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Abstract— DDoS (Distributed Denial of service) attacks emerge as the most devastating attacks of all time for organizations 

and ISPs of all sizes. The increasing availability of DDoS-for-hire services and the proliferation of billions of Unsecured IoT 

devices and botnets contributed to a significant increase in DDoS attacks. These attacks continue to grow in magnitude, 

frequency, and sophistication. The legacy methods like signature-based detection and scrubbing are challenged, as attacks are 

growing smarter day by day and evading IDS. The next-generation security technologies also cannot keep pace with the scale 

of attacks targeting organizations. Even anomaly-based detection is suffering from many limitations with accuracy and false 

positives by demanding human intervention. This is our attempt to obviate manual analysis in anomaly-based DDoS detection 

by achieving perfect accuracy with zero misclassifications. In this paper, we demonstrated DDoS anomaly detection on the 

open CIC datasets using Stochastic Gradient Boosting (SGB) machine learning (ML) model. Using this ML model and by 

meticulously tuning hyperparameters, we achieved maximum accuracy and compared the results with other machine learning 

algorithms. 
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I.  INTRODUCTION  

 

DoS attacks cause denial of service to legitimate requests by 

exhausting the resources of network and services. To 

maximize the impact, the attack will be launched from 

distributed sources, called distributed denial of service 

attack. In the majority of the cases, these attacks are launched 

by botnets. The largest DDoS attack on the latest records 

happened on Feb 2018 as revealed by git hub. The attack 

originated from over a thousand different autonomous 

systems across tens of thousands of unique endpoints. It was 

an amplification attack using the Memcached-based that 

peaked at 1.35Tbps. Another major DDoS attack is the 

Mirai[1] botnet which was used in a high volumetric DDoS 

attack around 1.1 Tbps that took down a large part of the 

internet in October 2016. Mirai successfully commanded 

nearly 100,000 bots by exploiting poor security of cameras, 

home routers, DVRs, and printers with default credentials 

used for their telnet ports. This was not an infection—just 

poor security policy and lack of attention by the vendors. 

  

By the nature of exploitation DDoS attacks can be subsumed 

under 3 categories namely application-level attacks, protocol 

attacks, and volumetric attacks. We will cover the literature 

of some of them under each category which is relevant to the 

context of our work and dataset. 

 

 

I.I Application-level attacks: 

These are the low volumetric attacks that exploit the 

vulnerabilities in layer 7 protocols like HTTP. Application 

attacks are the trickiest of the DDoS attacks as they are 

harder to identify and mitigate. These type of attacks are the 

most sophisticated and stealthy attacks because they can be 

very effective with a single machine generating traffic at a 

low rate can crash the web server. This makes these attacks 

very difficult to proactively monitor with traditional flow-

based monitoring solutions like IDS (intrusion detection 

system).  

 

The most common attacks under this category are low-and-

slow attacks such as Slowloris, Slow HTTP POST and Slow 

Read attack by exhausting concurrent connections pool, 

GET/POST floods, and Apache Range Header attack by 

raising considerable memory and CPU usage on the server. 

 

Slowloris attack: 

Slowloris and Slow HTTP POST DoS, targets the design of 

HTTP protocol, which expects requests to be completely 

received by the server before they are processed. If an HTTP 

request is incomplete, or packets are received slowly, the 

resources which are reserved for the incomplete requests are 

held busy waiting for the rest of the data. In this process, if 

all available resources are allocated to such type of requests 

such that it can no more handle the new requests is nothing 

but denial of service. This tool targets HTTP server by 
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sending HTTP headers to server slowly (maximum allowable 

time by the server) and by without completing the request. 

 

HTTP GET/POST flood attack: 

In this form of attack, distributed clients are coordinated to 

send multiple HTTP GET requests for different types of 

content like files, images or some other web resources from a 

targeted server. When the target is flooded with requests and 

responses, the legitimate requests are denied causing denial 

of service. 

