

 © 2019, IJCSE All Rights Reserved 157

 International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.-7, Issue-4, April 2019 E-ISSN: 2347-2693

Machine Learning DDoS Detection Using Stochastic Gradient Boosting

M Devendra Prasad

1*
, Prasanta Babu V

2
, C Amarnath

3

1,2,3

 Bharat Sanchar Nigam Limited[BSNL], Bangalore, India

*Corresponding Author: devendraprasad@bsnl.co.in, Tel.: +91-08022028954

DOI: https://doi.org/10.26438/ijcse/v7i4.157166 | Available online at: www.ijcseonline.org

Accepted: 19/Apr/2019, Published: 30/Apr/2019

Abstract— DDoS (Distributed Denial of service) attacks emerge as the most devastating attacks of all time for organizations

and ISPs of all sizes. The increasing availability of DDoS-for-hire services and the proliferation of billions of Unsecured IoT

devices and botnets contributed to a significant increase in DDoS attacks. These attacks continue to grow in magnitude,

frequency, and sophistication. The legacy methods like signature-based detection and scrubbing are challenged, as attacks are

growing smarter day by day and evading IDS. The next-generation security technologies also cannot keep pace with the scale

of attacks targeting organizations. Even anomaly-based detection is suffering from many limitations with accuracy and false

positives by demanding human intervention. This is our attempt to obviate manual analysis in anomaly-based DDoS detection

by achieving perfect accuracy with zero misclassifications. In this paper, we demonstrated DDoS anomaly detection on the

open CIC datasets using Stochastic Gradient Boosting (SGB) machine learning (ML) model. Using this ML model and by

meticulously tuning hyperparameters, we achieved maximum accuracy and compared the results with other machine learning

algorithms.

Keywords— DDOS attacks, anomaly detection, machine learning, stochastic gradient boosting, scikit-learn, XGBOOST

I. INTRODUCTION

DoS attacks cause denial of service to legitimate requests by

exhausting the resources of network and services. To

maximize the impact, the attack will be launched from

distributed sources, called distributed denial of service

attack. In the majority of the cases, these attacks are launched

by botnets. The largest DDoS attack on the latest records

happened on Feb 2018 as revealed by git hub. The attack

originated from over a thousand different autonomous

systems across tens of thousands of unique endpoints. It was

an amplification attack using the Memcached-based that

peaked at 1.35Tbps. Another major DDoS attack is the

Mirai[1] botnet which was used in a high volumetric DDoS

attack around 1.1 Tbps that took down a large part of the

internet in October 2016. Mirai successfully commanded

nearly 100,000 bots by exploiting poor security of cameras,

home routers, DVRs, and printers with default credentials

used for their telnet ports. This was not an infection—just

poor security policy and lack of attention by the vendors.

By the nature of exploitation DDoS attacks can be subsumed

under 3 categories namely application-level attacks, protocol

attacks, and volumetric attacks. We will cover the literature

of some of them under each category which is relevant to the

context of our work and dataset.

I.I Application-level attacks:

These are the low volumetric attacks that exploit the

vulnerabilities in layer 7 protocols like HTTP. Application

attacks are the trickiest of the DDoS attacks as they are

harder to identify and mitigate. These type of attacks are the

most sophisticated and stealthy attacks because they can be

very effective with a single machine generating traffic at a

low rate can crash the web server. This makes these attacks

very difficult to proactively monitor with traditional flow-

based monitoring solutions like IDS (intrusion detection

system).

The most common attacks under this category are low-and-

slow attacks such as Slowloris, Slow HTTP POST and Slow

Read attack by exhausting concurrent connections pool,

GET/POST floods, and Apache Range Header attack by

raising considerable memory and CPU usage on the server.

Slowloris attack:

Slowloris and Slow HTTP POST DoS, targets the design of

HTTP protocol, which expects requests to be completely

received by the server before they are processed. If an HTTP

request is incomplete, or packets are received slowly, the

resources which are reserved for the incomplete requests are

held busy waiting for the rest of the data. In this process, if

all available resources are allocated to such type of requests

such that it can no more handle the new requests is nothing

but denial of service. This tool targets HTTP server by

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 158

sending HTTP headers to server slowly (maximum allowable

time by the server) and by without completing the request.

