
 © 2018, IJCSE All Rights Reserved 191

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

An Efficient Approach to Design a Low Cost and High Performance

Active-Active Clustering for Applications along with Database

D. Dashora

1

1
Department of Computer Engineering, Faculty of Engineering, Pacific University, Udaipur, Rajasthan, India

Corresponding Author: devesh.dashora@gmail.com, Tel.: +91-98290 57506

Available online at: www.ijcseonline.org

Accepted: 17/Jul/2018, Published: 31/July/2018

Abstract— Online applications like Facebook, Google Apps, WhatsApp, Amazon, Flipkart etc. are huge companies that have a

huge customer base and many of customers use their apps concurrently. It put much load over their servers and relatively more

load on the application. This overload degrades the performance of the application. The more request-response to an

application, the more it applies load on the server. However, a server infrastructure consists various limits to serve a total

number of requests per second. Therefore, the server infrastructure and architecture of the application must be developed in

such a manner that can be deployed on multiple servers. When the number of users increased, the application can serve to all

users by just deploying the same application to more servers. Such kind to development architecture requires more knowledge

and more experienced developers. Also, the cost of such deployment need lots of money to purchase/subscribe various third-

party packages. In this paper, I am presenting a design architecture and deployment method for Active-Active application

clustering that will help to develop applications, which can scale-up at any time without making any changes to application

code. The application can handle any number of requests and can serve more users than expected. This architecture uses open

source tools and technologies so that it is a low cost solution and provides high performance.

Keywords— Cloud computing, virtualization, application clustering, distributed application, database clustering, load balancer,

HAProxy, Keepalived, Memcache, Postgres database, hypervisor.

I. INTRODUCTION

Application clustering denotes that a single application can

be deployed on multiple server machines and share requests

of users. Especially when the application is serving requests

online from the remote location. There are so many

companies like Google, Facebook, WhatsApp, etc. which are

using clustering in their applications. ERP applications are

generally built upon some kind of clustering. Although

application clustering is a very expensive and require a lot of

knowledge to implement. But now there are various open

source tools and technologies are available which allows

creating our own application and database cluster without

any cost or very low maintenance cost. Such tools are very

popular and being used by lots of giant IT companies. Such

tools are being described in this paper and also explain to

create our own application cluster with the database.

The following consideration adopted for the architecture:

 Design a low cost and highly efficient solution for

application clustering.

 Active-Active application clustering, which can

serve millions of customer requests.

 Use of open source tools and technologies.

 100% Up-time for applications to customers.

In the Active-Active clustering, multiple instances of

applications and database will be distributed on multiple

server machines and work in a group to serve millions of

requests. It is most important that all components of the

Active-Active clustered application must support clustering

like a database, shared memory, message queue etc. So it

needs to choose a right component to design and implement

Active-Active application clustering.

The objective of this research to develop an efficient, high

performance, low cost, and 100% up-time service

applications which can deliver 24x7 services to users even it

faces any kind of disaster. Active-Active means that the

application and all of its component will have multiple

numbers of instances and can deliver always running services

to users without feeling them that there is any failure in the

application system.

The rest of the paper is organized as follows. Section II is an

illustration of related works about the proposed topic.

Section III discusses the terminology and concept used in the

research. Section IV describes the proposed architecture.

Section V provides a description of various open source tools

and technology used in the research. Section VI presents

comprehensive test results. Section VI concludes the paper.

 International Journal of Computer Sciences and Engineering Vol. 6 (7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 192

II. RELATED WORK

The work done previously was only limited to clustering of

database component of service applications. Most of the

service applications are deployed on the single server system.

And a very few applications are deployed on multiple servers

but again only one server work as a primary application

server and other remaining nodes works only when some

disaster occurs. The shifting of services to secondary nodes

are still a manual process. It brings downtime and impacts

the users of that application. And when the primary server

recovers, they switch the services to the primary server.

This research includes Active-Active clustering of

applications along with database and other supporting

components. So it reduces the downtime to zero and

decreases the manual intervention as well.

