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Abstract— A new Quantum Inspired Evolutionary Computational Technique (QIECT) is reported in this work. It is applied to 

a set of standard test bench problems and a few structural engineering design problems. The algorithm is a hybrid of quantum 

inspired evolution and real coded Genetic evolutionary simulated annealing strategies. It generates initial parents randomly and 

improves them using quantum rotation gate. Subsequently, Simulated Annealing (SA) is utilized in Genetic Algorithm (GA) 

for the selection process for child generation. The convergence of the successive generations is continuous and progresses 

towards the global optimum. Efficiency and effectiveness of the algorithm are demonstrated by solving a few unconstrained 

Benchmark Test functions, which are well-known numerical optimization problems. The algorithm is applied on engineering 

optimization problems like spring design, pressure vessel design and gear train design. The results compare favorably with 

other state of art algorithms, reported in the literature. The application of proposed heuristic technique in mechanical 

engineering design is a step towards agility in design.  

 

Keywords—Constraint Optimization, Mechanical Engineering Design problems, Quantum Inspired Evolutionary 

Computational Technique, Unconstrained Optimization 

I. INTRODUCTION AND RELATED WORK  

Engineering Design is specified as a decision making 

procedure which leads to the creation of a product that can 

satisfy particular needs. It involves solving complex objective 

function with a number of decision variables and number of 

constraints. In constraint optimization problems main task is 

to satisfy the constraints in finding the feasible solution. To 

handle these constraints researchers proposed numerous 

approaches. One of them is penalty approach as proposed by 

Deb [1].  

The last decade has witnessed remarkable growth in the 

application of stochastic search techniques for specific well-

defined problems from engineering domain. Genetic 

Algorithm (GA) is one of them, has achieved considerable 

popularity [2, 3]. Evolutionary algorithms are useful in 

general function optimization [4, 5]. To find more refine and 

qualitative solution hybrid methods are adopted and 

implemented by the researchers [5]. Several researchers have 

proposed various nature based hybrid methods for solving 

engineering optimization problems [6, 7,  8, 9, 10]. Hans Raj 

et al., [11] have proposed a hybrid evolutionary 

computational technique by combining GA and Simulated 

Annealing (SA). These nature stimulated evolutionary 

algorithms succeeded in finding near global optimum for real 

life problems. Recently researchers have started to integrate 

quantum mechanics ideas into evolutionary methods [12, 13, 

14, 15, 16].  

In the present work, QIECT is developed by integrating 

quantum concepts such as sampling and rotation gate [15] 

with genetic algorithm and simulated annealing. In QIECT, 

real variables are used in order to enhance solution accuracy. 

Q-bit is expressed as the random real number instead of 

binary bit. The number of Q-bits is equal to the number of 

variables in the given problem. Rotation gate is applied to 

improve the initial population. In Evolutionary Computational 

part, the population is further improved in order to enhance 

solution accuracy using crossover, mutation, and selection 

operators. Simultaneously the Simulated Annealing (SA) 

technique is applied to overcome the problem of getting stuck 

in local optima [17, 18]. Thus, QIECT has the strong 

capability to explore the whole search space without getting 

trapped in local optimum.  

In the present work, QIECT is initially used for solving 

unconstrained benchmark optimization functions and 

subsequently constrained engineering design problems. This 

technique provides more rapid and robust convergence for 

many standard test bench functions. The results of QIECT are 

compared with results of other state of art algorithms [18, 19, 
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20, 21, 22, 23, 24, 25, 26, 27, 28] and found comparable in all 

aspects. The rest of this paper is organized as follows: The 

basic concepts are reviewed and methodology is discussed in 

section II. Simulation results and their comparisons are given 

in section III. Engineering design applications are given in 

sub-section  with conclusions, at the end.  

II. METHODOLOGY 

 

A. Quantum Inspired Evolutionary Computational 

Technique 

In QIECT real variables are used in order to enhance solution 

accuracy. Initial population is generated randomly as shown 

in equation (1). Then, Quantum gate is applied to generate a 

good improve population from initial population. Phase angle 

is generated according to the variables as shown in equation 

(2). It helps in exploring the search space minutely by 

increasing the diversity of population. Genetic Algorithm and 

Simulated Annealing (SA) is applied to acquire the best 

optimized values from population as results. Genetic 

Algorithm is used to generate children using blend crossover. 