 

In the same way, the server can be flooded with HTTP POST 

requests. If POST requests involve in database write 

operation the impact of attack will be more as compared to 

HTTP GET as more intensive operations will be involved 

which demands a high amount of processing power and 

bandwidth. So by sending flood of POST requests, the 

capacity of the target server can be easily saturated to cause 

denial-of-service. 

 

I.II Protocol attacks: 

These attacks target the vulnerabilities in Layer 3 and Layer 

4 implementations of systems. Includes SYN flood attacks, 

fragmented packet attacks, Ping of Death, Smurf attacks. 

This type of attack consumes server resources or network 

bandwidth. 

 

 SYN flood attacks: 

This attack exploits the weakness in the TCP connection 

sequence.  In a normal connection scenario, TCP connection 

is established by a 3-way handshake between client and 

server by exchanging TCP packet sequence with SYN, SYN-

ACK, ACK flags starting from client end. In the case of the 

SYN flood, the attacker sends multiple SYN packets without 

responding with SYN-ACK.TCP SYN can also be sent from 

source spoofed IP addresses. In either way, the server 

continues to wait for SYN-ACK by reserving resources for 

each of request, starving out resources for new connection 

which ultimately results in denial of service. 

 

Ping of death: 

In this case, the attacker sends multiple malformed or 

malicious pings to target. The maximum length of IP packet 

65,535 bytes poses MTU limitations on datalink layer which 

splits packet into fragments of 1500 bytes. This need to be 

reassembled at target host which can cause buffer over flow 

causing denial of service for benign packets. 

 

Smurf attack: 

It is executed by Smurf malware. It builds a spoofed packet 

by setting source IP to the IP address of the target victim. 

The attack is amplified by sending ping packets to IP 

broadcast address of an intermediate network. Each host 

connected to the intermediate network responds with ICMP 

echo reply packets to target .it makes the target potentially 

overwhelmed and resulting denial of service to legitimate 

traffic.   

 

I.III Volumetric Attacks: 

In these type of attacks, network resources and network 

bandwidth are starved out to deny legitimate services by 

flooding UDP traffic. To hide the source identity, reflection 

is used by spoofing source IP and amplification is used to 

multiply attack traffic bandwidth through services like DNS, 

NTP, and Memcached. The primary principle of any 

amplification attack is to send a spoofed request to UDP 

services and eliciting the larger amount of data as a response 

which is many folds higher than the size of the request. 

Under this category, the major part of attacks covered by 

reflection and amplification attacks and ICMP floods. 

Popular amplification and reflection attacks are:  

 

 Memcached Amplification: 

One of the most recently evolved attacks that successfully 

reached the amplification factor of 51000. Memcached is a 

tool used to cache data to make data processing faster. It is 

only intended to be used on systems that are not connected to 

the internet, as there is no authentication mechanism. 

However, there are currently more than 50,000 known 

vulnerable systems, according to Akamai. The attacker 

spoofs request to a vulnerable UDP Memcached server, 

which then floods a targeted victim with a large response, 

potentially overwhelming the victim’s resources. While the 

target’s internet infrastructure is overloaded, new requests 

cannot be processed and regular traffic is unable to access the 

internet resource, resulting in denial-of-service. 

 

 DNS Amplification: 

This attack makes use of vulnerabilities of DNS systems 

which are publicly accessible and supports open recursive 

relay. The attacker spoofs the source IP with the victim’s 

target IP and queries DNS server. When DNS server is 

queried for "ANY" resource record, in a single request all 

zone information is returned and it is reflected to target. 

 

The attack can be amplified even by EDNS (Extension 

Mechanisms for DNS) or DNSSEC (The Domain Name 

System Security Extension). Through these methods request 

message of 60 bytes can be converted to response message of 

around 4000 bytes to target victim, achieving 1:70 

amplification factor. When this attack is launched by 

Botnets, where thousands of Bots query, multiple DNS 

servers which in turn send response data to the victim, 

increase the volume of traffic by many folds and accelerates 

the rate at which the Target server resources will be depleted. 

In March 2013, The Spamhaus Project was targeted by a 

massive DDOS attack. It was declared that DNS 

Amplification was the primary tactic exploited by the 

attackers. 