HTTP GET/POST flood attack:

In this form of attack, distributed clients are coordinated to

send multiple HTTP GET requests for different types of

content like files, images or some other web resources from a

targeted server. When the target is flooded with requests and

responses, the legitimate requests are denied causing denial

of service.

In the same way, the server can be flooded with HTTP POST

requests. If POST requests involve in database write

operation the impact of attack will be more as compared to

HTTP GET as more intensive operations will be involved

which demands a high amount of processing power and

bandwidth. So by sending flood of POST requests, the

capacity of the target server can be easily saturated to cause

denial-of-service.

I.II Protocol attacks:

These attacks target the vulnerabilities in Layer 3 and Layer

4 implementations of systems. Includes SYN flood attacks,

fragmented packet attacks, Ping of Death, Smurf attacks.

This type of attack consumes server resources or network

bandwidth.

 SYN flood attacks:

This attack exploits the weakness in the TCP connection

sequence. In a normal connection scenario, TCP connection

is established by a 3-way handshake between client and

server by exchanging TCP packet sequence with SYN, SYN-

ACK, ACK flags starting from client end. In the case of the

SYN flood, the attacker sends multiple SYN packets without

responding with SYN-ACK.TCP SYN can also be sent from

source spoofed IP addresses. In either way, the server

continues to wait for SYN-ACK by reserving resources for

each of request, starving out resources for new connection

which ultimately results in denial of service.

Ping of death:

In this case, the attacker sends multiple malformed or

malicious pings to target. The maximum length of IP packet

65,535 bytes poses MTU limitations on datalink layer which

splits packet into fragments of 1500 bytes. This need to be

reassembled at target host which can cause buffer over flow

causing denial of service for benign packets.

Smurf attack:

It is executed by Smurf malware. It builds a spoofed packet

by setting source IP to the IP address of the target victim.

The attack is amplified by sending ping packets to IP

broadcast address of an intermediate network. Each host

connected to the intermediate network responds with ICMP

echo reply packets to target .it makes the target potentially

overwhelmed and resulting denial of service to legitimate

traffic.

I.III Volumetric Attacks:

In these type of attacks, network resources and network

bandwidth are starved out to deny legitimate services by

flooding UDP traffic. To hide the source identity, reflection

is used by spoofing source IP and amplification is used to

multiply attack traffic bandwidth through services like DNS,

NTP, and Memcached. The primary principle of any

amplification attack is to send a spoofed request to UDP

services and eliciting the larger amount of data as a response

which is many folds higher than the size of the request.

Under this category, the major part of attacks covered by

reflection and amplification attacks and ICMP floods.

Popular amplification and reflection attacks are:

 Memcached Amplification:

One of the most recently evolved attacks that successfully

reached the amplification factor of 51000. Memcached is a

tool used to cache data to make data processing faster. It is

only intended to be used on systems that are not connected to

the internet, as there is no authentication mechanism.

However, there are currently more than 50,000 known

vulnerable systems, according to Akamai. The attacker

spoofs request to a vulnerable UDP Memcached server,

which then floods a targeted victim with a large response,

potentially overwhelming the victim’s resources. While the

target’s internet infrastructure is overloaded, new requests

cannot be processed and regular traffic is unable to access the

internet resource, resulting in denial-of-service.

 DNS Amplification:

This attack makes use of vulnerabilities of DNS systems

which are publicly accessible and supports open recursive

relay. The attacker spoofs the source IP with the victim’s

target IP and queries DNS server. When DNS server is

queried for "ANY" resource record, in a single request all

zone information is returned and it is reflected to target.

The attack can be amplified even by EDNS (Extension

Mechanisms for DNS) or DNSSEC (The Domain Name

System Security Extension). Through these methods request

message of 60 bytes can be converted to response message of

around 4000 bytes to target victim, achieving 1:70

amplification factor. When this attack is launched by

Botnets, where thousands of Bots query, multiple DNS

servers which in turn send response data to the victim,

increase the volume of traffic by many folds and accelerates

the rate at which the Target server resources will be depleted.

In March 2013, The Spamhaus Project was targeted by a

massive DDOS attack. It was declared that DNS

Amplification was the primary tactic exploited by the

attackers.