III. THE TERMINOLOGY

Active-Active clustering requires multiple hosts to create a

cluster (group) for all the components of the application. For

small applications or start-up business applications can use

at-least two nodes or hosts for each component of the

applications. For example two nodes for the application

cluster, two nodes for database cluster etc. So it needs to

purchase many server machines to deploy such an

application. Rather, purchasing many servers, we can use a

hypervisor through which we can create multiple virtual

machines in a single physical host. It is also known as

Virtualization technique. In the Virtualization technique, all

virtual machines share the resources of host server like CPU,

RAM, network etc. and also enhances the performance of

server applications. Other benefits of virtualization are that

we can upgrade or downgrade the resource utilized by a

virtual machine at any time, even when the virtual machine is

up (running) and serving request to users.

So virtualization plays a vital role to design and develop a

low-cost Active-Active application cluster. There are many

options available as a hypervisor for virtualization. VMware

ESXi is one of the popular hypervisors which provides both

free and subscription-based services. KVM, XenServer or

ProxMox are the fully open source and reliable hypervisors.

We can also clone a virtual machine to create an exact copy

of any component of our application. VMware provides this

feature as vMotion in its product named VMware vCenter.

KVM enables this feature by using QEMU.

Using virtualization, we can manage a single host. It

provides high-performance computing. But generally, we

may have multiple servers or hosts, which may have the

same or different kind of hypervisors. The servers may also

be located on different physical location. And also all servers

must be connected to each other in a high bandwidth network

to create a cluster. So managing multiple servers with

different hardware and operating system or hypervisor in a

network is also a critical task. Adding new server and

removing a faulty server from the cluster also requires high

attention and manual work. To overcome this problem, we

can create a cloud environment for the servers and network.

Cloud computing is not a new term, it is widely used and

many cloud service providers are delivering ready-made high

performing cloud cluster. We can hire cloud infrastructure

servers, public cloud or individual virtual machines for all

application components. Hiring cloud-based virtual machines

from vendors are cheap when our uses of the servers are very

low. But when the uses of servers get increased, the cost also

get increased because the public cloud is based on pay-per-

use. If we have enough budget to purchase our own servers,

then we can go with a private cloud to group and manage our

servers. A private cloud allows us to create our own cluster

of servers or data-center where all of our physical servers can

be connected to the virtual network. A virtual network is

again sub-instance of our physical network. OpenStack is the

most popular and open source framework available, which

provides all the features and options, which are required to

create our own Private cloud and data-center.

In Active-Active clustering, all request of users can be served

by using a single IP address which is internally connected to

the private network with multiple nodes. This enhances the

security much because there is only one public IP available

to users and if someone wants to attack our application

network, we can block from this single IP address [14].

Generally, a cluster contains a load balancer which holds a

single static IP address and can scale the cluster horizontally

or vertically. This load balancer work as an entry point for

our apps. All other nodes are connected to the interconnected

network and work as a single computer. A cluster can be a

group of ten thousand or more processors [17].

The HAProxy load balancer is an open source tool which is

widely used to provide single IP to outside world. The DDoS

protection is highly efficient to block hacker’s attack.

HAProxy load balancer provides various algorithms to

redirects incoming requests to an internal range of IP

addresses or domain name. It can also depend upon geo-

location based or type of service request.

An application cluster can have 2 or more application nodes

and all node may require a connection or connection pool to

a database. So it is also required to configure the database in

the cluster. There are many databases which are cluster-

enabled. Database cluster can be either master-slave type or

master-master type. A master-slave database cluster uses

Eager replication where master-master uses Lazy replication

technique [20]. A master-slave database cluster contains a

master database node which can both read/write the database

and one or more slave nodes which only allow reading data

from the database. In a master-master or multi-master

database cluster, all nodes work like master node i.e.

read/write operation can be done on all nodes in the cluster.

 International Journal of Computer Sciences and Engineering Vol. 6 (7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 193

MariaDB Galera cluster is used to create multi-master cluster

for MariaDB database (earlier was MySQL database). For

Postgres database, pgPool-II and Bi-Directional Replication

(BDR) open source tools are very popular and also being

used in production. In multi-master replication concurrent

queries and the transaction can be committed on all nodes

asynchronously i.e. it improves the performance and can

distribute the load over multiple nodes of the database [21].

