} + p_{\gamma d}\right)}$$

where $p_{\gamma\alpha} + p_{\gamma\beta} + p_{\gamma d} = 1$

Vol.6(11), Nov 2018, E-ISSN: 2347-2693

$$-\mu_{\alpha}p_{\alpha\gamma}F_{\alpha} - \mu_{\beta}p_{\beta\gamma}F_{\beta} + \mu_{\gamma}F_{\gamma} = -\lambda_{\gamma} - \mu_{\alpha}p_{\alpha\gamma} - \mu_{\beta}p_{\beta\gamma} + \mu_{\gamma}$$
(13)

Again differentiating numerator and denominator of eq (10) separately w.r.t. X_4 by taking $X_4 = 1$ as $X_1 \rightarrow 1$, $X_2 \rightarrow 1, X_3 \rightarrow 1, X_5 \rightarrow 1, X_6 \rightarrow 1, X_7 \rightarrow 1$, we get

$$1 = \frac{\mu_{u} \left(p_{uv} + p_{uw} + p_{ud} \right) F_{u} + \mu_{v} \left(-p_{vu} \right) F_{v} + \mu_{w} \left(-p_{wu} \right) F_{w}}{-\lambda_{u} + \mu_{u} \left(p_{uv} + p_{uw} + p_{ud} \right) + \mu_{v} \left(-p_{vu} \right) + \mu_{w} \left(-p_{wu} \right)}$$

where $p_{uv} + p_{uw} + p_{ud} = 1$

$$\mu_{u}F_{u} - \mu_{v}p_{vu}F_{v} - \mu_{w}p_{wu}F_{w} = -\lambda_{u} + \mu_{u} - \mu_{v}p_{vu} - \mu_{w}p_{wu}$$
(14)

Again differentiating numerator and denominator of eq (10) separately w.r.t. X_5 by taking $X_5 = 1$ as $X_1 \rightarrow 1$, $X_2 \rightarrow 1, X_3 \rightarrow 1, X_4 \rightarrow 1, X_6 \rightarrow 1, X_7 \rightarrow 1$, we get

$$1 = \frac{\mu_{u}(-p_{uv})F_{u} + \mu_{v}(p_{vu} + p_{vw} + p_{vd})F_{v} + \mu_{w}(-p_{wv})F_{w}}{-\lambda_{v} + \mu_{u}(-p_{uv}) + \mu_{v}(p_{vu} + p_{vw} + p_{vd}) + \mu_{w}(-p_{wv})}$$

where $p_{vu} + p_{vw} + p_{vd} = 1$

$$-\mu_{u}p_{uv}F_{u} + \mu_{v}F_{v} - \mu_{w}p_{wv}F_{w} = -\lambda_{v} - \mu_{u}p_{uv} + \mu_{v} - \mu_{w}p_{wv}$$
(15)

Again differentiating numerator and denominator of eq (10) separately w.r.t. X_6 by taking $X_6 = 1$ as $X_1 \rightarrow 1$, $X_2 \rightarrow 1, X_3 \rightarrow 1, X_4 \rightarrow 1, X_5 \rightarrow 1, X_7 \rightarrow 1$, we get $1 = \frac{\mu_u (-p_{uw}) F_u + \mu_v (-p_{vw}) F_v + \mu_w (p_{wu} + p_{wv} + p_{wd}) F_w}{-\lambda_w + \mu_u (-p_{uw}) + \mu_v (-p_{vw}) + \mu_w (p_{wu} + p_{wv} + p_{wd})}$

where $p_{wu} + p_{wv} + p_{wd} = 1$

$$-\mu_{u}p_{uw}F_{u} - \mu_{v}p_{vw}F_{v} + \mu_{w}F_{w} = -\lambda_{w} - \mu_{u}p_{uw} - \mu_{v}p_{vw} + \mu_{w}$$
(16)

Again differentiating numerator and denominator of eq (10) separately w.r.t. X_7 by taking $X_7 = 1$ as $X_1 \rightarrow 1$, $X_2 \rightarrow 1, X_3 \rightarrow 1, X_4 \rightarrow 1, X_5 \rightarrow 1, X_6 \rightarrow 1$, we get

$$1 = \frac{\mu_{\alpha} \left(-p_{\alpha d}\right) F_{\alpha} + \mu_{\beta} \left(-p_{\beta d}\right) F_{\beta} + \mu_{\gamma} \left(-p_{\gamma d}\right) F_{\gamma} + \mu_{u} \left(-p_{u d}\right) F_{u} + \mu_{v} \left(-p_{v d}\right) F_{v} + \mu_{w} \left(-p_{w d}\right) F_{w} + \mu_{d} F_{d}}{\mu_{\alpha} \left(-p_{\alpha d}\right) + \mu_{\beta} \left(-p_{\beta d}\right) + \mu_{\gamma} \left(-p_{\gamma d}\right) + \mu_{u} \left(-p_{u d}\right) + \mu_{v} \left(-p_{v d}\right) + \mu_{w} \left(-p_{w d}\right) + \mu_{d}}$$

$$\mu_{\alpha} \left(-p_{\alpha d}\right) F_{\alpha} + \mu_{\beta} \left(-p_{\beta d}\right) F_{\beta} + \mu_{\gamma} \left(-p_{\gamma d}\right) F_{\gamma} + \mu_{u} \left(-p_{u d}\right) F_{u} + \mu_{v} \left(-p_{v d}\right) F_{v} + \mu_{w} \left(-p_{w d}\right) F_{w} + \mu_{d} F_{d}$$

$$= \mu_{\alpha} \left(-p_{\alpha d}\right) + \mu_{\beta} \left(-p_{\beta d}\right) + \mu_{\gamma} \left(-p_{\gamma d}\right) + \mu_{u} \left(-p_{u d}\right) + \mu_{v} \left(-p_{v d}\right) + \mu_{w} \left(-p_{w d}\right) + \mu_{d}$$