NTP Amplification:

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 159

Primarily NTP was designed for clock synchronization

between the internet connected systems. In the most basic

type of NTP amplification attack, an attacker repeatedly

requests “get monlist” from NTP server, with the spoofed IP

address. The NTP server responds with a list of the last 600

hosts that connected to the queried server. In an NTP

amplification attack, the query-to-response ratio ranges

between 20:1 to 200:1 or more. These attacks more prevalent

as the list of open NTP servers can be easily obtained

through a tool like Metasploit or data from the Open NTP

Project with which attacker can easily generate a devastating

high-bandwidth, high-volume DDoS attack.

I.IV Challenges in traditional detection methods:

Much of the DDoS bots remediation activity today is still a

very manual process. Bots using certain IP addresses or

domains are identified, then necessary steps are taken to

block them at the proxy or firewall.

As the sophistication level of malicious bots and other

attacks increases, traditional approaches to security become

less effective.

When it comes to detection of DDoS attacks targeting web

applications and network bandwidth, traditional approaches

such as Poll-Based Monitoring, Flow-Based Network

Parameter, Deep Packet Inspection, Frequency-Based

Detection, have their own limitations as these approaches

rely on the signature of the attacks.

Signature for an attack cannot be developed on its own.

Human intervention is needed for each attack to be modeled.

Moreover, it will take considerable time and effort to develop

a signature and apply it, as a rule, to catch and stop a known

attack. To defeat signature-based approaches attackers create

slightly different variants to bypass IDS. This is the reason

for the proliferation of DDoS botnet variants today.

I.V Detection using ML:

ML provides a nonlinear way to identify attacks, looking

beyond simple signatures, identifying similarities to what has

happened before, and marking things that appear to be

anomalies.

ML can greatly improve detection and defense capabilities

by using external threat intelligence about DDoS bot

behaviors and combining it with data collected about real

traffic samples to learn about new bot patterns. This

information is then fed into a ML solution. After the ML

solution consumes the various data points, it can be told to

run multiple models whereby the human provides training

input in an active feedback loop approach. ML solutions, in

turn, can launch automated processes for blocking bot traffic

based on the machine’s new understanding of what type of

bot traffic to now look for. ML is required to identify unusual

behavioral patterns and bring them to the attention of

analysts. More important, for common and repeated

suspicious behaviors, organizations can use ML to

automatically block the traffic and alert an analyst that the

problem has been resolved.

AI and ML techniques are exceptionally useful when it

comes to observing, quantifying, and classifying inbound

requests based on the degree of maliciousness.

 I.VI Motivation for our work:

Currently, security products are already available in the

market that adopted supervised ML. For most of these

products, manual input is provided to the ML engines that

are at work scanning massive numbers of log entries to

identify anomalous behaviors. The supervised ML system

augments the manual input as it’s trained to improve

detection of “significant events” in the logs and to

immediately bring those events to the attention.

Even though ML capable devices are in practice today, still,

they are demanding analyst intervention, to analyze the

response of detection engine before feeding into blocking

engine to segregate false positives. In this paper we

attempted to engineer the SGB algorithm to detect DDoS

attacks without any misclassifications, making the detection

system fully automatic.

Rest of the paper is organized as follows, Section II contains

the related works of open dataset generation and DDoS

detection methods. Section III covers our proposed

methodology which focuses on dataset description,

theoretical background of SGB algorithm and its

implementation. Section IV describes the performance of

SGB compared to other algorithms . Section V is about our

future work and conclusion.

II. RELATED WORK

Machine learning, in the domain of network security, is an

active area of research in both industry and in academia. We

cover some of the research works which are the foundation

of our work and some of the works which are in the same

lines.

One of the datasets, CICIDS2017[2], from which we

extracted DDoS traffic is explained in detail in [2]. They

evaluated generated dataset using seven ML classifiers out of

which best results are obtained by using Random Forests in

terms of precision and execution time. In [3] authors

proposed a novel detection approach for application layer

DoS attacks based on nonparametric CUSUM algorithm and

tested. It mainly concentrates on detection of application

layer DoS attacks based on different types of sampling

attacks. The evaluation dataset created by generating

different types of application-layer DDoS attacks and mixed

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 160

with benign traffic generated by [4]. The same dataset is used

as one of the three datasets to make our final dataset.