For sharing common and temporary data among the cluster

nodes requires an additional in-memory database. The in-

memory database can store data in RAM, which can be

accessed in the cluster for fast data sharing. For example, to

store the session data for a user, we can use this kind of

database. Memcache and Redis Cache are the top brands in

open source in-memory shared databases. Both are fast and

easy-to-use. And also both have some pros and cons. So it

requires analysis to conclude and choose which is better for

our Active-Active application. An in-memory database is

used to store temporary data only.

In Active-Active application clustering, there is more

requirement which is inter-process communication system. It

is required when two or more applications want to

send/receive messages to perform the further task. It is not

necessary for all applications. Mostly it is used when a single

application uses multiple other small applications also known

as threads. Such threads work independently and can produce

output itself. But the output generated from one thread may

be used as input for other threads. So such output message of

a thread can be delivered to other thread using a messaging

or inter-process messaging system. For this, we can go with

Kafka which most popular nowadays and also it is open

source. We can create a cluster of Kafka as well. We can also

use ActiveMQ, RabbitMQ, or ZeroMQ instead of Kafka.

IV. THE ARCHITECTURE

The Active-Active architecture contains various components

which must be arranged and deployed in proper manner. All

components have their own role, task, characteristics and

deployment procedure. Some components are required to

design Active-Active Clustering and some components are

optional or dependent upon the application needs. A general

architecture for Active-Active clustering described as

follows:

Figure 1. Active-Active Clustering Architecture

A. Major Components

The Active-Active application clustering architecture is

shown in the Fig. 1. It has various components to fulfill the

purpose of this architecture. Each component is indicated by

a sequential number and described as below:

1) Load balancer for outside world:

All the request from users/clients will come into the system

will pass through this component. It is the single entry point

from where user requests can go into the application servers.

This is the only single point of failure when this become

faulty. To prevent the service break down, we need to deploy

 International Journal of Computer Sciences and Engineering Vol. 6 (7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 194

another secondary failover load-balancer, which will work

only when this load balancer will stop working.

2) Application node1

The node contains the application instance which will

actually process all the request. All remaining component

will be used by application reside in this node. So it must

have access to all the other components.

3) Application node2

This is the second instance of the application node1 because

the Active-Active application architecture requires a

minimum of two nodes of applications. We can add more

nodes for the application at any piece of time or whenever

the requirement get increased.

4) Load Balancer for Database:

This load balancer works as a bridge between the application

and database cluster. As already described that in an Active-

Active cluster environment, the access to the database must

also be in a cluster. So all nodes of the database cluster will

be handled by this load balancer.

5) Database server1

It is one of the nodes from the multi-master replication

cluster of the database. It can read/store from/to the database.

This database node can accept concurrent queries from the

application server via the load balancer and execute them as

a transaction. After each successful transaction, the node

sends the same transaction to all other remaining nodes of the

database cluster.

6) Database server2

This is the second instance of the multi-master database

cluster. As we know, a cluster requires at-least two nodes to

form a cluster. This node can also accept concurrent queries

from front-end applications and execute them as a

transaction. After successful execution of a transaction, this

node will also send the same transaction on other remaining

nodes of the database cluster. This will be done by all nodes

very quickly.

7) Memcache server1

This node is again will be used by the application. The

application can use this node to store in-memory data or

cache for fast retrieval. This is used to store intermediate

temporary data in the cache and can be accessed very fast.

8) Memcache server2

This is again secondary node for in-memory caching. But it

is developer choice to have replication or sync with other

Memcache node because some application may need the

cached temporary available all the time even on failure of

one node.

9) Kafka Cluster

It is for exchange information among application servers. It

works as a message queue for inter-process communication.

Every application server can send a piece of information to

the Kafka server and afterward, all other nodes can pick that

information for their use. Kafka also needs to be deployed in

form of the cluster because if one node gets failed, then the

messages sent by an application server can be delivered to

another node even any of Kafka node gets failed.

V. TOOLS AND TECHNOLOGY

To implement this architecture, the following tools and

technologies can be used.

A. Software-based load balancer

There are many software-based load balancers are available.