$$(17)$$

On solving (11), (12), (13), (14), (15), (16) & (17), we get

$$\begin{split} F_{\alpha} &= 1 - \frac{\lambda_{\alpha} \left(1 - p_{\gamma\beta} p_{\beta\gamma}\right) + \lambda_{\beta} \left\{ p_{\beta\alpha} \left(1 - p_{\gamma\beta} p_{\beta\gamma}\right) + p_{\beta\gamma} \left(p_{\gamma\alpha} + p_{\gamma\beta} p_{\beta\alpha}\right) \right\} + \lambda_{\gamma} \left(p_{\gamma\alpha} + p_{\gamma\beta} p_{\beta\alpha}\right)}{\mu_{\alpha} \left\{ \left(1 - p_{\alpha\beta} p_{\beta\alpha}\right) \left(1 - p_{\gamma\beta} p_{\beta\gamma}\right) - \left(p_{\alpha\gamma} + p_{\alpha\beta} p_{\beta\gamma}\right) \left(p_{\gamma\alpha} + p_{\gamma\beta} p_{\beta\alpha}\right) \right\}} \\ F_{\beta} &= 1 - \frac{\lambda_{\alpha} \left(p_{\alpha\beta} + p_{\alpha\gamma} p_{\gamma\beta}\right) + \lambda_{\beta} \left(1 - p_{\alpha\gamma} p_{\gamma\alpha}\right) + \lambda_{\gamma} \left\{p_{\gamma\alpha} \left(p_{\alpha\beta} + p_{\alpha\gamma} p_{\gamma\beta}\right) + p_{\gamma\beta} \left(1 - p_{\alpha\gamma} p_{\gamma\alpha}\right) \right\}}{\mu_{\beta} \left\{ \left(1 - p_{\beta\gamma} p_{\gamma\beta}\right) \left(1 - p_{\alpha\gamma} p_{\gamma\alpha}\right) - \left(p_{\beta\alpha} + p_{\beta\gamma} p_{\gamma\alpha}\right) \left(p_{\alpha\beta} + p_{\alpha\gamma} p_{\gamma\beta}\right) \right\}} \\ F_{\gamma} &= 1 - \frac{\lambda_{\alpha} \left\{p_{\alpha\beta} \left(p_{\beta\gamma} + p_{\beta\alpha} p_{\alpha\gamma}\right) + p_{\alpha\gamma} \left(1 - p_{\alpha\beta} p_{\beta\alpha}\right) \right\} + \lambda_{\beta} \left(p_{\beta\gamma} + p_{\beta\alpha} p_{\alpha\gamma}\right) + \lambda_{\gamma} \left(1 - p_{\alpha\beta} p_{\beta\alpha}\right)}{\mu_{\gamma} \left\{ \left(1 - p_{\alpha\gamma} p_{\gamma\alpha}\right) \left(1 - p_{\alpha\beta} p_{\beta\alpha}\right) - \left(p_{\gamma\beta} + p_{\alpha\beta} p_{\gamma\alpha}\right) \left(p_{\beta\gamma} + p_{\beta\alpha} p_{\alpha\gamma}\right) \right\}} \end{split}$$

$$\begin{split} F_{u} &= 1 - \frac{\lambda_{u} \left(1 - p_{wv} p_{vw}\right) + \lambda_{b} \left\{ p_{vu} \left(1 - p_{wv} p_{vw}\right) + p_{vw} \left(p_{wu} + p_{wv} p_{vu}\right) \right\} + \lambda_{w} \left(p_{wu} + p_{wv} p_{vu}\right)}{\mu_{u} \left\{ \left(1 - p_{uv} p_{vu}\right) \left(1 - p_{wv} p_{vw}\right) - \left(p_{uw} + p_{uv} p_{vw}\right) \left(p_{wu} + p_{wv} p_{vu}\right) \right\}} \\ F_{v} &= 1 - \frac{\lambda_{u} \left(p_{uv} + p_{uw} p_{wv}\right) + \lambda_{v} \left(1 - p_{uw} p_{wu}\right) + \lambda_{w} \left\{p_{wu} \left(p_{uv} + p_{uw} p_{wv}\right) + p_{wv} \left(1 - p_{uw} p_{wu}\right) \right\}}{\mu_{v} \left\{ \left(1 - p_{vw} p_{wv}\right) + \left(1 - p_{uv} p_{wu}\right) - \left(p_{vu} + p_{vw} p_{wu}\right) \left(p_{uv} + p_{uw} p_{wv}\right) \right\}} \\ F_{w} &= 1 - \frac{\lambda_{u} \left\{p_{uv} \left(p_{vw} + p_{vu} p_{uw}\right) + p_{uw} \left(1 - p_{uv} p_{vu}\right) - \left(p_{vu} + p_{vw} p_{wu}\right) \left(p_{uv} + p_{uw} p_{wv}\right) \right\}}{\mu_{w} \left\{ \left(1 - p_{uw} p_{wu}\right) \left(1 - p_{uv} p_{vu}\right) - \left(p_{wv} + p_{uv} p_{uw}\right) + \lambda_{w} \left(1 - p_{uv} p_{vu}\right)}{\mu_{w} \left\{ \left(1 - p_{uw} p_{wu}\right) \left(1 - p_{uv} p_{vu}\right) - \left(p_{wv} + p_{uv} p_{wu}\right) \left(p_{vw} + p_{vu} p_{uw}\right) \right\}} \\ &= 1 - \left[\frac{\mu_{\alpha} p_{\alpha d}}{\mu_{d}} \left(1 - F_{\alpha}\right) + \frac{\mu_{\beta} p_{\beta d}}{\mu_{d}} \left(1 - F_{\beta}\right) + \frac{\mu_{\gamma} p_{\gamma d}}{\mu_{d}} \left(1 - F_{\gamma}\right) + \frac{\mu_{u} p_{ud}}{\mu_{d}} \left(1 - F_{u}\right) + \frac{\mu_{v} p_{vd}}{\mu_{d}} \left(1 - F_{v}\right)} + \frac{\mu_{w} p_{wd}}{\mu_{d}} \left(1 - F_{w}\right)}\right] \end{aligned}$$

The solution (Joint Probability) of the model in steady state is written as

 F_d

$$P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{\nu},n_{w},n_{d}} = \left(1-F_{\alpha}\right)^{n_{\alpha}} \left(1-F_{\beta}\right)^{n_{\beta}} \left(1-F_{\gamma}\right)^{n_{\gamma}} \left(1-F_{u}\right)^{n_{u}} \left(1-F_{\nu}\right)^{n_{\nu}} \left(1-F_{w}\right)^{n_{w}} \left(1-F_{d}\right)^{n_{d}} F_{\alpha}F_{\beta}F_{\gamma}F_{u}F_{\nu}F_{w}F_{d}$$
(18)

$$P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{\nu},n_{w},n_{d}} = \rho_{\alpha}^{n_{\alpha}} \rho_{\beta}^{n_{\beta}} \rho_{\gamma}^{n_{\gamma}} \rho_{u}^{n_{u}} \rho_{\nu}^{n_{\nu}} \rho_{w}^{n_{w}} \rho_{d}^{n_{d}} \left(1-\rho_{\alpha}\right) \left(1-\rho_{\beta}\right) \left(1-\rho_{\nu}\right) \left(1-\rho_{\nu}\right) \left(1-\rho_{\nu}\right) \left(1-\rho_{w}\right) \left(1-\rho_{d}\right)$$
Where $\rho_{\alpha} = 1-F_{\alpha}, \ \rho_{\alpha} = 1-F_{\alpha}, \ \rho_{\alpha} = 1-F_{\nu}, \ \rho_{\alpha} = 1-F_{\nu}, \ \rho_{\alpha} = 1-F_{\nu}, \ \rho_{\alpha} = 1-F_{\mu}$

$$\rho_{\alpha} = \frac{\lambda_{\alpha} \left(1 - p_{\gamma\beta} p_{\beta\gamma} + 1 q_{\beta} p_{\gamma} + 1 q_{\gamma} p_{u} + 1 q_{u} p_{\gamma} + 1 q_{\gamma} p_{\mu} + 1 q_{\nu} p_{\mu} + 1 q_{\mu} p_{\mu} p_{\mu$$

The solution of this model in steady state exists if ρ_{α} , ρ_{β} , ρ_{γ} , ρ_{u} , ρ_{v} , ρ_{w} , $\rho_{d} < 1$