Generally, DDoS detection solutions are employed at

network of victim but in [5] authors made a proposal to

detect DDoS at source end in cloud environment using

statistical data from both the cloud server’s hypervisor and

the virtual machines, to prevent network packets from being

sent out to the outside network which is evaluated by nine

ML algorithms and they got best prediction results with

Random Forest Model. Strong defense mechanism against

network security attacks are employed at server or network

end but, no dedicated security controls at end-user devices on

the internet. This sort of vulnerable devices attracted

attackers easily and becoming part of botnets. In [6], a model

is proposed to detect attacks from end-user IOT devices with

high accuracy based on IoT-specific network behaviors using

variety of ML algorithms including neural networks.

 Although all these studies addressed the need to identify

DDoS attacks in a more intelligent way and reported the

shortcoming by different methods none of the works

demonstrated the performance results with SGB to evaluate

DDoS datasets and accuracy is not improved more than as

that of Random Forest. More overall models are evaluated

over datasets having relatively fewer samples compared to

our dataset. We improved the performance to reach 100

percent, by using a dataset of diversified DDoS flows with

more than 10 million bidirectional flows and meticulously

tuning the hyperparameters.

III. METHODOLOGY

The prediction of DDoS attack using proposed algorithm is

achieved through the following stages.

III. I BUILDING DATASET & FEATURE EXTRACTION:

The dataset used to train our proposed model is extracted

from three open data sets published by CIC Canada [2][3].

The details are summarized in table 3.1. The reason to

combine multiple data sets is to simulate the near real-time

DDoS traffic by introducing diversity, as each dataset

captured in different years (2016,2017,2018) using various

attack tools in a different network and system setup. The

actual data of datasets contain many attacks other than DoS

and DDoS also. So we extracted only DoS and DDoS traffic

files as mentioned in Table 3.1.

Table 3.1 Final dataset extraction details

The nature of attack and Simulations tools used to generate

different types of DDoS traffic against each file is also

mentioned in table 3.1.

The nature of files we extracted from datasets are .pcap files

which contain raw attack traffic captured at the network

level. Though processed .csv files readily available to train

ML models, those are missing some features and number

features are not uniform across the datasets. So we extracted

bidirectional flows into .csv files from .pcap files using open

source CCFLOWmeter-v4[2] by which 84 features are

extracted. The most important features out of 84 features are

provided in figure 4.5 and discussed under the section

“feature importance”.

The dataset CSE-CIC-IDS2018-AWS[2] contain 4 days of

DDOS traffic and each day traffic is generated by two

distinct DDoS tools. Each day of data consists of around 500

.pcap files. Each file is converted into .CSV file and merged

all files to a single file of the day and labeled it with the

name of a type of attack. Type of attack traffic is identified

based on Source IP of attack and victim systems mentioned

in [2]. By following the same procedure all 4 days of data is

labeled and merged into a single file. The same procedure is

followed for other 2 datasets CICIDS2017[2], CIC DoS[3]

and generated two corresponding aggregated files. Finally,

the three aggregated multiclass labeled files are combined

into the single file, with bidirectional flows amounted to 6.4

Million. As our ML model dealing with binary classification,

all multi-class labels are relabelled to name “DDoS”.

http://botnets.in/

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 161

In the next step, we extracted benign data from two sources

first, from “Monday-WorkingHours.pcap”, extracted to .CSV

and labeled as “Benign”. Second, from “Tuesday-20-

022018_TrafficForML_CICFlowMeter.csv”. All benign

flows are combined to 7.9 Million.

To construct a balanced dataset, 80% of Benign flows are

sampled out of 7.9M so that final benign data points count to

6.3 M. These benign blows merged with 6.4 M DDoS flows

as extracted previously to create a final balanced dataset with

12.79 M data points.

 We created one imbalanced dataset to simulate real-time

attack volume proportion. In the case of volumetric DDoS

attacks, attack traffic is more than benign traffic but in the

case of application-level DDoS attacks, such as slowlowris

attack traffic is in smaller proportions compared to benign

traffic. As the majority of data points in data set are related to

application level DDoS traffic we created an imbalanced

dataset by sampling 20% DDoS traffic and combining with

80%of benign traffic. Total count of flows in each dataset is

shown in table 3.2

Table 3.2 Flow details in balanced & imbalanced datasets

III.II The ML classifier for detection:

We used SGB[7] algorithm to detect DDoS attacks which

are explained and implemented as follows.