Some open source load balancers are followed:

Table 1. Some open source and reliable software-based load balancers

S. No. Name Description

1 HAProxy load balancer HAProxy is a free, reliable and widely used open source software based load

balancer which manages load among two or more back-end servers. It can

distribute request on round-robin, geo-location based or using various other

algorithms. It makes services available all the time to users (No downtime).

HAProxy regularly checks the health of all of its backend. If one of the backend

servers gets down, it redirects all the requests to the remaining backend servers.

2 NGINX Proxy server and load

balancer

NGINX is another choice for developers and system administrators. It also

works like a HAPorxy load balancer. It can serve for HTTP, HTTPS, TCP and

UDP protocols. It can also work for mail server protocols like IMAP, POP, and

SMTP. It is a combination of the load balancer, reverse proxy, content cache,

and web server.

 International Journal of Computer Sciences and Engineering Vol. 6 (7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 195

B. Database cluster with multi-master replication

For the Active-Active cluster architecture, we have chosen

the multi-master asynchronous replication for the database.

It allows us to divide the load of database access among

multi-nodes in the cluster. Some open source database

clustering tools and technologies are as follows:

Table 2. Some open source multi-master replication based database tools

S. No. Name Description

1 PostgreSQL BDR PostgreSQL BDR (Bi-directional Replication) is a product of 2Quadrent which

is open source and work upon the core PostgreSQL. It provides asynchronous

multi-master logical replication for PostgreSQL database. Multi-master means it

can execute a query on any node of the cluster and then commit it onto the all

other nodes of cluster row-by-row and asynchronously.

2 pgPool-II The pgPool-II is mainly used to achieve connection pooling. It also has the

feature of replication and load balancing. Any node in a pgPool cluster can

execute queries and then commit it to other nodes.

3 MariaDB Galera cluster If you want to use the MariaDB database, then it needs to create a cluster of

MariaDB Galera cluster. It is a separate package and can be installed with

existing MariaDB server. It provides synchronous replication but supports

Active-Active multi-master replication. This includes a package named wsrep

provider which handles the whole replication process.

C. In memory cache database

To store temporary data during for an application, we can

use any in-memory caching system. It increases the

performance of the application. There are many open

source tools available for it. Some open source in-memory

cache tools are as follows:

Table 3. Some open source in-memory caching

S. No. Name Description

1 Memcache It is a key-value pair based in-memory database and belongs to the NoSQL

family. It keeps data in RAM memory mapped with a unique key. It is mainly

used when data is small and static. This is multi-threaded in nature so that it can

be easily scaled up by occupying more thread in memory. If the server gets fails,

then all data will be lost because it is volatile and doesn’t support replication.

2 Redis Cache Redis cache is also an in-memory cache database and also store each data using

a unique key. It uses data-structures like a linked list, arrays, and sets. So it can

be used as a shared queue (linked list), messaging queue (publish/subscribe),

storing session data in a hashmap and also can also be used to store sorted data

by using sorted sets.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved

196

VI. RESULTS AND DISCUSSION

A. Test for BDR cluster with HAProxy

This test includes a client application which is developed

using C# language. One node for HAProxy load balancer and

2 database nodes for BDR cluster. It is shown in the Fig. 2

Figure 2. PostgreSQL BDR cluster of 2 nodes with a HAProxy load balancer

The client application sends high volume data to HAProxy

load balancer continuously. And the load balancer sends that

data queries using a round robin algorithm to two back-end

database nodes of BDR cluster. Both nodes are accepting

queries and execute them. After each successful execution of

the query, each node sends the same query to each other and

executed by them. In case of conflicts, only the last updated

or inserted data will be written to the database.

Figure 3. Network History Graph

The above Fig. 3 shows the overall processing of a BDR

node. It contains two graph lines. The Red graph line shows

all the incoming data queries to execute and the Blue graph

line shows the outgoing queries which are being sent to the

other node of the BDR cluster for replication.

B. Test for store data into different database cluster

In this test, I am going to calculate the time duration to store

the same amount data to the different type of database

clusters. This test includes a client application which is

developed using C# language. There is one node for the

HAProxy load balancer and 2 database nodes for BDR/

pgPool-II/ MariaDB Galera cluster.