Afterwards mutation is applied on every parent and children 

string. Two levels of competition are introduced among the 

population strings to ensure that the better strings continue in 

the population. First level of competition is between children. 

And second level of competition is between the successful 

child and his parent. “Acceptance Number” concept is 

introduced so that the algorithm can devotedly explore 

“better” regions of the search space. The flowchart of the 

algorithm is given in Figure 1. 

 

1) Algorithm for Quantum Inspired Evolutionary 

Computational Technique (QIECT)  

Step1. Initialization: Initialize maximum number of 

generations, N (population size), dim (dimension) 

Step2. Random generation of initial parent population using 

(1). 

number random a is 
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Step3. Application of Quantum gate: Quantum gate is 

applied to improve initial parent population. 

Evaluate phase angle using eq. (2) 
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Where  is randomly generated angle. 1 ≤ i ≤ dim, 

t  is generation.  

Step4. Step3 is repeated for whole population. 

Step5. Application of Evolutionary Computational 

Technique 

a. Initialization: Initialize TInit (Initial Temperature) 

and TFinal (Final Temperature), N parent strings 

(output from quantum gate), C (Total number of 

children), Compute m=C/N (Ratio of Children 

generated per parent), Max_gen (Maximum number 

of generation). 

TCurrent←TInit , where TCurrent is the current 

temperature. 

b. For each parent, generate m children using blend 

crossover. 

c. Application of mutation operator: Apply mutation on 

each parent and children string 

d. 1st level of competition: Select the best child as the 

parent for the subsequent generations according to 

the Boltzmann probability criterion. 

YBest_child  < YParent   

OR 

exp[(YParent-YBest_child) /TCurrent]≥ ρ 

Where 

YBest_child  is the value of objective function for the 

best child 

YParent  is the objective function value of its parents 

ρ is a random number generated between 0 and 1. 
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e. Set Count=0 

f. Increase Count by 1, if 

Ychild  < YParent   

OR 

exp[(YLowest  - Ychild) /TCurrent]≥ ρ 

where 

Ychild  is the objective function value of the child 

YParent  is the objective function value of its parent 

YLowest  is the lowest objective function value ever 

found 

TCurrent  is the temperature co-efficient 

ρ is a random number generated between 0 and 1. 

g. Step „f ‟ is repeated for each child. 

h. Step „e-f ‟ is repeated for each family. 

i. The children which satisfy the above criteria (Step f) 

are called the „accepted children‟. Count the 

„accepted children‟ for each and every family 

separately. Acceptance number of the family is 

equal to the count represented as “A” as given in 

figure 1(b). 

j. Sum of the acceptance numbers is calculated, of all 

the families denoted as “S” as shown in figure 1(b) 

with example. 

k. For each family, calculate the number of children to 

be generated in the future generation according to 

the formula 

m = (C × A) / S 

 

l. The temperature is decrease according to cooling 

schedule given below, 

)1(max_** 
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m. Increase generation by 1 

Step6. Step (a to m) is repeated until a maximum 

number of generation has been reached / no further 

improvement is observed. 

 

III. RESULTS AND DISCUSSION 

A. Performance of QIECT on Benchmark Functions   

 

The Mathematical Benchmark test functions used in this 

study are specified in Table 1. Detailed description can be 

found in [29]. In the present work, empirical experiments are 

carried out for each function. For all the functions and for 

engineering applications population size is considered as 100. 

Offspring size is considered as 1000. 