V. PERFORMANCE MEASURES

(i) Mean queue length (average number of customers)

$$L_{\mathcal{Q}} = L_{\alpha} + L_{\beta} + L_{\gamma} + L_{u} + L_{v} + L_{w} + L_{d}$$

$$L_{\mathcal{Q}} = \frac{\rho_{\alpha}}{1 - \rho_{\alpha}} + \frac{\rho_{\beta}}{1 - \rho_{\beta}} + \frac{\rho_{\gamma}}{1 - \rho_{\gamma}} + \frac{\rho_{u}}{1 - \rho_{u}} + \frac{\rho_{v}}{1 - \rho_{v}} + \frac{\rho_{w}}{1 - \rho_{w}} + \frac{\rho_{d}}{1 - \rho_{d}}$$

Where
$$L_{\alpha} = \frac{\rho_{\alpha}}{1-\rho_{\alpha}}$$
, $L_{\beta} = \frac{\rho_{\beta}}{1-\rho_{\beta}}$, $L_{\gamma} = \frac{\rho_{\gamma}}{1-\rho_{\gamma}}$, $L_{u} = \frac{\rho_{u}}{1-\rho_{u}}$, $L_{v} = \frac{\rho_{v}}{1-\rho_{v}}$, $L_{w} = \frac{\rho_{w}}{1-\rho_{w}}$, $L_{d} = \frac{\rho_{d}}{1-\rho_{d}}$

(ii) Fluctuation (Variance) in queue length

$$V_{ar} = V_{\alpha} + V_{\beta} + V_{\gamma} + V_{u} + V_{v} + V_{w} + V_{d}$$

$$V_{ar} = \frac{\rho_{\alpha}}{(1-\rho_{\alpha})^{2}} + \frac{\rho_{\beta}}{(1-\rho_{\beta})^{2}} + \frac{\rho_{\gamma}}{(1-\rho_{\gamma})^{2}} + \frac{\rho_{u}}{(1-\rho_{u})^{2}} + \frac{\rho_{v}}{(1-\rho_{v})^{2}} + \frac{\rho_{w}}{(1-\rho_{w})^{2}} + \frac{\rho_{d}}{(1-\rho_{d})^{2}} + \frac{\rho_{d}$$

Where

$$V_{\alpha} = \frac{\rho_{\alpha}}{(1-\rho_{\alpha})^{2}}, V_{\beta} = \frac{\rho_{\beta}}{(1-\rho_{\beta})^{2}}, V_{\gamma} = \frac{\rho_{\gamma}}{(1-\rho_{\gamma})^{2}}, V_{u} = \frac{\rho_{u}}{(1-\rho_{u})^{2}}, V_{v} = \frac{\rho_{v}}{(1-\rho_{v})^{2}}, V_{w} = \frac{\rho_{w}}{(1-\rho_{w})^{2}}, V_{d} = \frac{\rho_{d}}{(1-\rho_{d})^{2}}$$

(iii) Average waiting time for customer

$$E_{wt} = \frac{L_Q}{\lambda} \quad , \quad where \quad \lambda = \lambda_{\alpha} + \lambda_{\beta} + \lambda_{\gamma} + \lambda_{u} + \lambda_{v} + \lambda_{w}$$

VI. RESULTS AND DISCUSSION

In the present queuing network, two global servers GSr_1 and GSr_2 are connected in parallel. Both the global servers comprising of three servers connected in tri-cum biserial way and both the global servers are further connected with the exit server Sr_d in series. The detailed discussion of the present model has been done in the aforementioned section 3 along with the detailed pictorial representation. In section 4, the development of various mathematical equations have been carried out which have been used to find the various queuing parameters such as queue lengths, variances, Utilization of servers, average waiting time for customers.

Table 1 shows the various input parameters, i.e., $p_{\alpha\beta}$, $p_{\alpha\gamma}$,

 $p_{\alpha d}$, p_{uv} , p_{uw} , p_{ud} , n_{α} , n_{β} , n_{u} , n_{d} etc., which have been used during the calculations of various queuing characteristics.

Table 2 shows the variation of traffic intensities, variances and joint probability with mean arrival rate λ_{α} at server Sr_{α} from global server 1 (GSr₁). In bracket, various other input parameters which have been used in the calculation of numerical values shown in the Table 2 are given. It is evident from the results that as λ_{α} increases traffic intensities ρ_{α} , ρ_{β} , ρ_{γ} , ρ_{d} and variances increases. It is also observed that the values of ρ_{u} , ρ_{v} and ρ_{w} are unchanged as λ_{α} increases. This is due to the fact that ρ_{u} , ρ_{v} and ρ_{w} are associated with the global server 2 (GSr₂) which are connected in parallel with global server 1 (GSr₁) therefore as λ_{α} is associated with GSr₁ only, hence these values remain unchanged. This can also be seen clearly from the queuing network shown in the figure that the servers GSr₁ and GSr₂ which are connected in parallel have their input parameters which are independent to each other.

Figure 2 (a, b) show the variation of mean arrival rate λ_{α} with the queue length (L_a) and average waiting time (E_{wt}) keeping all the input parameters same as considered for Table 2. It can be seen that as the mean arrival rate λ_{α} increases queue length (L_a) and average waiting time (E_{wt}) increases. Practically it is possible because as the number of customers at a particular server increases queue length and average waiting time increases. The same conclusion can be drawn for Tables 3-7 and Figures 3-7. Table 8 shows the variation of traffic intensities, variances and joint probability with mean service rate μ_{α} at server Sr_{α} from global server 1 (GSr₁). It is clear from the results that as service rate μ_{α} increases traffic intensity ρ_{α} at server Sr_{α} decreases whereas the traffic intensities ρ_{β} , ρ_{γ} , ρ_{μ} , ρ_v , ρ_w and ρ_d at other servers remains unaffected. Variance V_{ar} also decreases as μ_{α} increases.

The mean service rate μ_{α} are plotted against queue length (L_q) and average waiting time (E_{wt}) for customers in Figure 8. It is clear from the figure that queue length and average waiting time decreases as the mean service rate μ_{α}

Vol.6(11), Nov 2018, E-ISSN: 2347-2693

increases. It is true practically and mathematically also because when the service rate increases, the customers at various servers will be served rapidly as the consequences the queue length and average waiting time decreases. The same outcome can be seen from Tables 9-14 and Figures 9-14.

$p_{lphaeta}$	$p_{lpha\gamma}$	$p_{\alpha d}$	$p_{etalpha}$	$p_{ m eta\gamma}$	$p_{_{eta d}}$	p_{\gammalpha}	$p_{ m yeta}$	$p_{_{\gamma d}}$	n _a	n_{β}	n_{γ}	n_d
0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.34	1	2	2	13
p_{uv}	p_{uw}	p_{ud}	p_{vu}	$p_{_{VW}}$	p_{vd}	p_{wu}	$p_{\scriptscriptstyle wv}$	$p_{\scriptscriptstyle wd}$	n_u	n_{v}	n_w	
0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.34	2	3	3	

Table 2. Utilization of servers, Variances and Joint Probabilities for various mean arrival rates λ_{lpha}