NTP Amplification: 
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Primarily NTP was designed for clock synchronization 

between the internet connected systems. In the most basic 

type of NTP amplification attack, an attacker repeatedly 

requests “get monlist” from NTP server, with the spoofed IP 

address. The NTP server responds with a list of the last 600 

hosts that connected to the queried server. In an NTP 

amplification attack, the query-to-response ratio ranges 

between 20:1 to 200:1 or more. These attacks more prevalent 

as the list of open NTP servers can be easily obtained 

through a tool like Metasploit or data from the Open NTP 

Project with which attacker can easily generate a devastating 

high-bandwidth, high-volume DDoS attack. 

 

I.IV Challenges in traditional detection methods: 

Much of the DDoS bots remediation activity today is still a 

very manual process. Bots using certain IP addresses or 

domains are identified, then necessary steps are taken to 

block them at the proxy or firewall. 

As the sophistication level of malicious bots and other 

attacks increases, traditional approaches to security become 

less effective. 

 

When it comes to detection of DDoS attacks targeting web 

applications and network bandwidth, traditional approaches 

such as Poll-Based Monitoring, Flow-Based Network 

Parameter, Deep Packet Inspection, Frequency-Based 

Detection, have their own limitations as these approaches 

rely on the signature of the attacks. 

 

Signature for an attack cannot be developed on its own. 

Human intervention is needed for each attack to be modeled. 

Moreover, it will take considerable time and effort to develop 

a signature and apply it, as a rule, to catch and stop a known 

attack. To defeat signature-based approaches attackers create 

slightly different variants to bypass IDS. This is the reason 

for the proliferation of DDoS botnet variants today. 

 

I.V Detection using ML: 

ML provides a nonlinear way to identify attacks, looking 

beyond simple signatures, identifying similarities to what has 

happened before, and marking things that appear to be 

anomalies. 

 

ML can greatly improve detection and defense capabilities 

by using external threat intelligence about DDoS bot 

behaviors and combining it with data collected about real 

traffic samples to learn about new bot patterns. This 

information is then fed into a ML solution. After the ML 

solution consumes the various data points, it can be told to 

run multiple models whereby the human provides training 

input in an active feedback loop approach. ML solutions, in 

turn, can launch automated processes for blocking bot traffic 

based on the machine’s new understanding of what type of 

bot traffic to now look for. ML is required to identify unusual 

behavioral patterns and bring them to the attention of 

analysts. More important, for common and repeated 

suspicious behaviors, organizations can use ML to 

automatically block the traffic and alert an analyst that the 

problem has been resolved. 

 

AI and ML techniques are exceptionally useful when it 

comes to observing, quantifying, and classifying inbound 

requests based on the degree of maliciousness. 

 

 I.VI Motivation for our work: 

Currently, security products are already available in the 

market that adopted supervised ML. For most of these 

products, manual input is provided to the ML engines that 

are at work scanning massive numbers of log entries to 

identify anomalous behaviors. The supervised ML system 

augments the manual input as it’s trained to improve 

detection of “significant events” in the logs and to 

immediately bring those events to the attention. 

 

Even though ML capable devices are in practice today, still, 

they are demanding analyst intervention, to analyze the 

response of detection engine before feeding into blocking 

engine to segregate false positives. In this paper we 

attempted to engineer the SGB algorithm to detect DDoS 

attacks without any misclassifications, making the detection 

system fully automatic.  

 

Rest of the paper is organized as follows, Section II contains 

the related works of open dataset generation and DDoS 

detection methods. Section III covers our proposed 

methodology which focuses on dataset description, 

theoretical background of SGB algorithm and its 

implementation.    Section IV describes the performance of 

SGB compared to other algorithms . Section V is about our 

future work and conclusion. 
 

II. RELATED WORK  

 

Machine learning, in the domain of network security, is an 

active area of research in both industry and in academia. We 

cover some of the research works which are the foundation 

of our work and some of the works which are in the same 

lines. 