The client application sends high volume data to HAProxy

load balancer continuously. And the load balancer diverts all

the data queries using a round robin algorithm to two back-

end nodes of the database cluster. Both nodes accept queries

and execute them. This process was repeated for the BDR/

pgPool-II/ MariaDB Galera cluster and total time duration

for this are declared in the following table:

Table 4. Total time is taken to store data

Type of Cluster Time duration

BDR cluster 52 mins

PgPool cluster 80 mins

MariaDB Galera cluster 105 mins

So the above test result in Table 4 shows that BDR took less

time in comparison to other 2 database clusters.

C. Test for fetch data from different database cluster

In this test, I am going to calculate the time duration to fetch

the same amount data to the different type of database

clusters. This test also includes a client application which

will make a connection to different types of database cluster

and get data from them. This test includes one node for the

HAProxy load balancer and 2 database nodes for BDR/

pgPool-II/ MariaDB Galera cluster.

The client application sends a single query to fetch data from

the database clusters, continuously. Although it is sending

only one query to the database, then the load balancer

transfer it to anyone node of the database cluster. For more

precise test results, I send multiple queries on at a time for a

different number of data records. This process was repeated

for the BDR/ pgPool-II/ MariaDB Galera cluster and total

time taken for this are shown in the following table:

Table 5. Total time is taken to fetch data

Number of records BDR/ pgPool MariaDB

10,000 records 0.3 seconds 0.032 seconds

100,000 records 3.6 seconds 0.343 seconds

1,000,000 records 37 seconds 3.453 seconds

10,000,000 records 376 seconds 35.25 seconds

So the above test results in Table 5 shows that the BDR and

pgPool both always took higher time to fetch data from the

database in comparison to MariaDB Galera cluster. So

choosing right database cluster is dependent upon the need

and also it will depend upon the question that which type of

operation will be performed mostly and how many times?

 International Journal of Computer Sciences and Engineering Vol. 6 (7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 197

According to the test results, BDR is faster to store data into

the database cluster where MariaDB Galera cluster is faster

while accessing data from the database. If our application

store data frequently like customer data, transaction data then

we should go with BDR and if our application store few

amounts of data but performs various operations by fetching

data from the database like data analysis, report generation

etc. then we should go with the MariaDB database.

VII. CONCLUSION AND FUTURE SCOPE

A. Conclusion

The Active-Active application clustering provides a robust
and reliable architecture. It enables us to create 100% up-time
applications with zero downtime. It uses open source tools
and technologies, so its low cost and even it fits into the
budget for small applications.

In Active-Active clustering, all components are built upon the
cluster topology, so it has very fewer possibilities for service
downtime even in case of any sort of disaster with hardware
or network malfunctioning.

HAProxy, BDR, Memcache, etc. are open source tools are

well tested and widely used in production from many years.

And also provides regular updates from time to time. So this

fulfills the needs of an application system for always up and

running. OpenStack provides cloud infrastructure. VMware

and KVM both can create a virtualization environment.

Memcache or Redis Cache is used to access shared data.

PostgreSQL BDR cluster providing multi-master database

replication with concurrent read/write to the database. Kafka

is used as a Message queue for inter-process communication.

And the HAProxy load balancer is doing all the neat things

which are required always up and running services to the

customer.

B. Future Scope

The deployment of all described open source tools involve so

many manual interventions and also require skilled persons

who have knowledge of Linux and clustering. So there is a

scope of automatic deployment with very less manual

intervention.

Deployment of a private cloud in an organization is very

crucial and also requires expert and skilled persons. So

private cloud deployment is another challenging job.

Although we can hire or purchase from cloud service

providers if we don't have enough budget and skills.

ACKNOWLEDGMENT

I would like to thank all university staff and faculty members

of the college dept. for their guidance and kind support, which

has helped me a lot to complete this research project

successfully.

REFERENCES

[1] R. Aluvalu, M. A. Vardhaman and J. Kantaria, "Performance

evaluation of clustering algorithms for dynamic VM allocation in

cloud computing", In the Proceedings of the International

Conference On Smart Technologies For Smart Nation

(SmartTechCon), Bangalore, India, pp. 1560, 2017.

[2] A. Awasthi and R. Gupta, "Multiple hypervisor based Open Stack

cloud and VM migration", In the Proceedings of the Cloud System

and Big Data Engineering (Confluence), Noida, India, pp. 130,

2016.