Table 1. Various input parameters considered in computation of results

(taking	$\lambda_{\beta} = 2, \ \lambda_{\gamma} =$	$=3, \ \mu_{\alpha}=9,$	$\mu_{\beta} = 10, \ \mu$	$\lambda_{\gamma} = 11, \ \lambda_u =$	$=2,\lambda_{v}=3,$	$\lambda_{_{\scriptscriptstyle W}}{=}4,~\mu_{_{\scriptscriptstyle U}}$	$=12, \ \mu_{v}=1$	13, $\mu_w = 14$,	$\mu_d = 18$)
$\lambda_{_{\alpha}}\downarrow$	$ ho_{lpha}$	$ ho_{eta}$	$ ho_\gamma$	ρ_u	ρ_{v}	$ ho_w$	ρ_d	V_{ar}	Р
1	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07
1.2	0.603	0.603	0.616	0.673	0.679	0.684	0.844	66.434	1.31E-07
1.4	0.636	0.617	0.630	0.673	0.679	0.684	0.856	74.312	1.42E-07
1.6	0.669	0.632	0.643	0.673	0.679	0.684	0.867	84.258	1.50E-07
1.8	0.702	0.647	0.656	0.673	0.679	0.684	0.878	97.079	1.55E-07
2	0.735	0.661	0.669	0.673	0.679	0.684	0.889	114.025	1.55E-07
2.2	0.768	0.676	0.683	0.673	0.679	0.684	0.900	137.125	1.49E-07
2.4	0.801	0.690	0.696	0.673	0.679	0.684	0.911	169.866	1.38E-07
2.6	0.833	0.705	0.709	0.673	0.679	0.684	0.922	218.690	1.22E-07
2.8	0.866	0.720	0.723	0.673	0.679	0.684	0.933	296.763	9.96E-08
3	0.899	0.734	0.736	0.673	0.679	0.684	0.944	435.330	7.38E-08

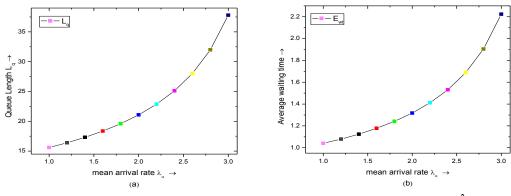


Figure 2 (a, b). Mean queue length and Average waiting time for various mean arrival rates λ_{lpha}

Table 3. Utilization of servers, Variances and Joint Probabilities for various mean arrival rates $\,\lambda_{\scriptscriptstyle \beta}\,$

(taking	$\lambda_{\alpha} = 1, \ \lambda_{\gamma} =$	$=3, \mu_{\alpha}=9$, $\mu_{\beta} = 10$, μ	$u_{\gamma} = 11, \lambda_u =$	$=2, \lambda_{v}=3,$	$\lambda_w = 4, \ \mu_u$	=12, μ_v =	13, $\mu_w = 14$, $\mu_d = 18$)
$\lambda_{\beta}\downarrow$	$ ho_{lpha}$	$ ho_{eta}$	$ ho_\gamma$	ρ_u	ρ_v	$ ho_w$	ρ_d	V_{ar}	Р
1	0.489	0.440	0.537	0.673	0.679	0.684	0.778	41.228	4.61E-08
1.2	0.505	0.470	0.550	0.673	0.679	0.684	0.789	43.851	5.80E-08
1.4	0.521	0.499	0.563	0.673	0.679	0.684	0.800	46.922	7.14E-08
1.6	0.538	0.529	0.577	0.673	0.679	0.684	0.811	50.549	8.62E-08
1.8	0.554	0.559	0.590	0.673	0.679	0.684	0.822	54.871	1.02E-07
2	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07
2.2	0.586	0.618	0.616	0.673	0.679	0.684	0.844	66.443	1.34E-07
2.4	0.602	0.648	0.630	0.673	0.679	0.684	0.856	74.321	1.49E-07
2.6	0.619	0.677	0.643	0.673	0.679	0.684	0.867	84.244	1.61E-07
2.8	0.635	0.707	0.656	0.673	0.679	0.684	0.878	96.995	1.70E-07
3	0.651	0.736	0.669	0.673	0.679	0.684	0.889	113.776	1.74E-07

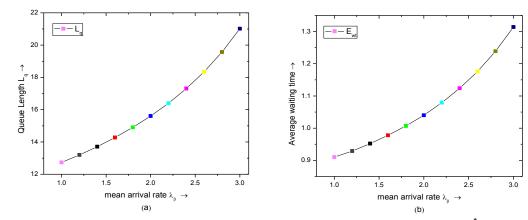


Figure 3 (a, b). Mean queue length and Average waiting time for various mean arrival rates $\,\lambda_{\beta}$

Table 4. Utilization of servers, Variances and Joint Probabilities for various mean arrival rates λ_{ν}

(taking	$\lambda_{\alpha} = 1, \ \lambda_{\beta} =$	$=2, \mu_{\alpha}=9$, $\mu_{\beta} = 10$, μ	$\mathfrak{l}_{\gamma} = 11, \ \lambda_u =$	$=2, \lambda_{v}=3,$	$\lambda_w = 4, \ \mu_u$	=12, μ_{ν} =	13, $\mu_w = 14$	$\mu_d = 18$)
$\lambda_{\gamma}\downarrow$	$ ho_{lpha}$	$ ho_{eta}$	ρ_{γ}	ρ _u	ρ_{v}	$ ho_w$	ρ_d	V_{ar}	Р
1	0.408	0.442	0.334	0.673	0.679	0.684	0.722	32.397	1.19E-08
1.2	0.424	0.457	0.361	0.673	0.679	0.684	0.733	33.723	1.64E-08
1.4	0.440	0.471	0.388	0.673	0.679	0.684	0.744	35.226	2.21E-08
1.6	0.457	0.486	0.415	0.673	0.679	0.684	0.756	36.940	2.91E-08
1.8	0.473	0.501	0.441	0.673	0.679	0.684	0.767	38.906	3.77E-08
2	0.489	0.515	0.468	0.673	0.679	0.684	0.778	41.173	4.78E-08
2.2	0.505	0.530	0.495	0.673	0.679	0.684	0.789	43.807	5.95E-08
2.4	0.521	0.544	0.522	0.673	0.679	0.684	0.800	46.889	7.26E-08
2.6	0.538	0.559	0.549	0.673	0.679	0.684	0.811	50.527	8.71E-08
2.8	0.554	0.574	0.576	0.673	0.679	0.684	0.822	54.861	1.02E-07
3	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07

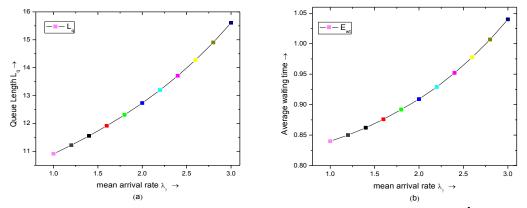


Figure 4 (a, b). Mean queue length and Average waiting time for various mean arrival rates λ_{v}

Table 5. Utilization of servers, Variances and Joint Probabilities for various mean arrival rates λ_u

$(\text{taking } \lambda_{\alpha} = 1, \lambda_{\beta} = 2, \lambda_{\gamma} = 3, \mu_{\alpha} = 9, \mu_{\beta} = 10, \mu_{\gamma} = 11, \lambda_{\nu} = 3, \lambda_{\omega} = 4, \mu_{u} = 12, \mu_{\nu} = 13, \mu_{\omega} = 14, \mu_{d} = 18)$

$\lambda_{u}\downarrow$	$ ho_{lpha}$	$ ho_{eta}$	$ ho_\gamma$	ρ_u	ρ_{v}	ρ_w	ρ_d	V_{ar}	Р
2	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07
2.2	0.570	0.588	0.603	0.697	0.690	0.694	0.844	67.504	1.34E-07
2.4	0.570	0.588	0.603	0.722	0.701	0.705	0.856	76.674	1.48E-07
2.6	0.570	0.588	0.603	0.747	0.712	0.715	0.867	88.206	1.60E-07
2.8	0.570	0.588	0.603	0.771	0.724	0.726	0.878	103.022	1.69E-07