III.IIIBackground of Stochastic Gradient boosting algorithm:

Gradient boosting[8] is one of the most powerful algorithms

for building predictive models. It is an ensemble learning

method, which combines the predictive power of individual

weak learners to boost the accuracy of the final model.

An ensemble is a group of base models which can be of any

ML model. But in real-time applications, where latency is an

important factor, Decision trees are used as base models of

the ensemble. Bagging is another type of ensemble model

that uses Decision Trees. In Bagging base learners are trained

with random subsamples of actual dataset and prediction of

majority learners is considered as the final label. As the

decision of each individual model directly contributes to the

final result, base learners can’t be weak learners. In other

words, each tree needs to grow maximum depth to result in

accurate prediction. So trees in ensembles of bagging will

have higher variance.

In contrast, trees in boosting ensemble have low variance and

high bias. Depth of the tree is smaller, even shallow trees can

serve the base learners. So the base learners in boosting are

weak learners and predictive power is very weak. Each of the

weak learners will not contribute directly to the final

decision, instead, they act on error or residual of the previous

model and train the overall learner with low bias and low

variance.

Boosting operation is performed through the series following

steps:

1. For the given dataset first, the initial model(F0) naively

predicts the label γ which results in error or residual F0 -y

2. New model h1, instead of predicting the label of actual

data points, it tries to fit residual in the step1.

At this step overall model can be formulated as

F1 = F0 + h1

where F1 is a boosted version of F0, means better prediction.

3. Now error in the previous step is F1-y, and h2 is the

function which tries to fit residual.

Now, F1 & h1 can be combined to give function F2, a better v

ersion of F1

F2= F1 + h2

This process continues for n iteration until error is minimized

 and the desired accuracy is achieved.

After n iterations,

Fn= Fn-1 + hn

The additive learner introduced at each stage try to reduce

the error from the previous stage and do not disturb previous

learners. In boosting operation “hn” tries to fit residual or

Loss function, but in gradient boosting it fits gradient loss of

function.

Gradient boosting algorithm [8] over training data set

 { }
 over “m” iterations take the following steps.

The initial approximate loss function is,

Loss function=L(yi, F(xi))

1. When the model is started with some initial naïve

prediction γ, a naïve initial prediction of F(xi),

F0(x)= argminγ ∑

 γ)

2. The pseudo residual R, of data point at m
th

 iteration is

the gradient of loss function at i,m

R

im

= -α[∂L(y
i
, F(x

i
)) ∕ ∂(F(x

i
)]

F(x)= Fm-1(x)

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 162

where α is a learning rate.

3. Fit hm(xi) to above-derived residuals i.e train additive

model over the data set { }

4. Compute γm by solving the following equation

γm= argminγ ∑

 Fm-1(xi)) + γhm(xi)

5. At the end of each iteration add it to the final model

Fm(x)= Fm-1(xi)+ γmhm(xi)

For each node, there is a factor γm with which hm(x) is

multiplied. This accounts for the difference in the impact of

each branch of the split. Gradient boosting helps in

predicting the optimal gradient for the additive model, unlike

classical gradient descent techniques which reduce error in

the output at each iteration.

In the above algorithm (Gradient Boosting) for each additive

base learner is trained with the residual dataset over full data

points but in the case of stochastic gradient boosting

algorithm, at each iteration a subsample of the training data

is drawn at random (without replacement) from the full

training dataset. The randomly selected subsample is then

used, instead of the full sample, to fit the base learner.

III.IV Implementation:

Stochastic Gradient Boosting algorithm is implemented by

XGBOOST, an open-source software library which provides

a gradient boosting framework in python.

 XGBOOST simulates gradient boosting algorithm with

default parameters. To achieve stochastic gradient boosting

we need to specify what fraction of data set need to sample

randomly for each additive base learner to be trained at each

iteration. As random sampling can be done row-wise,

column-wise and split-wise (when building tree), we need to

set values for XGBOOST parameters, namely “subsample”,

“colsample_bytree” and “colsample_bylevel” respectively.

Along with these parameters, the maximum number of trees

in the ensemble, depth of each tree and learning rate of

gradient also need to be set with optimal values. These

parameters can be set by specifying values for

“n_estimators”, “max_depth” and “learning_rate”

respectively. For tuning these hyperparameters, we used Grid

search technique with 3-fold cross-validation. The final

Model is implemented with the tuned hyper-parameters

returned by Grid search.