To build performance analysis of QIECT a chain of 

experiments are carried out. QIECT is run 30 times for each 

problem to statistically evaluate its performance on 

benchmark problems. Output graphs of QIECT for 

benchmark functions are shown in Figure 2. In these graphs, 

best fitness values are plotted for each function. Results of 

statistical parameters and Average computation time for all 

the functions evaluated by QIECT are given in Table 2.  
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Figure 1 Flowchart of QIECT
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Table 1: Benchmark Functions used in section 3 

Name Formula Dimensions Range 

F1: Sphere 





n

i

ixxf
1

2)(  
10 ]12.5,12.5[ix  

F2: Rastrigin 



n

i

ii xxnxf
1

2 )]2cos(10[10)( 
 10 ]12.5,12.5[ix  

F3: Griewank 


 
n

i

in

ii
i

x
xxf

1

1

2 1)cos(
4000

1
)(

 10 ]600,600[ix  

F4: Ackley 



n

i

i

n

i

i acx
n

x
n

baxf
11

2 )1exp())cos(
1

exp()
1

.exp()(
 10 ]768.32,768.32[ix

 

F5: Rozenbrock 








1

1
]2)1(2)2

1
(100[)(

n

i
ixixi

xxf
 10 ]048.2,048.2[ix  

F6: Six Hump Camel Back 2

2

2

221

2

1

4

12

121 )44()
3

1.24(),( xxxxx
x

xxxf   
2 ]3,3[1 x  

]2,2[2 x  

F7: Schwefel 1-2 

2

1 1

)(  
 
















n

i

i

j

jxxf
 

10 ]100,100[ix  

F8: Goldstein Price 
)

2
2271136248

2
11213218(

2
)2312(30[

].
2
23216214

2
1311419(

2
)121(1[)2,1(

xxxxxxxx

xxxxxxxxxxf





 

2 ]2,2[ix
 

F9: Easom 
 

))()(exp()cos()cos()( 2

2

2

1212,1   xxxxxxf

 

 
2 ]100,100[

]100,100[

2

1





x

x
 

F10:Weighted Sphere  
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Table 2. Statistical Performance of QIECT on benchmark functions 

FUNCTIONS 
OBJECTIVE FUNCTION VALUES  

AVERAGE TIME (SECOND) 
BEST AVERAGE WORST STANDARD DEVIATION MEDIAN 

F1 0 0 0 0 0 62.72 

F2 0 1.4484E-03 4.4900E-02 0.008064 0 45.56 

F3 0 0 0 0 0 40.72 

F4 8.8818E-16 3.0507E-15 1.5099E-14 4.99441E-15 8.8818E-16 513.06 

F5 9.9396E-29 3.5716E-22 4.1993E-21 9.74143E-22 3.2283E-26 20034.06 

F6 -1.0316 -1.0316 -1.03162 0 -1.03162 16.10 

F7 0 0 0 0 0 51.082 

F8 3 3 3 0 3 2.43 

F9 -1 -1 -1 0 -1 29.44 

F10 0 0 0 0 0 49.99 

 

To prove the efficiency of current algorithm, it is compared 

with reported results of various other reputed algorithms. All 

the results which are taken for comparison are of the same 

dimensions as mentioned in Table 1.  

Table 3 compares the optimal values of benchmark functions 

evaluated by QIECT with other algorithms. All the 

experimental results of QIECT in terms of mean fitness and 

standard deviation values are summarized in Table 4. It can 

be noticed that performance outcome of QIECT is favorable 

in comparison to other state of art algorithms [18, 19, 20, 21, 

22, 23, 24, 25, 26, 27, 28].  

 

 

 

 

 

Table 3 Best optimal values of benchmark functions, as evaluated by QIECT 
with other algorithms (NA means not available) 

Functions Exact 

Values 

QIECT SASP 

[18] 

Hybrid ICA-

PSO [19] 

BSA 

[20] 

F1 0 0 NA 1.43E-15 NA 

F2 0 0 2.13E-

14 

1.24E-12 NA 

F3 0 0 0 NA NA 

F4 0 8.8818E-16 NA NA NA 

F5 0 9.94E-29 NA 6.74E-4 NA 

F6 -1.0316 -1.0316 -1.0316 NA NA 

F7 0 0 NA NA NA 

F8 3 3 NA NA 3 

F9 -1 -1 NA NA -1 

F10 0 0 NA NA NA 
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Figure. 2: Convergence plot of optimal values obtained by QIECT for benchmark functions 
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Table 4 Statistical performances of benchmark functions, as evaluated by 

QIECT with other state-of-art algorithms („-„ means data is not available) 

For F1 

METHODS MEAN STD. DEV. 