[3] A. Babar and B. Ramsey, "Building Secure and Scalable Private

Cloud Infrastructure with Open Stack", In the Proceedings of the

Enterprise Distributed Object Computing Workshop (EDOCW),

Adelaide, SA, Australia, pp. 166, 2015.

[4] K. A. Bakar, M. H. Shaharill and M. Ahmed, "Performance

evaluation of a clustered memcache", In the Proceedings of the

International Conference on Information and Communication

Technology for the Moslem World, Jakarta, Indonesia, pp. 54,

2010.

[5] J. M. Clarence, S. Aravindh and A. B. Shreeharsha, "Comparative

Study of the New Generation, Agile, Scalable, High

PerformanceNOSQL Databases", International Journal of

Computer Applications, Vol. 48, Issue. 20, pp. 888-975, 2012.

[6] J. E. C. Cruz and I. C. A. R. Goyzueta, "Design of a high

availability system with HAProxy and domain name service for

web services", In the Proceedings of the IEEE XXIV International

Conference, Cusco, Peru, pp. 1, 2017.

[7] M. Deris, M. Rabiei, A. Noraziah And H.M. Suzuri, "High service

reliability for cluster server systems", In the Proceedings of the

IEEE International Conference on Cluster Computing, Hong

Kong, China, pp. 280, 2003.

[8] A. Dixit, A. K. Yadav and S. Kumar, "An Efficient Architecture

and Algorithm for Server Provisioning in Cloud Computing using

Clustering Approach", In the Proceedings of the International

Conference on System Modeling & Advancement in Research

Trends, Moradabad, India, pp. 260, 2016.

[9] M. E. Elsaid and C. Meinel, "Multiple Virtual Machines Live

Migration Performance Modelling -- VMware vMotion Based

Study", IEEE International Conference on Cloud Engineering

(IC2E), Berlin, Germany, pp. 212, 2016.

[10] S. M. Hemam and K. W. Hidouci, "Replicated Database

Transactions Processing in Peer-To-Peer Environments", Journal

of Networking Technology, Vol. 2, Issue. 1, pp. 63-72, 2011.

[11] G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss and T.

Delaitre, "Automatic Service Deployment Using Virtualisation", In

the Proceedings of the Parallel, Distributed and Network-Based

Processing, Toulouse, France, pp. 628, 2008.

[12] R. Khan, M. Haroon and M. S. Husain, "Different technique of

load balancing in distributed system", In the Proceedings of the

Global Conference on Communication Technologies (GCCT),

Thuckalay, India, pp. 371, 2015.

[13] C. H. Lien, Y. W. Bai, M. B. Lin and P. A. Chen, "The saving of

energy in web server clusters by utilizing dynamic server

management", In the Proceedings of the 12th IEEE International

Conference on Networks, Singapore, pp. 253, 2004.

[14] J. Liu, L. Xu, B. Gu and J. Zhang, "A Scalable High Performance

Internet Cluster Server", In the Proceedings of the The Fourth

International Conference/Exhibition, Beijing, China, pp. 941,

2000.

[15] C. Mancaş, "Performance improvement through virtualization", In

the Proceedings of the RoEduNet International Conference -

Networking in Education and Research (RoEduNetNER), Craiova,

Romania, pp. 253, 2015.

 International Journal of Computer Sciences and Engineering Vol. 6 (7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 198

[16] M. C. Mazilu, "Database Replication", Database Systems Journal,

Vol. 1, Issue. 2, pp. 33-38, 2010.

[17] A. Tchana, L. Broto and D. Hagimont, "Approaches to cloud

computing fault tolerance", In the Proceedings of the International

Conference on Computer, Information and Telecommunication

Systems (CITS), Amman, Jordan, pp. 1, 2012.

[18] S. A. Moiz, P. Sailaja, G. Venkataswamy and S. N. Pal, "Database

Replication: A Survey of Open Source and Commercial Tools",

International Journal of Computer Applications, Vol. 13, Issue. 6,

pp. 0975 – 8887, 2011.