The dataset is divided in to train and test datasets in 2:1 ratio

and model is trained on train dataset and tested with test

dataset. SGB model has trained with imbalanced dataset also

in the same way.

IV. RESULTS AND DISCUSSION

The performance of SGB is compared with the following ML

models

1. K Nearest Neighbours using “kd_tree” algorithm

(K-NN)

2. Naïve Bayes with Bernoulli event model(NB)

3. Decision tree using Gini impurity (DT)

4. Random Forest using Gini impurity (RF)

The above algorithms are implemented using Scikit-learn

python library.

All ML models are trained over both balanced dataset and

imbalanced dataset. The following classification metrics are

used to evaluate the proposed model and compare with the

above ML algorithms.

Accuracy:

It is the ratio of correctly classified data points to the total

number of data points in a given data set.

(TP + TN)/ (Total data points).

Precession:

 It is the ratio of all correctly classified items to all actually

classified items.

Defined as, TP/ (TP + FP).

Confusion Matrix:

 In binary classification, it is the 2x2 matrix. In our case it is

described as below:

Precession:

It is the ratio of all correctly classified items to all actually

classified items.

Defined as, TP/ (TP + FP).

F1-score:

 Mathematically it is defined as

2 ∗ TP/ (2 ∗ TP + FN + FP). It computes the harmonic mean

of the precision and the recall.

Label
Predicted as

"ddos"

Predicted as

"benign"

Data points

labelled with

"ddos"

True

Positves(TP)

False

Negatives(FN)

Data points

labelled with

"benign"

False

Positive(FP)

True

Nehatives(TN)

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 163

Recall:

It is the ratio, TP/ (TP + FN). Also called sensitivity or true

positive rate.

The obtained results for all models are shown in table 4.1

along with tuned hyperparameter values and run time for

each model. All models are executed in same standalone

Linux Machine of 216 GB RAM and 30-Cores Intel-Xeon

2.7GHz CPU.

From the performance metrics of all models over balanced

dataset from Table 4.1, It is evident that SGB outperformed

all other models with zero false positives and false negatives

and 100% accuracy and literally zero misclassifications. NB

recorded the lowest accuracy and also other metrics. But it is

the fastest model with run time, 20 secs with a single thread.

K-NN is the slowest model with 5hrs run time with 25

parallel threads. When executed with a single thread, it ran

for 20 hrs. DT model is the second best when the trade-off

between run time and accuracy is considered as it completed

its execution in 4min. Though Random Forest has less run

time with 2min, it can’t be compared directly as RF

execution is parallelized with 30 jobs.

Table 4.1 Results over balanced dataset

The run time of SGB is 10 min when executed with 30

threads. It is not as fast as Random Forest where bagging

operation can be computed parallel. But in real time this can

be greatly reduced by deploying SGB in distributed

processing environment with an n-node cluster.

 The real-time attack traffic will be having high variance and

results may vary for the model which is trained over the

balanced dataset. To test the model against this scenario we

trained SGB over the unbalanced dataset, created in section

3.1. All other models are evaluated over this dataset to

compare results. SGB recorded 100 percent accuracy and

zero misclassifications even with the imbalanced dataset.

This proves that SGB can be engineered to be insensitive to

the variance of the input data which is an essential

requirement when handling real-time attack traffic. Other

ML model resulted in lower performance metrics as that of

balanced data set. The performance of DT, K-NN, RF are

only slightly degraded but Precision of Naive Bayes

exhibited huge difference from 91% to 69%. The values of

all metrics are tabulated in 4.2

Table 4.2 Results over imbalanced dataset

The Receiver Operating characteristic curve is another

performance metric which illustrates the diagnostic ability of

binary classifier. ROC curve for SGB and Naïve Bayes are

shown below in Fig 4.1 & 4.2 respectively.

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 164

Fig. 4.1 ROC of SGB (XGBOOST) Balanced Dataset

The ROC curve for DT, RF, and K-NN is same as above as

we got the area under the curve equal to one.

Fig.4.2 ROC of Naïve Bayes-Bernoulli (Balanced dataset)

It is found that SGB model performance unchanged even

when trained with the imbalanced dataset. The ROC curve

for the same is shown in Fig 4.3.