Hybrid ICA-PSO [19] 3.07E-12 4.34E-12 

APSO [22] 0 0 

WQPSO [24] 4.71E-106 4.76E-108 

KHLD [26] 3.07E-06 2.17E-06 

HS [27] 7.69E-05 2.64E-05 

QIECT 0 0 

 

For F2 

METHODS MEAN STD. DEV. 

Hybrid ICA-PSO [19] 6.40E-08 1.51E-07 

MPSO [21] 1.8407 - 

APSO [22] 0.8755 0.8734 

IPSO [23] 0.8001 - 

WQPSO [24] 1.8857 0.0118 

HS [27] 1.38E-02 4.93E-03 

QIECT 1.45E-03 0.0081 

 

For F3 

METHODS MEAN STD. DEV. 

MPSO [21] 0.0504 - 

IPSO [23] 0.0507 - 

WQPSO [24] 1.53E-04 3.37E-04 

KHLD [26] 1.00E-06 1.22E-06 

HS [27] 4.74E-02 5.99E-02 

QIECT 0 0 

 

For F4 

METHODS MEAN STD. DEV. 

APSO [22] 0.0064 7.48E-4 

C-Catfish PSO [25] 8.88E-16 - 

KHLD [26] 0.0013 3.83E-04 

HS [27] 1.12E-02 2.17E-03 

IGAL-ABC [28] 4.44E−15 0 

QIECT 3.05E-15 1.30E-15 

 

For F5 

METHODS MEAN STD. DEV. 

Hybrid ICA-PSO [19] 1.75 2.1894 

MPSO [21] 1.0194 - 

APSO [22] 2.3878 1.1055 

WQPSO [24] 10.1650 0.2345 

C-Catfish PSO [25] 1.2780 0.6500 

KHLD [26] 2.12E-04 2.01E-04 

HS [27] 4.18E-02 4.87E-02 

QIECT 3.57E-22 9.74E-22 

 

For F6 

METHODS MEAN STD. DEV. 

Hybrid ICA-PSO [19] -1.0316 0 

KHLD [26] 2.99E-05 3.65E-05 

HS [27] -1.03 0 

QIECT -1.0316 0 

 

For F7 

METHODS MEAN STD. DEV. 

MPSO [21] 0 - 

QIECT 0 0.1109 

 

For F8 

METHODS MEAN STD. DEV. 

BSA [20] 2.9999 1.10E-15 

KHLD [26] 3.006 0.0041 

QIECT 3 0 

 

For F9 

METHODS MEAN STD. DEV. 

KHLD [26] -1 6.92E-09 

QIECT -1 0 

 

For F10 

METHODS MEAN STD. DEV. 

KHLD [26] 1.35E-05 7.31E-05 

QIECT 0 0 

 

B. Performance of QIECT on Structural Engineering 

Optimization Problems 

 

1)  Spring Design 

It is one of the well-researched mechanical design problem. 

The minimization of the weight of a spring under 

tension/compression is considered subject to constraints of 

minimum deflection, shear stress, surge frequency, and limits 

on the outside diameter and design variables. The design 

variables x1, x2, and x3  are the wire diameter (d), the mean 

coil diameter (D), and the number of active coils (P) as 

illustrated in Figure 3. This problem is described in [30]. 

Engineering design problems has been solved by several 

engineers using numerous algorithms [2, 3, 6, 7, 9, 10, 11, 14, 

30, 31 32, 33, 34, 35, 36, 37, 38]. 
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Figure 3 Tension / Compression spring design problem 

 

In solving this problem  
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is used, where gi is the ith constraints deviation from limits. 

The algorithm has also successfully obtained optimal value 

f(x)=0.0126652, Corresponding variables [x1, x2, x3]= 

[0.35670, 0.05169, 11.28999]. Constraints are [g1, g2, g3, g4]= 

[-1.26E-08, -2.20E-09, -6.43582, -6.09E-03]. Convergence 

plot is depicted in Figure 4. 

 

Values of statistical parameters as evaluated by QIECT and 

other methods are reported in Table 5. It shows that the 

proposed algorithm gives comparable results for spring 

design problem. The Table 6 shows the variables and 

constraints obtained for the spring design problem using 

QIECT and others reported in literature. It can be clearly 

observed from both the tables that the results obtained from 

QIECT algorithm are more accurate and consistent as 

compared to the other methods reported in literature. 