 

One of the datasets, CICIDS2017[2], from which we 

extracted DDoS traffic is explained in detail in [2]. They 

evaluated generated dataset using seven ML classifiers out of 

which best results are obtained by using Random Forests in 

terms of precision and execution time. In [3] authors 

proposed a novel detection approach for application layer 

DoS attacks based on nonparametric CUSUM algorithm and 

tested. It mainly concentrates on detection of application 

layer DoS attacks based on different types of sampling 

attacks. The evaluation dataset created by generating 

different types of application-layer DDoS attacks and mixed 
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with benign traffic generated by [4]. The same dataset is used 

as one of the three datasets to make our final dataset. 

 

Generally, DDoS detection solutions are employed at 

network of victim but in [5] authors made a proposal to 

detect DDoS at source end in cloud environment using 

statistical data from both the cloud server’s hypervisor and 

the virtual machines, to prevent network packets from being 

sent out to the outside network which is evaluated by nine 

ML algorithms and they got best prediction results with 

Random Forest Model. Strong defense mechanism against 

network security attacks are employed at server or network 

end but, no dedicated security controls at end-user devices on 

the internet. This sort of vulnerable devices attracted 

attackers easily and becoming part of botnets. In [6], a model 

is proposed to detect attacks from end-user IOT devices with 

high accuracy based on IoT-specific network behaviors using 

variety of ML algorithms including neural networks. 

 

 Although all these studies addressed the need to identify 

DDoS attacks in a more intelligent way and reported the 

shortcoming by different methods none of the works 

demonstrated the performance results with SGB to evaluate 

DDoS datasets and accuracy is not improved more than as 

that of Random Forest. More overall models are evaluated 

over datasets having relatively fewer samples compared to 

our dataset. We improved the performance to reach 100 

percent, by using a dataset of diversified DDoS flows with 

more than 10 million bidirectional flows and meticulously 

tuning the hyperparameters. 

 

III. METHODOLOGY 

 

The prediction of DDoS attack using proposed algorithm is 

achieved through the following stages.  

 

III. I  BUILDING DATASET & FEATURE EXTRACTION: 

The dataset used to train our proposed model is extracted 

from three open data sets published by CIC Canada [2][3]. 

The details are summarized in table 3.1. The reason to 

combine multiple data sets is to simulate the near real-time 

DDoS traffic by introducing diversity, as each dataset 

captured in different years (2016,2017,2018) using various 

attack tools in a different network and system setup. The 

actual data of datasets contain many attacks other than DoS 

and DDoS also. So we extracted only DoS and DDoS traffic 

files as mentioned in Table 3.1.  

 
Table 3.1 Final dataset extraction details 

 
 

The nature of attack and Simulations tools used to generate 

different types of DDoS traffic against each file is also 

mentioned in table 3.1. 

 

The nature of files we extracted from datasets are .pcap files 

which contain raw attack traffic captured at the network 

level. Though processed .csv files readily available to train 

ML models, those are missing some features and number 

features are not uniform across the datasets. So we extracted 

bidirectional flows into .csv files from .pcap files using open 

source CCFLOWmeter-v4[2] by which 84 features are 

extracted. The most important features out of 84 features are 

provided in figure 4.5 and discussed under the section 

“feature importance”. 

 

The dataset CSE-CIC-IDS2018-AWS[2] contain 4 days of 

DDOS traffic and each day traffic is generated by two 

distinct DDoS tools. Each day of data consists of around 500 

.pcap files. Each file is converted into .CSV file and merged 

all files to a single file of the day and labeled it with the 

name of a type of attack. Type of attack traffic is identified 

based on Source IP of attack and victim systems mentioned 

in [2]. By following the same procedure all 4 days of data is 

labeled and merged into a single file. The same procedure is 

followed for other  2 datasets CICIDS2017[2], CIC DoS[3]  

and generated two corresponding aggregated files. Finally, 

the three aggregated multiclass labeled files are combined 

into the single file, with bidirectional flows amounted to 6.4 

Million. As our ML model dealing with binary classification, 

all multi-class labels are relabelled to name “DDoS”. 