Fig 4.3 ROC of SGB (XGBOOST) Imbalanced dataset

But, the ROC curve is changed for Naïve Bayes when trained

over the unbalanced dataset. The plot is shown in figure 4.4

The ROC is almost the same for RF, DT, K-NN for both

unbalanced & balanced datasets. The area under the curve

metric is the same. So the difference between ROC cannot be

differentiated between those algorithms and look like same

as in fig. 4.1 & fig 4.2. When total miss classifications are

considered NB resulted in the highest number. Surprisingly

for same tree hyperparameters, DT recorded better metrics

compared to RF.

 Fig 4.4 ROC of Naive Bayes (Imbalanced dataset)

4.1 Feature importance:

Advantage of using SGB is that it can automatically provide

estimates of feature importance from a trained model.

Importance provides a score of the feature. Higher the score,

major the role in making a decision in building a tree. The

top 10 important features returned by trained SGB model are

shown in Fig 4.5

Fig 4.5 Feature importance by SGB (XGBOOST)

and also the top features given by Random Forest are shown

in Table 4.3. After comparing the features returned by both

models, features given by SGB are found more relevant.

These are the features which played a key role in making the

decision and contributing to 100% accuracy. Flow ID is the

top feature in both models. This is obvious because “Flow

ID” in the dataset is the combination of Source IP,

Destination IP, Source Port and Destination Port and

protocol (TCP or UDP) which describes the entire flow.

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 165

Table 4.3 RF Feature importance (Balanced dataset)

Label Score

 Flow ID 0.226904

Src IP 0.105322

Fwd Seg Size Min 0.094147

Dst IP 0.090014

Timestamp 0.056993

Init Bwd Win Byts 0.050132

Init Fwd Win Byts 0.034673

Bwd Header Len 0.019799

Fwd Act Data Pkts 0.01799

Fwd Seg Size Avg 0.017863

Even in real time manual analysis this parameter influences

decision. “Timestamp” is the second highest feature in SGB

model which is not important in real-time DDoS analysis.

But in the dataset in which model is trained, the attack is

generated on particular days and benign traffic in another

day. So here the key role of “Time stamp” is justified.

When the model is trained on the imbalanced dataset we find

that important features are changed but 100% accuracy

retained. These features are presented on Fig4.6 and table 4.4

It is observed the feature minimum flow inter-arrival time,

“Flow IAT Min” which has considerable importance in

DDoS detection is not presented by Random Forest model

but returned SGB model for both the datasets balanced and

imbalanced.

Fig 4.6 Feature importance by SGB(XGBOOST)imbalanced dataset

Table 4.4 RF feature importance (Imbalanced dataset)

Label Score

Flow ID 0.212814

Fwd Seg Size Min 0.089639

Timestamp 0.080945

Src IP 0.06383

Fwd Pkt Len Mean 0.061426

Dst IP 0.057134

Fwd Pkt Len Max 0.039168

Fwd Seg Size Avg 0.035354

Init Bwd Win Byts 0.033372

Init Fwd Win Byts 0.024952

V. CONCLUSION AND FUTURE SCOPE

Conclusion:

In this paper, we proposed a methodology to detect DDoS

attacks by using Stochastic gradient boosting algorithm.

We trained our proposed model on the hybrid dataset

extracted from three open datasets and compared the results

with other popular machine algorithms. It is shown that SGB

surpassed K-NN, Decision trees, Random forest, and Naive

Bayes by achieving 100% performance metrics. Even in case

of feature importance, SGB presented the more relevant

features compared to Random Forest.

The proposed model is also trained over imbalanced dataset

to simulate real-time traffic and results are demonstrated.

Even in this case, SGB achieved zero misclassifications and

perfect evaluation metrics. Whereas metrics of other models

recorded lower compared to as that of balanced dataset case.

Finally, in the context of our work, we have shown that by

adapting SGB, DDoS detection system can be fully

automated obviating human intervention.

Future work:

This publication is the prototype of ongoing work in our

organization to detect DDoS attacks originating from

customer end devices like home routers which are not

protected. The real-time flows are extracted from net flow

data collected at the internet gateways. The processed net

flow data is labeled based on threat intelligence inferred from

the data points of security controls deployed at various levels

such as firewalls, intrusion protection systems, intrusion

detection systems, sandboxes, web application firewalls, and

privileged access management solutions.