 

 

 
Figure 4. Convergence plot for Spring Design Problem 

 

2) Pressure Vessel problem 

 

A compressed air storage tank with a working pressure of 

2000psi and a maximum volume of 750ft3 is designed.  A 

cylindrical vessel is shown in Figure 5. The shell is made in 

two halves that are joined by two longitudinal welds to form 

a cylinder. The objective is to minimize the total cost, 

including the cost of material, forming and welding [7]. 

There are four design variable associated with it namely as 

thickness of the pressure vessel, Ts = x1, thickness of the 

head, Th = x2, inner radius of the vessel, R = x3, and length of 

the vessel without heads, L=x4. 
 In solving this problem,  
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 is used, where gi is the ith constraints deviation from limits.  

 

 
Figure 5 Design of Pressure Vessel Problem 
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Table 5. Comparison of Statistical results of Constraint optimization problems, as evaluated by QIECT with other methods (‘-‘ means data is not available) 

    METHODS 

PROBLEMS 

STATISTICAL 

PARAMETERS QIECT Coello [2] 

Coello  

[3] Akay [6] Garg [7] Kaveh [9] 

Askarzade

h [10] 

Hans 

Raj [11] 

Coelho 

[14] He [31] 

Cagnin

a [32] 

SPRING 

DESIGN BEST 0.0126652 0.0127048 

0.01268

10 0.012665 0.0126652 

0.012643

2 0.0126652 

0.012700

0 

0.012665

0 

0.012665

3 

0.01266

50 

 MEAN 0.01300 0.01277 0.01274 0.01271 0.01267 0.01272 0.01267 0.01273 0.01300 0.01270 0.01310 

 WORST 0.01272 0.01282 0.01297 NA 0.01271 0.01288 0.01267 0.01301 0.01587 - - 

 STD. DEV 1.93E-5 3.94E-5 5.90E-5 0.01281 9.43E-6 3.49E-5 1.36E-6 0.0024 0.0006 4.12E-5 4.10E-4 

 MEDIAN 0.01269 - - - 0.01267 - - 0.01270 0.01271 - - 

PRESSURE 

VESSEL BEST 5894.02 6288.74 6059.94 6059.71 5885.40 6059.73 6059.71 - 6059.72 6059.71 6059.71 

 MEAN 6272.89 6293.84 6177.25 6245.31 5887.56 6081.78 6342.49 - 6440.37 6289.93 6092.04 

 WORST 7761.79 6308.15 6469.32 NA 5895.13 6150.13 7332.84 - 7544.49 - - 

 STD. DEV. 440.560 7.41000 130.930 205.000 2.75000 67.2400 384.950 - 448.470 305.780 12.1700 

 MEDIAN 6085.06 - - - 5886.15 - - - 6257.59 - - 

 

 
 

 

Table 6. Comparison of Variables, Constraints and objective function value of Spring Design Problem, as evaluated by QIECT and other methods 

Methods 

Design Variables Constraints 
Objective 

Function x1 x2 x3 g1 g2 g3 g4 

Coello [4] 0.35166 0.05148 11.6322 -0. 003336 -0. 000109 -679.1016 -0. 61402 0.0127047 

Garg [7] 0.35672 0.05169 11.2888 -2.53E-13 -5.755E-13 −4.053784 -0.72773 0.0126652 

Hans Raj [11] 0.41128 0.05386 8.68438 0.000001 6.8601E-6 -387.3829 -0.55281 0.0127484 

Coelho [14] 0.35253 0.05152 11.5389 -4.834E-5 -3.5770E-5 4.0455 -0.73064 0.012665 

Hans Raj  [16] 0.35133 0.05147 11.6221 - - - - 0.01267 

Arora [30] 0.39918 0.05340 9.1854 -0.001234 -1.8099E-5 -431.3057 -0.56522 0.1273027 

Belegundu [33] 0.3159 0.05 14.25 -0. 001267 -0. 003782 -1001.7839 -0. 65077 0.0127047 