[19] T. Moyo and G. Bhogal, "Investigating Security Issues in Cloud

Computing", In the Proceedings of the Eighth International

Conference on Complex, Intelligent and Software Intensive

Systems, UK, pp. 141, 2014.

[20] E. Pacitti, M. T. Özsu and C. Coulon, "Preventive Multi-master

Replication in a Cluster of Autonomous Databases", Euro-Par

2003 Parallel Processing, Vol. 2790, Issue. 1, pp. 318-327, 2003.

[21] E. Pacitti, C. Coulon and P. Valduriez, "Preventive Replication in

a Database Cluster", Distributed and Parallel Databases, Vol. 18,

Issue. 3, pp. 223–251, 2005.

[22] A. B. Prasetijo, E. D. Widianto and E. T. Hidayatullah,

"Performance Comparisons of Web Server Load Balancing

Algorithms on HAProxy and Heartbeat", In the Proceedings of the

Information Technology, Computer, and Electrical Engineering

(ICITACEE), Semarang, Indonesia, pp. 393, 2016.

[23] T. Agrawal and N. Sharma, "Efficient Load Balancing Using

Restful Web Services in Cloud Computing: A Review",

International Journal of Scientific Research in Computer Sciences

and Engineering, Vol. 6, Issue. 3, pp. 67–70, 2018.

[24] N. Sharma and S. Maurya, "A review on:VM management in

Cloud & Datacenter", International Journal Of Advanced Studies

In Computer Science And Engineering, Vol. 6 Issue. 9, pp. 12-18,

2017.

[25] R. Shingade, A. Patil, S. Suryawanshi and M. Venkatesan,

"Efficient Resource Management in Cloud Computing",

International Journal of Engineering and Technology, Vol. 7,

Issue. 6, pp. 2045-2053, 2016.

[26] P. Devi, "Attacks on Cloud Data: A Big Security Issue",

International Journal of Scientific Research in Network Security

and Communication, Vol. 6, Issue. 2, pp. 15–18, 2018.

[27] H. Tang, R. She, C. He, and Y. Dou, "Construction and

Application of Linux Virtual Server Cluster for Scientific

Computing", In the Proceedings of the International Conference on

Network and Parallel Computing, Shanghai, China, pp. 287, 2008.

[28] A. D. Tesfamicael, V. Liu and W. Caelli, "Design and

Implementation of Unified Communications as a Service Based on

the Open Stack Cloud Environment", In the Proceedings of the

IEEE International Conference on Computational Intelligence &

Communication Technology, Ghaziabad, India, pp. 117, 2015.

[29] S. Varrette, M. Guzek, V. Plugaru, X. Besseron and P. Bouvry,

"HPC Performance and Energy-Efficiency of Xen, KVM and

VMware Hypervisors", In the Proceedings of the 25th International

Symposium on Computer Architecture and High Performance

Computing, Porto de Galinhas, Brazil, pp. 89, 2013.

[30] M. Xia and G. Qin, "The research and implementation of a highly

concurrent and highly available system for acquiring personal

virtual assets", In the Proceedings of the International Congress on

Image and Signal Processing, BioMedical Engineering and

Informatics (CISP-BMEI), Shanghai, China, pp. 1, 2017.

[31] C. Yan, J. Shen and Q. Peng, "Parallel Web Prefetching On

Cluster Server", In the Proceedings of the Electrical and Computer

Engineering Canadian Conference, Saskatoon, Sask., Canada, pp.

2284, 2005.

[32] H. Yuusuf and S. Vidalis, "On the Road to Virtualized

Environment", In the Proceedings of the Third International

Conference on Emerging Intelligent Data and Web Technologies,

Bucharest, Romania, pp. 270, 2012.

Authors Profile

Mr. Devesh Dashora (Research Scholar) is

pursuing Master of Technology (M. Tech.)

with specialization in Computer Science and

Engineering from Department of Computer

Engineering, Faculty of Engineering, Pacific

University (PAHER), Udaipur (Rajasthan).

His keen interest is Cloud computing,

distributed programming, Big Data analytics

and processing, Machine Learning, IoT and

Artificial Intelligence. He always excited to learn and implement

new technologies. His vision is to develop something new and

different in Information Technology. He has 5 years of teaching

experience and 2 years of Research Experience.