To scale the model to large real-time time data and to

achieve better latency XGBOOST is deployed with spark, a

distributed in-memory, cluster computing framework in a

multi-node cluster setup. We are eager to check how metrics

are going to be affected.

With the continuously evolving nature of attacks, an attempt

to find zero day attack poses a limitation on labeled data

based on internally collected threat intelligence.so we would

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 166

like to experiment with more promising machine learning

techniques beyond those discussed in this paper such as deep

learning.

REFERENCES

[1].M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J.

Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,

D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N.

Sullivan, K. Thomas, and Y. Zhou, "Understanding the mirai botnet,"

in Proc. of USENIX Security Symposium, 2017.

[2].Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani,

“Toward Generating a New Intrusion Detection Dataset and Intrusion

Traffic Characterization”, 4th International Conference on

Information Systems Security and Privacy (ICISSP), Portugal,

January 2018

[3].Hossein Hadian Jazi, Hugo Gonzalez, Natalia Stakhanova, and Ali

A. Ghorbani. "Detecting HTTP-based Application Layer DoS attacks

on Web Servers in the presence of sampling." Computer Networks,

2017

[4]. A. Shiravi, H. Shiravi, M. Tavallaee, A.A. Ghorbani, Toward

developing a systematic approach to generate benchmark datasets for

intrusion detection, Comput.

Security 31 (3) (2012) 357–374.

[5].Z. He, T. Zhang, and R. B. Lee, “Machine Learning Based DDoS

Attack Detection from Source Side in Cloud,” in Proceedings of the

2017 IEEE 4th International Conference on Cyber Security and

Cloud Computing (CSCloud), pp. 114–120, New York, NY, USA,

June 2017

[6].R. Doshi, N. Apthorpe and N. Feamster, "Machine Learning DDoS

Detection for Consumer Internet of Things Devices," 2018 IEEE

Security and Privacy Workshops (SPW), San Francisco, CA, 2018,

pp. 29-35.

[7].Jerome H. Friedman, (2002), Stochastic gradient boosting,

Computational Statistics & Data Analysis, 38, (4), 367-378

[8].Friedman, Jerome H. Greedy function approximation: A gradient

boosting machine. Ann. Statist. 29 (2001), no. 5, 1189--1232.

Author's Profile

 M Devendra Prasad pursued

B.tech(Electronics and communication

Engineering from JNTU Hyderabad. He has

been working in Datacentre of Broad Band

Networks, BSNL, as a Junior Telecomm

Officer for past 10 years in the domains of

Networking and Network security. He attained rigorous

industry experience over Network programming and network

security (Firewalls, NIDS, HIDS, AAAs). Implemented

DNS, DNS64, DNSV6, DHCP, DHCPv6 services on pan

India scale to serve various broadband and VOIP services.

Implemented Google Global Caching in BSNL ISP over 20+

locations across India. Implemented many prototypes

including IPv6 broadband (end to end), NAT64 and

Automatic Bot healing system. His current area of research

focuses on Machine Learning & Deep learning in Cyber

Security Domain (IOT botnets). Other areas of interest

include Multivariate calculus, Mathematical Optimization,

Algorithms, SDN, NFV, and IOT Security.

Prasanta Babu V pursed B.Tech(Electronics

and Communication Engineering) from

Gitam University, Visakhapatnam in 2001

and MBA from Bangalore University in

2012. He has been working in Datacenter of

BBNW, BSNL for the past 13 years. He has strong industry

experience in managing different network services(CGNAT,

WiMAX Broadband, DSL broadband, Google peering &

caching, OSS/BSS) on pan India scale, and managing

Network security of Project-3 datacenter. His areas of

interests include Business Analytics, VPNs and cloud

computing.

C Amaranth Pursed Bachelor of Technology in

Electronics and Communication Engineering

from Jawaharlal Nehru Technological

University, Anantapur in 2009. He is currently

working as Junior Telecom Officer under

Department of Telecommunications, in Bharat

Sanchar Nigam Limited(BSNL), Bangalore. He has been

working in Datacentre of BSNL, BBNW for the past 5 years.

He has Strong Industry Experience in Administering

Different Network services like CGNAT, Peering and

Caching of Various Content Providers and in network

security (Firewalls & NIDS). His Areas of Interest and

research include Machine learning, Cloud Security,

Distributed processing & Big data analytics.