Ray [34] 0.32153 0.05042 11.9799 0.141412 -0. 012943 -819.5482 0 0.01306 

He and Wang [35] 0.35764 0.05173 11.2445 -0.000845 -1.2600E-5 -4.0513 -0.72709 0.0126747 

Wang [36] 0.35969 0.05181 11.1193 -1.620E-4 -4.2000E-5 -4.058572 -0.72566 0.0126682 

Eskandar [37] 0.35672 0.05169 11.2890 -1.65E-13 -7.900E-14 -4.053399 -0.72786 0.012665 

Long [38] 0.35672 0.05169 11.2890 -2.74E-13 2.045E-14 -4.053785 -0.72773 0.0126652 

QIECT 0.3567 0.051688 11.2999 -1.265E-8 -2.2049E-9 -6.435824 -6.0884E-3 0.0126652 
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Table 7 Comparison of variables and constraints and best solutions for Pressure Vessel Problem found by different methods (‘-‘ means data is not available) 

Methods 

Design Variables Constraints Obj. Function 

1x  2x  3x  4x  1g  2g  3g  4g  )(xf  

Sandgren [39] 1.125 0.625 48.3807 11.7449 -0.1913 -0.1634 -75.875 -128.255 8048.619 

Zhang and Wang [40] 1.125 0.625 58.29 43.693 -0.025 -0.0689 6.5496 -196.307 7197.7 

Deb and Gene [41] 0.9375 0.5 48.329 112.679 -0.0048 -0.0389 -3652.88 -127.321 6370.7035 

Coello [2] 0.8125 0.4375 40.3239 200 -0.0034 -0.0528 -27.1058 -40 6288.7445 

Coello [3] 0.8125 0.4375 42.0974 176.6541 - - - - 6059.946 

Gandomi [42] 0.8125 0.4375 42.0984 176.6366 - - - - 6059.7143 

He et al. [43] 0.8125 0.4375 42.0984 176.6366 - - - - 6059.7143 

Lee and Geem [44] 1.125 0.625 58.2789 43.7549 - - - - 7198.433 

He and Wang [35] 0.8125 0.4375 42.0913 176.7465 - - - - 6061.0777 

Montes [45] 0.8125 0.4375 42.0984 176.6361 - - - - 6059.7017 

Montes [46] 0.8125 0.4375 42.0981 176.6405 - - - - 6059.7456 

Cagnina et al. [32] 0.8125 0.4375 42.0984 176.6366 - - - - 6059.7143 

Kaveh [9] 0.8125 0.4375 42.1036 176.5732 - - - - 6059.0925 

Kaveh [47] 0.8125 0.4375 42.0984 176.6378 - - - - 6059.7258 

Coelho [14] 0.8125 0.4375 42.0984 176.6372 -8.79E-7 -3.59E-2 -0.2179 -63.3628 6059.7208 

Youyun and Hongqin [48] 0.7782 0.3846 40.3196 200 - - - - 5885.3328 

Akay and Karaboga [6] 0.8125 0.4375 42.0984 176.6366 - - - - 6059.7143 

Garg [7] 0.7782 0.3847 40.3211 199.9802 -0.39E-6 -2.8E-6 -1.1418 -40.0197 5885.4033 

QIECT 0.7826 0.4218 40.3196 200 -0.0044 -0.0372 0 -40 5894.0229 
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The algorithm has also successfully obtained optimal value 

f(x) = 5894.0229, Corresponding variables [x1, x2, x3, x4]= 

[0.7826, 0.4219, 40.3196, 200]. Constraints are [g1, g2, g3, 

g4] = [-0.0045, -0.0372, 0, -40]. Pressure Vessel design 

problem has been solved by several engineers using 

numerous algorithms [2, 3, 6, 7, 9, 10, 11, 14, 31, 32, 39, 

40, 41, 42, 43, 44, 45, 46, 47, 48]. Comparison of 

statistical parameters between QIECT and other methods 

are given in Table 5. Comparison of objective function 

value, variables and constraints, as evaluated by QIECT 

and different methods are given in Table 7. It can be 

clearly observed from the table that the results obtained 

from QIECT algorithm are more accurate and consistent as 

compared to the other methods reported in literature. 