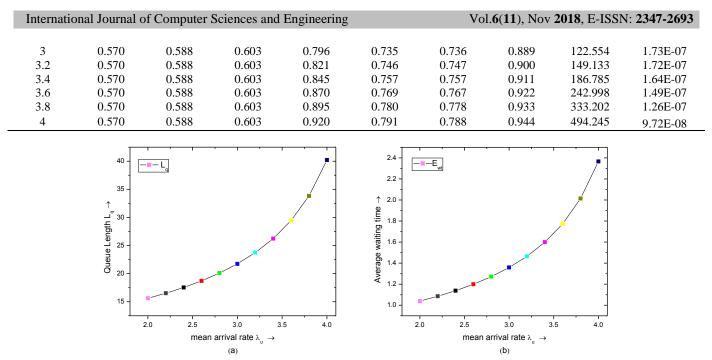


Figure 5 (a, b). Mean queue length and Average waiting time for various mean arrival rates λ_{μ}

Table 6. Utilization of servers, Variances and Joint Probabilities for various mean arrival rates $\lambda_{
m v}$

			,					V	
ting $\lambda_{\alpha} = 1$, $\lambda_{\beta} = 2$, λ_{β}	$\lambda_{\gamma} = 3, \ \mu_{\alpha}$	=9, μ_{β} =	$=10, \mu_{\gamma}=1$	11,, $\lambda_u = 2$	2, $\lambda_w = 4$,	$\mu_u = 12$,	$\mu_v = 13, \mu$	$\mu_w = 14, \ \mu_d =$
$\lambda_{\nu}\downarrow$	ρ_{α}	$ ho_{eta}$	ρ_{γ}	ρ _u	ρ_v	ρ_w	ρ_d	V_{ar}	Р
2	0.570	0.588	0.603	0.612	0.565	0.632	0.778	37.835	4.52E-08
2.2	0.570	0.588	0.603	0.624	0.588	0.642	0.789	40.969	5.66E-08
2.4	0.570	0.588	0.603	0.636	0.610	0.653	0.800	44.618	6.98E-08
2.6	0.570	0.588	0.603	0.648	0.633	0.663	0.811	48.904	8.47E-08
2.8	0.570	0.588	0.603	0.660	0.656	0.674	0.822	53.988	1.01E-07
3	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07
3.2	0.570	0.588	0.603	0.685	0.702	0.694	0.844	67.482	1.36E-07
3.4	0.570	0.588	0.603	0.697	0.724	0.705	0.856	76.597	1.53E-07
3.6	0.570	0.588	0.603	0.709	0.747	0.715	0.867	88.016	1.68E-07
3.8	0.570	0.588	0.603	0.721	0.770	0.726	0.878	102.612	1.81E-07
4	0.570	0.588	0.603	0.733	0.793	0.736	0.889	121.721	1.89E-07

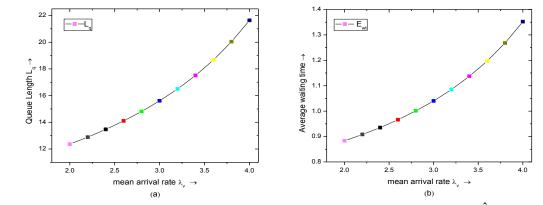


Figure 6 (a, b). Mean queue length and Average waiting time for various mean arrival rates λ_{ν}

(taki	ng $\lambda_{\alpha} = 1$, $\lambda_{\beta} = 2$, $\lambda_{\beta} = 2$	$\lambda_{\gamma} = 3, \ \mu_{\alpha}$	=9, μ_{β} =	=10, $\mu_{\gamma} = 1$	11, , $\lambda_u = 1$	2, $\lambda_{\nu} = 3$,	$\mu_{u} = 12$,	$\mu_v = 13, \mu$	$\mu_w = 14, \ \mu_d = 18$
	$\lambda_w \downarrow$	ρ_{α}	ρ_{β}	ρ_{γ}	ρ_u	ρ_{v}	ρ_w	ρ_d	V_{ar}	Р
_	2	0.570	0.588	0.603	0.551	0.566	0.472	0.722	27.185	1.22E-08
_	2.2	0.570	0.588	0.603	0.563	0.578	0.493	0.733	28.808	1.64E-08
	2.4	0.570	0.588	0.603	0.575	0.589	0.515	0.744	30.640	2.17E-08
	2.6	0.570	0.588	0.603	0.587	0.600	0.536	0.756	32.719	2.83E-08
	2.8	0.570	0.588	0.603	0.600	0.611	0.557	0.767	35.091	3.64E-08
	3	0.570	0.588	0.603	0.612	0.623	0.578	0.778	37.812	4.61E-08
	3.2	0.570	0.588	0.603	0.624	0.634	0.599	0.789	40.956	5.74E-08
	3.4	0.570	0.588	0.603	0.636	0.645	0.620	0.800	44.614	7.05E-08
	3.6	0.570	0.588	0.603	0.648	0.656	0.642	0.811	48.908	8.51E-08
	3.8	0.570	0.588	0.603	0.660	0.668	0.663	0.822	53.994	1.01E-07
	4	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07

Table 7. Utilization of servers, Variances and Joint Probabilities for various mean arrival rates λ_w

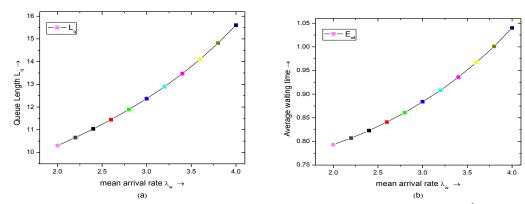


Figure 7 (a, b). Mean queue length and Average waiting time for various mean arrival rates $\lambda_{_W}$

Table 8. Utilization of servers, Variances and Joint Probabilities for various mean service rates $\,\mu_{lpha}$

 $(\text{taking } \lambda_{\alpha} = 1, \ \lambda_{\beta} = 2, \ \lambda_{\gamma} = 3, \ \mu_{\beta} = 10, \ \mu_{\gamma} = 11, \ \lambda_{u} = 2, \ \lambda_{v} = 3, \\ \lambda_{w} = 4, \ \mu_{u} = 12, \ \mu_{v} = 13, \ \mu_{w} = 14, \ \mu_{d} = 18)$ Р V_{ar} \downarrow ρ_d ρ_{α} ρ_{β} ρ_{γ} ρ_u ρ_v ρ_w μ_{α} 9 0.570 0.588 0.603 0.673 0.679 0.684 0.833 60.082 1.18E-07 9.2 0.558 0.588 0.603 0.673 0.679 0.684 0.833 59.849 1.19E-07 9.4 0.546 0.588 0.603 0.673 0.679 0.684 0.833 59.644 1.20E-07 9.6 0.534 0.588 0.603 0.673 0.679 0.684 0.833 59.464 1.20E-07 9.8 0.524 0.588 0.603 0.673 0.679 0.684 0.833 59.304 1.20E-07 10 0.588 0.603 0.673 0.679 0.833 59.162 0.513 0.684 1.20E-07 10.2 0.503 0.588 0.603 0.673 0.679 0.684 0.833 59.035 1.21E-07 0.493 10.4 0.588 0.603 0.673 0.679 0.684 0.833 58.920 1.20E-07 10.6 0.4840.5880.603 0.673 0.679 0.6840.833 58.816 1.20E-07 10.8 0.475 0.588 0.603 0.673 0.679 0.684 0.833 58.722 1.20E-07 0.466 0.588 0.603 0.673 0.679 0.684 0.833 11 58.637 1.20E-07