 

http://botnets.in/
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In the next step, we extracted benign data from two sources 

first, from “Monday-WorkingHours.pcap”, extracted to .CSV 

and labeled as “Benign”. Second, from “Tuesday-20-

022018_TrafficForML_CICFlowMeter.csv”. All benign 

flows are combined to 7.9 Million. 

 

To construct a balanced dataset, 80% of Benign flows are 

sampled out of 7.9M so that final benign data points count to 

6.3 M. These benign blows merged with 6.4 M DDoS flows 

as extracted previously to create a final balanced dataset with 

12.79 M data points. 

 

 We created one imbalanced dataset to simulate real-time 

attack volume proportion. In the case of volumetric DDoS 

attacks, attack traffic is more than benign traffic but in the 

case of application-level DDoS attacks, such as slowlowris 

attack traffic is in smaller proportions compared to benign 

traffic. As the majority of data points in data set are related to 

application level DDoS traffic we created an imbalanced 

dataset by sampling 20% DDoS traffic and combining with 

80%of benign traffic.  Total count of flows in each dataset is 

shown in table 3.2 

          
Table 3.2 Flow details in balanced & imbalanced datasets 

 
 

III.II The ML classifier for detection: 

We used  SGB[7] algorithm to detect DDoS attacks which 

are explained and implemented as follows. 

  
III.IIIBackground of Stochastic Gradient boosting algorithm: 

Gradient boosting[8] is one of the most powerful algorithms 

for building predictive models. It is an ensemble learning 

method, which combines the predictive power of individual 

weak learners to boost the accuracy of the final model. 

 

An ensemble is a group of base models which can be of any 

ML model. But in real-time applications, where latency is an 

important factor, Decision trees are used as base models of 

the ensemble. Bagging is another type of ensemble model 

that uses Decision Trees. In Bagging base learners are trained 

with random subsamples of actual dataset and prediction of 

majority learners is considered as the final label. As the 

decision of each individual model directly contributes to the 

final result, base learners can’t be weak learners. In other 

words, each tree needs to grow maximum depth to result in 

accurate prediction. So trees in ensembles of bagging will 

have higher variance. 

 

In contrast, trees in boosting ensemble have low variance and 

high bias. Depth of the tree is smaller, even shallow trees can 

serve the base learners. So the base learners in boosting are 

weak learners and predictive power is very weak. Each of the 

weak learners will not contribute directly to the final 

decision, instead, they act on error or residual of the previous 

model and train the overall learner with low bias and low 

variance. 

 

Boosting operation is performed through the series following  

steps: 

1. For the given dataset first, the initial model(F0) naively 

predicts the label γ which results in error or residual F0 -y 

 

2.  New model h1, instead of predicting the label of actual 

data points, it tries to fit residual in the step1. 

At this step overall model can be formulated as  

 

F1 = F0 + h1 

 

where F1 is a boosted version of F0, means better prediction. 

3. Now error in the previous step is  F1-y, and h2 is the 

function which tries to fit residual. 

Now, F1 & h1 can be combined to give function F2, a better  v

ersion of F1 

 

F2= F1 + h2 

 

This process continues for n iteration until error is minimized

 and the desired accuracy is achieved. 

After n iterations, 

 

Fn= Fn-1 + hn 

 

The additive learner introduced at each stage try to reduce 

the error from the previous stage and do not disturb previous 

learners. In boosting operation “hn” tries to fit residual or 

Loss function, but in gradient boosting it fits gradient loss of 

function. 

 

Gradient boosting algorithm [8] over training data set  

 {     }   
  over “m” iterations take the following steps. 

 

The initial approximate loss function is,  

 

Loss function=L(yi, F(xi)) 

 

1. When the model is started with some initial naïve 

prediction γ, a naïve initial prediction of  F(xi), 

 

F0(x)= argminγ ∑      
 

   
 γ) 

 

2. The pseudo residual R, of     data point at  m
th

 iteration is 

the gradient of loss function at i,m 

 
R

im

= -α[∂L(y
i
, F(x

i
)) ∕ ∂( F(x

i
)]

F(x)= Fm-1(x) 

    



   International Journal of Computer Sciences and Engineering                                     Vol.7(4), Apr 2019, E-ISSN: 2347-2693 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        162 

where α is a learning rate.  