 

1) Gear Train Design 

 

The weight of the gear train is to be minimized subject to 

constraints on bending stress of the gear teeth, surface 

stress, transverse deflections of the shafts and stresses in 

the shafts. The variables x1, x2, x3,…., x7 are the face width, 

module of teeth, number of teeth in the pinion, length of 

the first shaft between bearings, length of the second shaft 

between bearings and the diameter of first and second 

shafts as shown in Figure 6. The details for this single 

objective problem with 11 behavioral constraints are taken 

from literature [49]. 

 

Figure 6. Gear Train design used as third example 

The mathematical formulation of this problem can be 

described as follows: 
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The Table 8 shows the results of statistical parameters, 

obtained for the gear train design using QIECT algorithm. 

Comparison of objective function values and variables, as 

evaluated by QIECT and other methods are given in Table 

9. It can be clearly observed from the tables that the results 

obtained from QIECT algorithm are more accurate and 

consistent as compared to the values reported in a number 

of publications [11, 16, 34, 49, 50, 51]. In solving this 

problem following penalty function is used: 





10

1

2Penalty
i

ig  

Where gi is the ith constraints deviation from limits. The 

algorithm has also successfully obtained optimal value for 

gear train problem that is f(x) = 2559.2000, Corresponding 

Variables [x1, x2, x3, x4, x5, x6, x7]=[3.5680, 0.7000, 

28.0000, 8.3000, 3.9000, 5.5000] and Constraints are [g1, 

g2, g3, g4, g5, g6, g7, g8, g9]=[0.1716, -0.0052, -0.2369, -

0.8713, -27.6348, 5, -0.1400, -0.0871, 0.3070, 0.1175]. 

 

II. CONCLUSION 
 

This paper presents a Quantum Inspired Evolutionary 

Computational Technique (QIECT) that integrates 

concepts of quantum computing, genetic evolution and 

simulated annealing. The simulation results of QIECT 

tested on benchmark functions demonstrate that QIECT 

compares well with other reputed algorithms in all aspects. 

It is seen that QIECT has not only a good exploration 

capability but also has good local exploitation ability. It 

can easily avoid premature convergence. The benchmark 

problems illustrate its versatility and effectiveness in 

solving optimization problems with single objective 

function. The values of statistical parameters evaluated by 

QIECT are compared with other methods for spring 

design, pressure vessel and gear train design problems. The 

results obtained from QIECT presented earlier, illustrate 

the accuracy of QIECT as compared to other methods 
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reported in literature. It shows the applicability of QIECT 

for mechanical engineering design and in particular agile 

design. 
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Table 8 Comparison of Statistical results of Gear Train Problem, as evaluated by QIECT with other methods („-„ means data is not available) 

STATISTICAL 

PARAMETERS 
QIECT 

Hans Raj 

[11] 

Hans Raj 

[16] 
Ray [34] Rao [49] Li [50] Kunag [51] 

BEST 2559.20 2724.05 2723.34 2732.9 2985.22 2994.4 2876.2 

MEAN 2716.08 3026.64 3054.63 - - - - 

WORST 2740.01 3212.72 3234.75 - - - - 

STD. DEV. 37.7034 79.8742 75.1000 - - - - 

MEDIAN 2723.58 2957.68 2996.48 - - - - 

 
Table 9. Comparison of variables and objective function value of Gear Train problem, as evaluated by QIECT and other methods 

Methods 

 

Design Variables 

x1 x2 x3 x4 x5 x6 x7 

Objective 

f(x) 

Rao [49] 3.5 0.7 17 7.3 7.3 3.35 5.29 2985.2 

Li [50] 3.5 0.7 17 7.3 7.7153 3.3505 5.2867 2994.4 

Kunag [51] 3.6 0.7 17 7.3 7.8 3.4 5 2876.2 

Ray [34] 3.5 0.7 17 7.4973 7.8346 2.9018 5.0022 2732.9 

Hans Raj [11] 3.5 0.7 17 7.4973 7.8346 2.9018 5.0022 2732.9 

Hans Raj [16] 3.5 0.7 17 7.3 7.8 2.9002 5.0002 2723.3 

QIECT 3.6 0.7 28 8.3 8.3 3.9 5.5 2559.2 
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