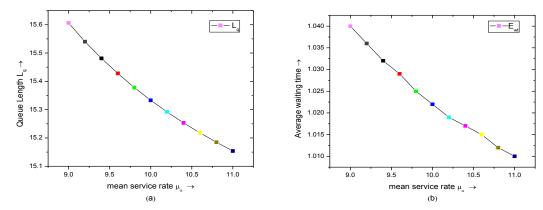


Figure 8 (a, b). Mean queue length and Average waiting time for various mean service rates $\,\mu_{\alpha}$

Table 9. Utilization of servers, Variances and Joint Probabilities for various mean service rates $\,\mu_{eta}$

(tak	ing $\lambda_{\alpha} =$	1, $\lambda_{\beta} = 2$,	$\lambda_{\gamma} = 3, \mu$	$\mu_{\alpha} = 9$, μ_{γ}	=11, λ_u =	$=2, \lambda_v = 3$	$\lambda_w = 4$,	$\mu_u = 12, \mu$	$\mu_v = 13$, μ_w	$=14, \ \mu_d = 18)$
	$\mu_{\beta}\downarrow$	$ ho_{lpha}$	$ ho_{eta}$	$ ho_{\gamma}$	ρ_u	ρ_v	ρ_w	ρ_d	V_{ar}	Р
_	9	0.570	0.654	0.603	0.673	0.679	0.684	0.833	62.060	1.23E-07
	9.2	0.570	0.639	0.603	0.673	0.679	0.684	0.833	61.530	1.22E-07
	9.4	0.570	0.626	0.603	0.673	0.679	0.684	0.833	61.081	1.22E-07
	9.6	0.570	0.613	0.603	0.673	0.679	0.684	0.833	60.699	1.21E-07
	9.8	0.570	0.600	0.603	0.673	0.679	0.684	0.833	60.369	1.19E-07
	10	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07
	10.2	0.570	0.577	0.603	0.673	0.679	0.684	0.833	59.831	1.17E-07
	10.4	0.570	0.566	0.603	0.673	0.679	0.684	0.833	59.610	1.15E-07
	10.6	0.570	0.555	0.603	0.673	0.679	0.684	0.833	59.414	1.14E-07
	10.8	0.570	0.545	0.603	0.673	0.679	0.684	0.833	59.240	1.12E-07
	11	0.570	0.535	0.603	0.673	0.679	0.684	0.833	59.083	1.10E-07

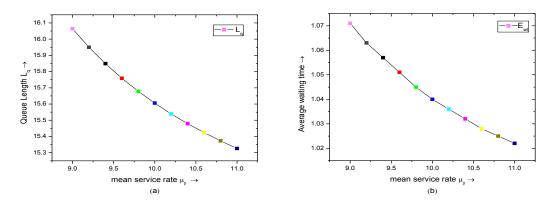


Figure 9 (a, b). Mean queue length and Average waiting time for various mean service rates $\,\mu_{\beta}$

Table 10. Utilization of servers, Variances and Joint Probabilities for various mean service rates $\,\mu_{\gamma}$

(tal	king $\lambda_{\alpha} =$	1, $\lambda_{\beta} = 2$, $\lambda_{\gamma} = 3$, μ	$\mu_{\alpha} = 9$, μ_{β}	=10, λ_u =	$=2, \lambda_v = 3$	$3, \lambda_w = 4,$	$\mu_u = 12, \mu$	$\mu_{\nu} = 13, \ \mu_{\mu}$	$\mu_d = 14, \ \mu_d = 18$)
	$\mu_{\gamma}\downarrow$	$ ho_{lpha}$	$ ho_{eta}$	$ ho_\gamma$	ρ _u	$ ho_v$	$ ho_w$	ρ_d	V_{ar}	Р
-	9	0.570	0.588	0.737	0.673	0.679	0.684	0.833	66.922	1.17E-07
_	9.2	0.570	0.588	0.721	0.673	0.679	0.684	0.833	65.525	1.19E-07
	9.4	0.570	0.588	0.706	0.673	0.679	0.684	0.833	64.406	1.20E-07

Internatio	onal .	Journal of Co	mputer Sci	ences and l	Engineering	;		Vol.6(11), Nov 2018, E-ISSN: 2347-2			
	9.6	0.570	0.588	0.691	0.673	0.679	0.684	0.833	63.494	1.21E-07	
	9.8	0.570	0.588	0.677	0.673	0.679	0.684	0.833	62.741	1.21E-07	
	10	0.570	0.588	0.663	0.673	0.679	0.684	0.833	62.110	1.21E-07	
1	0.2	0.570	0.588	0.650	0.673	0.679	0.684	0.833	61.576	1.21E-07	
1	0.4	0.570	0.588	0.638	0.673	0.679	0.684	0.833	61.119	1.21E-07	
1	0.6	0.570	0.588	0.626	0.673	0.679	0.684	0.833	60.725	1.20E-07	
1	0.8	0.570	0.588	0.614	0.673	0.679	0.684	0.833	60.382	1.19E-07	
	11	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07	
		17.0		· · ·		1.14					
		16.8 -			q				_		
		16.6 -	5			1.12				4	
		↑ [°] 164 –	A			↑ 9 E 110.				-	

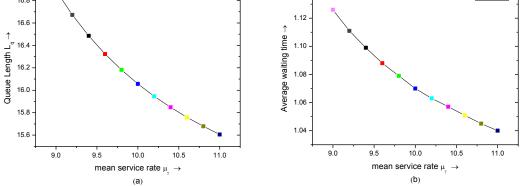


Figure 10 (a, b). Mean queue length and Average waiting time for various mean service rates $\,\mu_{\gamma}$

Table 11. Utilization of servers, Variances and Joint Probabilities for various mean service rates μ_u

								• 4	
taking $\lambda_{\alpha} =$	$=1,\;\lambda_{\beta}=2$, $\lambda_{\gamma} = 3$, μ	$\mu_{\alpha} = 9$, μ_{β}	=10, μ_{γ} =	=11, λ_u =	$2,\;\lambda_{_{\mathcal{V}}}=3$	$\lambda_w = 4$,	$\mu_v = 13$, μ_w	$\mu_{d} = 14, \ \mu_{d} = 18$
$\mu_u \downarrow$	ρ_{α}	ρ_{β}	ρ_{γ}	ρ _u	ρ_v	ρ_w	ρ_d	V_{ar}	Р
12	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07
12.2	0.570	0.588	0.603	0.662	0.679	0.684	0.833	59.584	1.18E-07
12.4	0.570	0.588	0.603	0.651	0.679	0.684	0.833	59.148	1.18E-07
12.6	0.570	0.588	0.603	0.641	0.679	0.684	0.833	58.765	1.18E-07
12.8	0.570	0.588	0.603	0.631	0.679	0.684	0.833	58.427	1.17E-07
13	0.570	0.588	0.603	0.621	0.679	0.684	0.833	58.126	1.17E-07
13.2	0.570	0.588	0.603	0.611	0.679	0.684	0.833	57.857	1.16E-07
13.4	0.570	0.588	0.603	0.602	0.679	0.684	0.833	57.615	1.15E-07
13.6	0.570	0.588	0.603	0.594	0.679	0.684	0.833	57.397	1.14E-07
13.8	0.570	0.588	0.603	0.585	0.679	0.684	0.833	57.200	1.13E-07
14	0.570	0.588	0.603	0.577	0.679	0.684	0.833	57.021	1.12E-07