 

3. Fit  hm(xi) to above-derived residuals i.e train additive 

model over the  data set  {      }   
 

 

 

4. Compute γm  by solving the following equation    

 

γm= argminγ ∑      
 

   
 Fm-1(xi)) + γhm(xi) 

 

5. At the end of each iteration add it to the final model 

 

Fm(x)= Fm-1(xi)+ γmhm(xi) 
 

For each node, there is a factor γm with which hm(x) is 

multiplied. This accounts for the difference in the impact of 

each branch of the split. Gradient boosting helps in 

predicting the optimal gradient for the additive model, unlike 

classical gradient descent techniques which reduce error in 

the output at each iteration. 

 

In the above algorithm (Gradient Boosting) for each additive 

base learner is trained with the residual dataset over full data 

points but in the case of stochastic gradient boosting 

algorithm, at each iteration a subsample of the training data 

is drawn at random (without replacement) from the full 

training dataset. The randomly selected subsample is then 

used, instead of the full sample, to fit the base learner. 

 

III.IV Implementation: 

Stochastic Gradient Boosting algorithm is implemented by 

XGBOOST, an open-source software library which provides 

a gradient boosting framework in python.  

  

 XGBOOST simulates gradient boosting algorithm with 

default parameters. To achieve stochastic gradient boosting 

we need to specify what fraction of data set need to sample 

randomly for each additive base learner to be trained at each 

iteration. As random sampling can be done row-wise, 

column-wise and split-wise (when building tree), we need to 

set values for XGBOOST parameters, namely  “subsample”, 

“colsample_bytree” and “colsample_bylevel” respectively. 

Along with these parameters, the maximum number of trees 

in the ensemble, depth of each tree and learning rate of 

gradient also need to be set with optimal values. These 

parameters can be set by specifying values for 

“n_estimators”, “max_depth” and “learning_rate” 

respectively. For tuning these hyperparameters, we used Grid 

search technique with 3-fold cross-validation. The final 

Model is implemented with the tuned hyper-parameters 

returned by Grid search. 

 

The dataset is divided in to train and test datasets in 2:1 ratio 

and model is trained on train dataset and tested with test 

dataset. SGB model has trained with imbalanced dataset also 

in the same way. 

 

IV. RESULTS AND DISCUSSION 
 

The performance of SGB is compared with the following ML 

models 

1. K Nearest Neighbours using “kd_tree” algorithm 

(K-NN) 

2. Naïve Bayes with Bernoulli event model(NB) 

3. Decision tree using Gini impurity (DT) 

4. Random Forest using Gini impurity (RF) 

The above algorithms are implemented using Scikit-learn 

python library. 

 

All ML models are trained over both balanced dataset and 

imbalanced dataset. The following classification metrics are 

used to evaluate the proposed model and compare with the 

above ML algorithms. 

 

Accuracy:   

 

It is the ratio of correctly classified data points to the total 

number of data points in a given data set. 

(TP + TN)/ (Total data points). 

 

Precession: 

 

 It is the ratio of all correctly classified items to all actually 

classified items. 

Defined as, TP/ (TP + FP). 

 

Confusion Matrix: 

 

 In binary classification, it is the 2x2 matrix. In our case it is 

described as below: 

 

 
 

Precession:  

It is the ratio of all correctly classified items to all actually 

classified items. 

Defined as, TP/ (TP + FP). 

 

F1-score: 

 Mathematically it is defined as  

2 ∗ TP/ (2 ∗ TP + FN + FP). It computes the harmonic mean 

of the precision and the recall. 

Label
Predicted as 

"ddos"

Predicted as 

"benign"

Data points 

labelled with 

"ddos"

True 

Positves(TP)

False 

Negatives(FN)

Data points 

labelled with 

"benign"

False 

Positive(FP)

True 

Nehatives(TN)
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Recall: 

It is the ratio, TP/ (TP + FN). Also called sensitivity or true 

positive rate.  