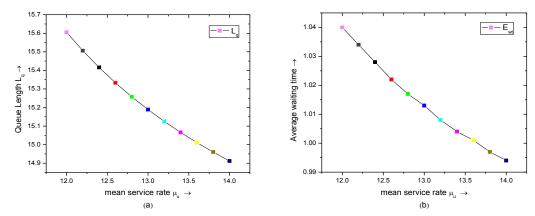
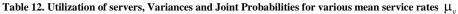



Figure 11 (a, b). Mean queue length and Average waiting time for various mean service rates μ_{μ}

(taking	$\lambda_{\alpha} = 1, \lambda_{\beta}$	$=2, \lambda_{\gamma}=3$, $\mu_{\alpha} = 9$, μ	$_{\beta} = 10, \ \mu_{\gamma} =$	$11, \lambda_u = 2$	$\lambda_v = 3, \lambda_w$	$=4, \ \mu_u = 1$	2, $\mu_w = 14$,	$\mu_d = 18$)
$\mu_{\nu}\downarrow$	ρ _α	$ ho_{eta}$	ρ_{γ}	ρ _u	$ ho_v$	$ ho_w$	ρ_d	V_{ar}	Р
12	0.570	0.588	0.603	0.673	0.735	0.684	0.833	64.000	1.24E-07
12.2	0.570	0.588	0.603	0.673	0.723	0.684	0.833	62.948	1.23E-07
12.4	0.570	0.588	0.603	0.673	0.712	0.684	0.833	62.060	1.22E-07
12.6	0.570	0.588	0.603	0.673	0.700	0.684	0.833	61.302	1.21E-07
12.8	0.570	0.588	0.603	0.673	0.689	0.684	0.833	60.649	1.20E-07
13	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07
13.2	0.570	0.588	0.603	0.673	0.668	0.684	0.833	59.587	1.16E-07
13.4	0.570	0.588	0.603	0.673	0.658	0.684	0.833	59.151	1.15E-07
13.6	0.570	0.588	0.603	0.673	0.649	0.684	0.833	58.766	1.13E-07
13.8	0.570	0.588	0.603	0.673	0.639	0.684	0.833	58.423	1.11E-07
14	0.570	0.588	0.603	0.673	0.630	0.684	0.833	58.116	1.09E-07

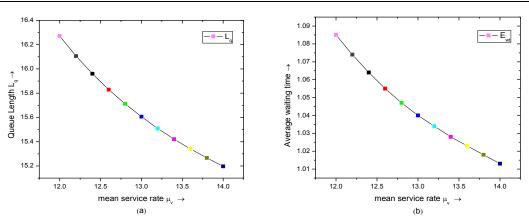


Figure 12 (a, b). Mean queue length and Average waiting time for various mean service rates μ_{ν}

Table 13. Utilization of servers, Variances and Joint Probabilities for various mean service rates $\mu_{\scriptscriptstyle W}$

$(\text{taking } \lambda_{\alpha} = 1, \lambda_{\beta} = 2, \lambda_{\gamma} = 3, \mu_{\alpha} = 9, \mu_{\beta} = 10, \mu_{\gamma} = 11, \lambda_{u} = 2, \lambda_{v} = 3, \lambda_{w} = 4, \mu_{u} = 12, \mu_{v} = 13, \mu_{d} = 18)$									
$\mu_w \downarrow$	ρ_{α}	ρ_{β}	ρ_{γ}	ρ _u	ρ_v	ρ_w	ρ_d	V_{ar}	Р
12	0.570	0.588	0.603	0.673	0.679	0.798	0.833	72.781	1.20E-07
12.2	0.570	0.588	0.603	0.673	0.679	0.785	0.833	70.193	1.22E-07
12.4	0.570	0.588	0.603	0.673	0.679	0.772	0.833	68.117	1.23E-07
12.6	0.570	0.588	0.603	0.673	0.679	0.760	0.833	66.423	1.23E-07

0.679

0.748

0.833

65.022

0.673

0.588

0.603

0.570

12.8

1.23E-07

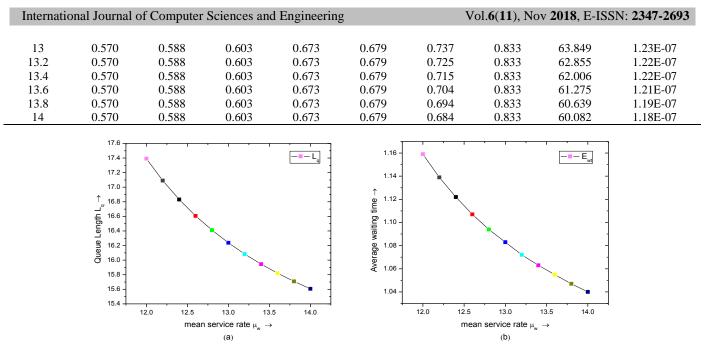


Figure 13 (a, b). Mean queue length and Average waiting time for various mean service rates μ_{w}

Table 14. Utilization of servers,	Variances and Joint Probabilities for various mean service rates μ	μ,

(taking	$ \lambda_{\alpha} = 1, \lambda_{\beta}$	$=2$, $\lambda_{\gamma}=3$	$\beta, \mu_{\alpha} = 9, \mu$	$\mu_{\beta} = 10, \ \mu_{\gamma} =$	=11, $\lambda_u = 2$, $\lambda_v = 3$, λ_w	$\mu = 4, \ \mu_u = 1$	12, $\mu_{\nu} = 13$,	$\mu_{w} = 14$)
$\mu_d \downarrow$	$ ho_{lpha}$	$ ho_{eta}$	ρ_{γ}	ρ_u	ρ_{v}	ρ_w	ρ_d	V_{ar}	Р
18	0.570	0.588	0.603	0.673	0.679	0.684	0.833	60.082	1.18E-07
18.2	0.570	0.588	0.603	0.673	0.679	0.684	0.824	56.742	1.08E-07
18.4	0.570	0.588	0.603	0.673	0.679	0.684	0.815	53.958	9.84E-08
18.6	0.570	0.588	0.603	0.673	0.679	0.684	0.806	51.610	8.96E-08
18.8	0.570	0.588	0.603	0.673	0.679	0.684	0.798	49.611	8.14E-08
19	0.570	0.588	0.603	0.673	0.679	0.684	0.789	47.895	7.39E-08
19.2	0.570	0.588	0.603	0.673	0.679	0.684	0.781	46.409	6.70E-08
19.4	0.570	0.588	0.603	0.673	0.679	0.684	0.773	45.113	6.07E-08
19.6	0.570	0.588	0.603	0.673	0.679	0.684	0.765	43.976	5.50E-08
19.8	0.570	0.588	0.603	0.673	0.679	0.684	0.758	42.973	4.98E-08
20	0.570	0.588	0.603	0.673	0.679	0.684	0.750	42.082	4.50E-08

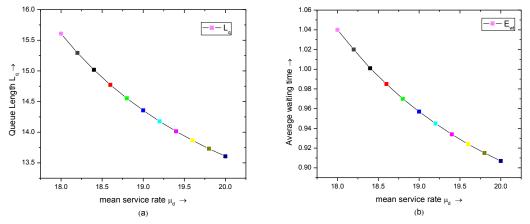


Figure 14 (a, b). Mean queue length and Average waiting time for various mean service rates μ_d

VII. CONCLUSION

In the present study, a complex queuing model has been developed to find the various queuing characteristics such as queue lengths, traffic intensities and average waiting time for customers etc. Various combinations of input parameters have been considered to find the various output parameters. This parametric study can be useful in various practical applications such as shopping complex, banks, railway stations, industries etc.

Some of the important attributes of presently developed queuing model can be summarized as follows

- If we consider only one global server GSr_1 or GSr_2 then the queuing model can be converted to previously developed model which is given by Agrawal and Singh [10].
- If Sr_{y} and Sr_{w} have not considered then the queuing model will deliver the same results as presented by Kumar et al. [8].
- If GSr₂ is completely ignored and in GSr₁ only two servers will be considered then the resulted queuing model will be same as given by Singh et al. [7].

There are several other models available in the literature which can be drawn from the presently developed model therefore the presently developed model is named as generalized queuing model.

REFERENCES

- [1] R.R.P. Jackson, "Queuing systems with phase-type service", Operational Research Quarterly, 5, pp. 109-120, 1954.
- P.L. Maggu, "Phase type service queues with two servers in [2] biseries", Journal of Operational Research Society of Japan, Vol. 13, No.1, pp. 6-16, 1970.
- [3] K.L. Arya, "System of two servers in biseries with a serial service channel and phase type service" Zeitschrift fur Operations Research, Vol. 16 B, pp. 115-122, 1972.
- [4] M. Singh, "Steady state behaviour of serial queuing processes with impatient customers", Math, Operations forsch. U. statist. Ser., Vol. 15, No.2, pp. 289-298, 1984.
- R. Hassin, M. Haviv, "To Queue or Not to Queue: Equilibrium [5] Behavior in Queueing Systems", International Series in Operations Research & Management Science, Vol. 59, pp. 109-122, 2003.
- [6] D. Gupta, T.P. Singh, R. Kumar, "Analysis of a network queue model comprised of biserial and parallel channel linked with a common server" Ultra Science, Vol. 19, No. 2 M, 407-418, 2007.

- T.P. Singh, V. Kumar, R. Kumar, "On transient behaviour of a [7] queuing network with parallel biserial queues", JMASS, Vol.1, No.2, pp.68-75, 2005.
- V. Kumar, T.P. Singh, R. Kumar, "Steady state behaviour of a [8] queue model comprised of two subsystems with biserial linked with common channel", Reflection des ERA., Vol.1, No.2, pp.135-152, 2007.
- M.S. El-Paoumy, "On Poisson Bulk Arrival Queue: M X /M / 2 / [9] N with Balking, Reneging and Heterogeneous servers", Applied Mathematical Sciences, Vol. 2, No. 24, 1169 – 1175, 2008.
- [10] S.K. Agrawal, B.K. Singh, "Computation of various queue characteristics using tri-cum biserial queuing model connected with a common server", International Journal of Mathematics Trends and Technology (IJMTT), Vol. 56, No. 1, pp. 81-90, 2008. doi: 10.14445/22315373/IJMTT-V56P510.
- S.K. Agrawal, B.K. Singh, "A Comprehensive study of Various [11] Queue Characteristics using Tri-Cum Biserial Queuing Model", International Journal of Scientific Research in Mathematical and Statistical Sciences (IJSRMSS), Vol. 5, Issue 2, pp. 46-56, 2008. doi: 10.26438/ijsrmss/v5i2.4656.
- [12] S.K. Agrawal, B.K. Singh, "An Investigation of Tri-Cum Biserial Queuing Model Connected with Three Servers", International Journal of Emerging Technologies and Innovative Research (JETIR), Vol. 5, issue 9, pp. 493-509, 2018. Doi: 10.1729/Journal.18346.
- [13] S.K. Agrawal and B.K. Singh, "Influence of Reneging and Jockeying on Various Queuing Characteristics of Tri-Cum Biserial Based Queue Model", International Journal of Mechanical Engineering and Technology (IJMET), Vol. 9, Issue 10, pp. (1062)-(1073), 2018.

Authors Profile

Mr. Sachin Kumar Agrawal is a research scholar in the of Mathematics, I.F.T.M. Department University, Moradabad, Uttar Pradesh, India. His area of research interest is Operations Research, etc. He has several Research papers in the national and international journals. He is also life member of Indian Mathematical Society, Indian Science Congress and Ramanujan Mathematical Society.

Dr. B.K. Singh is a Professor and Head, Department of Mathematics, I.F.T.M. University, Moradabad, Uttar Pradesh, India. He has more than 20 years Research and teaching experience in the field of Mathematics. His major research interest is in Operations Research, Real Analysis, etc. He has several Research papers in the national and international journals and supervising several research scholars. He is also member of several academic societies.

Symbol	Notations				
Servers	$GSr_1, GSr_2, Sr_{\alpha}, Sr_{\beta}, Sr_{\gamma}, Sr_{u}, Sr_{v}, Sr_{w}, Sr_{d}$				
Joint Probability	$P_{n_{\alpha},n_{\beta},n_{\gamma},n_{u},n_{v},n_{w},n_{d}}$				
Mean arrival rates	$\lambda_{lpha},\ \lambda_{eta},\ \lambda_{\gamma},\lambda_{u},\ \lambda_{v},\ \lambda_{w}$				
Mean Service Rates	$\mu_{lpha},\mu_{eta},\mu_{\gamma},\mu_{u},\mu_{v},\mu_{w},\mu_{d}$				

Appendix

Vol.6(11), Nov 2018, E-ISSN: 2347-2693

Vol.6(11), Nov 2018, E-ISSN: 2347-2693

probabilities	$P_{lphaeta}, \ P_{lpha\gamma}, \ P_{lpha d}, \ P_{eta lpha}, \ P_{eta\gamma}, \ P_{eta d}, \ P_{\gamma lpha}, \ P_{\gamma eta}, \ P_{\gamma eta}, \ P_{\gamma d}, \ P_{uv}, \ P_{uv}, \ P_{ud}, \ P_{vu}, \ P_{vu}, \ P_{vv}, \ P_{vv}, \ P_{wu}, \ P_{wv}, \ P_{wd}$						
No. of Customers	$n_{lpha}, n_{eta}, n_{\gamma}, n_{u}, n_{v}, n_{w}, n_{d}$						
Traffic intensity or utilization of servers	$\rho_{\alpha}, \rho_{\beta}, \rho_{\gamma}, \rho_{u}, \rho_{v}, \rho_{w}, \rho_{d}$						
queues lengths	$L_lpha,L_eta,L_\gamma,L_u,L_ u,L_\omega,L_d,L_q$						
Variances	$V_{lpha}, V_{eta}, V_{\gamma}, V_u, V_v, V_w, V_d, V_{ar}$						
Average waiting time for customers	E_{wt}						