 

The obtained results for all models are shown in table 4.1 

along with tuned hyperparameter values and run time for 

each model. All models are executed in same standalone 

Linux Machine of 216 GB RAM and 30-Cores Intel-Xeon 

2.7GHz CPU. 

 

From the performance metrics of all models over balanced 

dataset from Table 4.1, It is evident that SGB outperformed 

all other models with zero false positives and false negatives 

and 100% accuracy and literally zero misclassifications. NB 

recorded the lowest accuracy and also other metrics. But it is 

the fastest model with run time, 20 secs with a single thread. 

K-NN is the slowest model with 5hrs run time with 25 

parallel threads. When executed with a single thread, it ran 

for 20 hrs. DT model is the second best when the trade-off 

between run time and accuracy is considered as it completed 

its execution in 4min. Though Random Forest has less run 

time with 2min, it can’t be compared directly as RF 

execution is    parallelized with 30 jobs. 
 

Table 4.1 Results over balanced dataset 

 
 

The run time of SGB is 10 min when executed with 30 

threads. It is not as fast as Random Forest where bagging 

operation can be computed parallel. But in real time this can 

be greatly reduced by deploying SGB in distributed 

processing environment with an n-node cluster.  

     

 The real-time attack traffic will be having high variance and 

results may vary for the model which is trained over the 

balanced dataset. To test the model against this scenario we 

trained SGB over the unbalanced dataset, created in section 

3.1. All other models are evaluated over this dataset to 

compare results. SGB recorded 100 percent accuracy and 

zero misclassifications even with the imbalanced dataset. 

This proves that SGB can be engineered to be insensitive to 

the variance of the input data which is an essential 

requirement when handling real-time attack traffic. Other 

ML model resulted in lower performance metrics as that of 

balanced data set.  The performance of DT, K-NN, RF are 

only slightly degraded but Precision of Naive Bayes 

exhibited huge difference from 91% to 69%. The values of 

all metrics are tabulated in 4.2  
 

Table 4.2 Results over imbalanced dataset 

 
                  
The Receiver Operating characteristic curve is another 

performance metric which illustrates the diagnostic ability of 

binary classifier. ROC curve for SGB and Naïve Bayes are 

shown below in Fig 4.1 & 4.2 respectively.  
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Fig. 4.1 ROC of SGB (XGBOOST) Balanced Dataset 

 

The ROC curve for DT, RF, and K-NN is same as above as 

we got the area under the curve equal to one. 

 

 

 

 
Fig.4.2 ROC of Naïve Bayes-Bernoulli (Balanced dataset) 

 

It is found that SGB model performance unchanged even 

when trained with the imbalanced dataset. The ROC curve 

for the same is shown in Fig 4.3.  
 

 
Fig 4.3 ROC of SGB (XGBOOST) Imbalanced dataset 

 

But, the ROC curve is changed for Naïve Bayes when trained 

over the unbalanced dataset. The plot is shown in figure 4.4 

 

The ROC is almost the same for RF, DT, K-NN for both 

unbalanced & balanced datasets. The area under the curve 

metric is the same. So the difference between ROC cannot be 

differentiated between those algorithms and look like same 

as in fig. 4.1 & fig 4.2. When total miss classifications are 

considered NB resulted in the highest number. Surprisingly 

for same tree hyperparameters, DT recorded better metrics 

compared to RF.  

 

 
   Fig 4.4 ROC of Naive Bayes (Imbalanced dataset) 

 

4.1 Feature importance: 

Advantage of using SGB is that it can automatically provide 

estimates of feature importance from a trained model. 

Importance provides a score of the feature. Higher the score, 

major the role in making a decision in building a tree. The 

top 10 important features returned by trained SGB model are 

shown in Fig 4.5 

 
Fig 4.5 Feature importance by SGB (XGBOOST) 

 

and also the top features given by Random Forest are shown 

in Table 4.3. After comparing the features returned by both 

models, features given by SGB are found more relevant. 

These are the features which played a key role in making the 

decision and contributing to 100% accuracy. Flow ID is the 

top feature in both models. This is obvious because “Flow 

ID” in the dataset is the combination of   Source IP, 

Destination IP, Source Port and Destination Port and 

protocol (TCP or UDP) which describes the entire flow. 
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Table 4.3 RF Feature importance (Balanced dataset) 

Label Score 

 Flow ID 0.226904 

Src IP 0.105322 

Fwd Seg Size Min 0.094147 

Dst IP 0.090014 

Timestamp   0.056993 

Init Bwd Win Byts 0.050132 

Init Fwd Win Byts 0.034673 

Bwd Header Len 0.019799 

Fwd Act Data Pkts 0.01799 

Fwd Seg Size Avg 0.017863 
                 
Even in real time manual analysis this parameter influences 

decision. “Timestamp” is the second highest feature in SGB 

model which is not important in real-time DDoS analysis. 

But in the dataset in which model is trained, the attack is 

generated on particular days and benign traffic in another 

day. So here the key role of “Time stamp” is justified.  

 

When the model is trained on the imbalanced dataset we find 

that important features are changed but 100% accuracy 

retained. These features are presented on Fig4.6 and table 4.4 

It is observed the feature minimum flow inter-arrival time, 

“Flow IAT Min” which has considerable importance in 

DDoS detection is not presented by Random Forest model 

but returned SGB model for both the datasets balanced and 

imbalanced. 

 

 
Fig 4.6 Feature importance by SGB(XGBOOST)imbalanced dataset 

 
 

Table 4.4 RF feature importance (Imbalanced dataset) 

Label Score 

Flow ID 0.212814 

Fwd Seg Size Min 0.089639 

Timestamp 0.080945 

Src IP 0.06383 

Fwd Pkt Len Mean 0.061426 

Dst IP 0.057134 

Fwd Pkt Len Max 0.039168 

Fwd Seg Size Avg 0.035354 

Init Bwd Win Byts 0.033372 

Init Fwd Win Byts 0.024952 
 

V. CONCLUSION AND FUTURE SCOPE  

 

Conclusion: 

In this paper, we proposed a methodology to detect DDoS 

attacks by using Stochastic gradient boosting algorithm. 

We trained our proposed model on the hybrid dataset 

extracted from three open datasets and compared the results 

with other popular machine algorithms. It is shown that SGB 

surpassed K-NN, Decision trees, Random forest, and Naive 

Bayes by achieving 100% performance metrics. Even in case 

of feature importance, SGB presented the more relevant 

features compared to Random Forest. 

 

The proposed model is also trained over imbalanced dataset 

to simulate real-time traffic and results are demonstrated. 

Even in this case, SGB achieved zero misclassifications and 

perfect evaluation metrics. Whereas metrics of other models 

recorded lower compared to as that of balanced dataset case.  

Finally, in the context of our work, we have shown that by 

adapting SGB, DDoS detection system can be fully 

automated obviating human intervention.  

 

Future work: 

This publication is the prototype of ongoing work in our 

organization to detect DDoS attacks originating from 

customer end devices like home routers which are not 

protected. The real-time flows are extracted from net flow 

data collected at the internet gateways. The processed net 

flow data is labeled based on threat intelligence inferred from 

the data points of security controls deployed at various levels 

such as firewalls, intrusion protection systems, intrusion 

detection systems, sandboxes, web application firewalls, and 

privileged access management solutions. 

  

To scale the model to large real-time time data and to 

achieve better latency XGBOOST is deployed with spark, a 

distributed in-memory, cluster computing framework in a 

multi-node cluster setup. We are eager to check how metrics 

are going to be affected. 

 

With the continuously evolving nature of attacks, an attempt 

to find zero day attack poses a limitation on labeled data 

based on internally collected threat intelligence.so we would 
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like to experiment with more promising machine learning 

techniques beyond those discussed in this paper such as deep 

learning. 
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